Enumeration of Conformers for Octahedral cis/trans-[MX4 $\left.(\mathrm{AB})_{2}\right]$ and cis/trans-[MX4 $\left.(\mathrm{ABC})_{2}\right]$ Complexes on the Basis of Computational Group Theory

Hiroshi Sakiyama, Katsushi Waki
Department of Science, Faculty of Science, Yamagata University, Japan
Kojirakawa 1-4-12, Yamagata 990-8560, Japan
saki@sci.kj.yamagata-u.ac.jp

(Received January 22, 2019)

Abstract

Conformers of cis-[MX $\left.4(\mathrm{AB})_{2}\right]$, trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$, cis- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$, and trans- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complexes have been enumerated on the basis of computational group theory, where $\mathrm{M}, \mathrm{X}, \mathrm{AB}$, and ABC are the central metal ion, the monoatomic ligand, the diatomic ligand possessing donor atom A , and the bent triatomic ligand possessing donor atom A, respectively. For the cis-[$\left.\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex, five bisected diastereomers have been found as $2 C_{2}, 1 C_{s}, 2 C_{1}$. Based on the five diastereomers of the cis- $\mathrm{MX}_{4}(\mathrm{AB})_{2}$ core unit, 36 diastereomers have been found for the cis- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex, which are assigned to three-point groups, $6 C_{2}, 3 C_{s}, 27 C_{1}$. On the other hand, for the trans-[$\left.\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex, three bisected diastereomers have been found as $1 C_{2 h}, 1 C_{2 v}, 1 C_{2}$. Based on the three diastereomers of the trans $-\mathrm{MX}_{4}(\mathrm{AB})_{2}$ core unit, 14 diastereomers have been found for the trans$\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex, which are assigned to six-point groups, $1 C_{2 h}, 1 C_{2 v}, 5 C_{2}, 1 C_{s}, 1 C_{i}, 5 C_{1}$. Enumeration results are expected to be useful in conformational analysis of related metal complexes.

1 Introduction

Conformational analysis is one of the reliable methods in predicting structures of flexible molecules, and enumeration of the conformers is important as the first step of conformational analysis. For metal complexes, enumeration is not so easy because of the large number of conformers caused by the branches at the central metal, but once the conformers of typical
structures are enumerated, the relating complexes have the same enumeration results. The conformers of octahedral metal complexes have been enumerated for several types of complexes, including $\left[\mathrm{M}(\mathrm{AB})_{6}\right],\left[\mathrm{M}(\mathrm{ABC})_{6}\right],\left[\mathrm{MX}(\mathrm{AB})_{5}\right],\left[\mathrm{MX}(\mathrm{ABC})_{5}\right]$, cis/trans- $\left[\mathrm{MX}_{2}(\mathrm{AB})_{4}\right]$, cis/trans- $\left[\mathrm{MX}_{2}(\mathrm{ABC})_{4}\right]$, fac/mer $-\left[\mathrm{MX}_{3}(\mathrm{AB})_{3}\right]$, and fac/mer- $\left[\mathrm{MX}_{3}(\mathrm{ABC})_{3}\right]$ [1-7], by the computational group theory (CGT) method [8], where $\mathrm{M}, \mathrm{X}, \mathrm{AB}$, and ABC are the central metal, the monoatomic ligand, the diatomic ligand possessing donor atom A , and the bent triatomic ligand possessing donor atom A, respectively. Conformational analysis was shown to be useful [1,2,9,10] not only for predicting the stable structures but also for interpreting physicochemical properties (e.g. phase-transition behavior), using the result of the enumeration.

In this study, in order to extend the target molecules in the conformational analysis, enumeration was conducted for octahedral complexes, cis-[MX4 $\left.(\mathrm{AB})_{2}\right]$, trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$, cis-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$, and trans-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ (Figure 1), possessing two AB or ABC ligands. This study will be the last one of this enumeration series, because the $\left[\mathrm{MX}_{5}(\mathrm{AB})\right]$ and [$\mathrm{MX}_{5}(\mathrm{ABC})$] complexes are too simple to be discussed. The cis-complexes possess central cis$\mathrm{MX}_{4} \mathrm{~A}_{2}$ unit, belonging to the $C_{2 v}$ point group, while the trans-complexes possess central trans$\mathrm{MX}_{4} \mathrm{~A}_{2}$ unit, belonging to the $D_{4 h}$ point group. The enumeration results are expected to be useful for conformational analysis for related octahedral complexes.

cis- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$
cis-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$

trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right] \quad$ trans- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$

Figure 1. Structures of octahedral metal complexes, cis-[MX4 $\left.(\mathrm{AB})_{2}\right]$ (a), cis- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ (b), trans$\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ (c), and trans-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ (d)

2 Methods

Conformers were obtained based on the computational group theory (CGT) method [7], which was performed using GAP program [11] on Intel Core i5-2450 (2.50GHz) computer. Threedimensional models were drawn by Winmostar software [12], and the point groups were ascertained by the software. In enumeration, four bisecting orientations are considered for the rotation around the $\mathrm{M}-\mathrm{A}$ bond, and three orientations are considered for the rotation around the A-B bond (Figure 2a). To describe the structure, we use the following notation [1-7]. For example, the structure shown in Figure 2 b is described as $[[y+z],[-],[-],[-],[-],[-x-$ $\mathrm{y}]$]. In this notation, the orientations of the AB ligands are described as [$\mathrm{y}+\mathrm{z}],[-\mathrm{x}-\mathrm{y}$], etc., and the X ligands are described as [-], in the order of the numbering system [$\mathrm{x}, \mathrm{y}, \mathrm{z},-\mathrm{x},-$ y, -z].

Figure 2. Typical orientations considered in enumeration (a) and an example of a conformer with a numbering system (b)

3 Results and discussion

3.1 Enumeration for cis- and trans-[MX4 $\left.(\mathrm{AB})_{2}\right]$ complexes

The enumeration was conducted for the cis- and trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complexes, excluding the unfavorable structures possessing B atoms in a close distance. The resulting diastereomers are summarized in Table 1 with their point groups and are depicted in Figure 3. The obtained five diastereomers, $\mathrm{L} 2-\mathrm{C} 1-\mathrm{L} 2-\mathrm{C} 5$, are categorized in three-point groups as $2 C_{2}, 1 C_{s}, 2 C_{1}$. Here,
"L2" means the complex possesses two flexible ligand-arms. Since the C_{2} and C_{1} point groups are chiral among the three-point groups, each diastereomer belonging to either the C_{2} or C_{1} point group has an enantiomer. Therefore, the total number of conformers is nine (L2-C1, L2C1', L2-C2, L2-C2', L2-C3, L2-C4, L2-C4', L2-C5, and L2-C5', where the symbol " , " represents the mirror image). Except for the C_{1} point group, each of the appeared point group belongs to a subgroup of the $C_{2 v}$ point group, to which the cis- $\mathrm{MX}_{4} \mathrm{~A}_{2}$ coordination geometry belongs.

Table 1. Bisecting diastereomers for a cis-[MX $\left.{ }_{4}(\mathrm{AB})_{2}\right]$ complex

No	Example	Point Group
L2-C1	$[[\mathrm{y}+\mathrm{z}],[-],[-],[-],[-],[-\mathrm{x}-\mathrm{y}]]$	C_{2}
L2-C2	$[[\mathrm{y}+\mathrm{z}],[-],[\mathrm{x}-\mathrm{y}],[-],[-],[-]]$	C_{2}
L2-C3	$[[\mathrm{y}+\mathrm{z}],[-],[-],[-],[-\mathrm{x}+\mathrm{z}],[-]]$	C_{s}
L2-C4	$[[\mathrm{y}+\mathrm{z}],[-],[-\mathrm{x}+\mathrm{y}],[-],[-],[-]]$	C_{1}
L2-C5	$[[\mathrm{y}+\mathrm{z}],[-],[-\mathrm{x}-\mathrm{y}],[-],[-],[-]]$	C_{1}

Figure 3. Structures of diastereomers L2-C1 - L2-C5

The enumeration for the trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex was conducted in the same way, and the resulting diastereomers are summarized in Table 2 with their point groups and are depicted in Figure 4. The obtained three diastereomers, L2-T1 - L2-T3, are categorized in three-point groups as $1 C_{2 h}, 1 C_{2 v}, 1 C_{2}$. Among them, the C_{2} point group is chiral, and the diastereomer belonging to the C_{2} point group has an enantiomer. Total number of the conformers is four (L2T1, L2-T2, L2-T3, and L2-T3', where the symbol " '" represents the mirror image). Each of the appeared point group belongs to a subgroup of the $D_{4 h}$ point group, to which the trans$\mathrm{MX}_{4} \mathrm{~A}_{2}$ coordination geometry belongs.

Table 2. Bisecting diastereomers for a trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex

No	Example	Point Group
L2-T1	$[[y+z],[-],[-],[-y-z],[-],[-]]$	$C_{2 h}$
L2-T2	$[[y+z],[-],[-],[y+z],[-],[-]]$	$C_{2 v}$
L2-T3	$[[y+z],[-],[-],[-y+z],[-],[-]]$	C_{2}

Figure 4. Structures of diastereomers L2-T1 - L2-T3

3.2 Enumeration for $\boldsymbol{c i s}$-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex

Conformers of cis-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex were considered using the enumeration result of cis$\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex. Based on the cis $-\mathrm{MX}_{4}(\mathrm{AB})_{2}$ unit, each ligand, AB , was extended from atom B to atom C to consider the conformers of cis-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex. For the extension of C, three directions were considered whose dihedral angles M-A-B-C were 180° (anti conformer), 300° (gauche conformer), and 60° (gauche conformer) (Figure 2a). This is thought to be sufficient for the purpose of conformational analysis. The resulting diastereomers are summarized in Table 3. The total number of diastereomers becomes 36, including $6 C_{2}, 3 C_{s}$, $27 C_{1}$ diastereomers, as listed in Table 4. Since the C_{2} and C_{1} point groups are chiral, the number of conformers becomes 69 in total, including $12 C_{2}, 3 C_{s}, 54 C_{1}$ conformers. Except for the C_{1} point group, all the point groups belong to the subgroups of the $C_{2 v}$ point group, to which the cis- $\mathrm{MX}_{4} \mathrm{~A}_{2}$ unit belongs.

Table 3. Bisecting diastereomers of cis-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$, derived from cis- $\mathrm{MX}_{4}(\mathrm{AB})_{2}$ core unit

No	Point group of cis- $\mathrm{MX}_{4}(\mathrm{AB})_{2}$ core unit	Point groups of cis- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ diastereomer	Total number of diastereomers	Total number of conformers
L2-C1	C_{2}	$3 C_{2}, 3 C_{1}$	6	12
L2-C2	C_{2}	$3 C_{2}, 3 C_{1}$	6	12
L2-C3	C_{s}	$3 C_{s}, 3 C_{1}$	6	9
L2-C4	C_{1}	$9 C_{1}$	9	18
L2-C5	C_{1}	$9 C_{1}$	9	18
			Total	36

Table 4. Bisecting conformers of cis-[MX $\left.{ }_{4}(\mathrm{ABC})_{2}\right]$

No	Point group	Total number of diastereomers	Total number of conformers
1	C_{2}	6	12
2	C_{s}	3	3
3	C_{1}	27	54
		Total	36

3.3 Enumeration for trans-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex

Conformers of trans-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex were considered using the enumeration result of trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex, and the resulting diastereomers are summarized in Table 5. The total number of diastereomers becomes 14 , including $1 C_{2 h}, 1 C_{2 v}, 5 C_{2}, 1 C_{s}, 1 C_{i}, 5 C_{1}$ diastereomers, as listed in Table 6 . Since the C_{2} and C_{1} point groups are chiral, the total number of conformers becomes 24 , including $1 C_{2 h}, 1 C_{2 v}, 10 C_{2}, 1 C_{s}, 1 C_{i}, 10 C_{1}$ conformers. Except for the C_{1} point group, all the point groups belong to the subgroups of the $D_{4 h}$ point group, to which the trans- $\mathrm{MX}_{4} \mathrm{~A}_{2}$ unit belongs.

Table 5. Bisecting diastereomers of trans- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$, derived from trans- $\mathrm{MX}_{4}(\mathrm{AB})_{2}$ core unit

No	$\begin{gathered} \text { Point group of } \\ \text { trans-MX } \\ \text { core unit } \\ \hline \end{gathered}$	Point groups of trans$\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right.$] diastereomer	Total number of diastereomers	Total number of conformers
L2-T1	$C_{2 h}$	$1 C_{2 h}, 1 C_{2}, 1 C_{i}, 1 C_{1}$	4	6
L2-T2	$C_{2 v}$	$1 C_{2 v}, 1 C_{2}, 1 C_{s}, 1 C_{1}$	4	6
L2-T3	C_{2}	$3 C_{2}, 3 C_{1}$	6	12
		Total	14	24

Table 6. Bisecting conformers of trans-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$

No	Point group	Total number of diastereomers	Total number of conformers
1	$C_{2 h}$	1	1
2	$C_{2 v}$	1	1
3	C_{2}	5	10
4	C_{s}	1	1
5	C_{i}	1	1
6	C_{1}	Total	14
		Tota	10

As summarized in Tables 1-6, possible diastereomers are enumerated for cis/trans$\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ and cis/trans- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complexes. This kind of enumeration results were recently found to be useful not only for predicting the structures, but also for understanding the phase-transition behavior of metal complexes [10]. The enumeration results in this study is also expected to be useful in the future.

4 Concluding remarks

In this study, conformers of octahedral cis/trans-[MX4 $\left.(\mathrm{AB})_{2}\right]$ and cis/trans-[$\left.\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complexes were enumerated on the basis of computational group theory. For the cis$\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex, five bisecting diastereomers have been found as $2 C_{2}, 1 C_{s}, 2 C_{1}$. For the cis- $\left[\mathrm{MX}_{4}(\mathrm{ABC})_{2}\right]$ complex, 36 bisecting diastereomers have been found as $6 C_{2}, 3 C_{s}, 27 C_{1}$. For the trans- $\left[\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex, three bisecting diastereomers have been found as $1 C_{2 h}, 1$ $C_{2 v}, 1 C_{2}$. For the trans-[$\left.\mathrm{MX}_{4}(\mathrm{AB})_{2}\right]$ complex, 14 bisecting diastereomers have been found as $1 C_{2 h}, 1 C_{2 v}, 5 C_{2}, 1 C_{s}, 1 C_{i}, 5 C_{1}$. The results were summarized in tables, which are useful in conformational analysis of the related metal complexes.

Acknowledgment: This work was supported by JSPS KAKENHI Grant Number 15K05445. Financial support by Yamagata University is also acknowledged.

References

[1] H. Sakiyama, K. Waki, Conformational analysis of hexakis-methylamine nickel(II) complex on the basis of computational group theory and density functional theory, J. Comput. Chem. Jpn. 13 (2014) 223-228.
[2] H. Sakiyama, K. Waki, Conformational analysis of hexakis-N-methylformamide nickel(II) complex on the basis of computational group theory and density functional theory, J. Comput. Chem. Jpn. Int. Ed. 1 (2015) 5-8.
[3] H. Sakiyama, K. Waki, Enumeration of conformers of octahedral [M(ABC) $)_{6}$] complex on the basis of computational group theory, Iran. J. Math. Chem. 7 (2016) 223-234.
[4] H. Sakiyama, K. Waki, Enumeration of conformers for octahedral [MX(AB)s] and [$\left.\mathrm{MX}(\mathrm{ABC})_{5}\right]$ complexes on the basis of computational group theory, J. Math. Chem. 55 (2017) 1360-1366.
[5] H. Sakiyama, K. Waki, Enumeration of conformers for octahedral trans/cis$\left[\mathrm{MX}_{2}(\mathrm{AB})_{4}\right]$ and trans/cis-[$\left.\mathrm{MX}_{2}(\mathrm{ABC})_{4}\right]$ complexes on the basis of computational group theory, J. Math. Chem. 56 (2018) 3126-3135.
[6] H. Sakiyama, K. Waki, Enumeration of edge-oriented conformers of octahedral $\left[\mathrm{M}(\mathrm{ABC})_{6}\right]$ complex on the basis of computational group theory, MATCH Commun. Math. Comput. Chem. 81 (2019) 91-104.
[7] H. Sakiyama, K. Waki, Enumeration of conformers for octahedral fac/mer-[MX ${ }_{3}(\mathrm{AB})_{3}$] and fac/mer $-\left[\mathrm{MX}_{3}(\mathrm{ABC})_{3}\right]$ complexes on the basis of computational group theory, MATCH Commun. Math. Comput. Chem. 81 (2019) 593-602.
[8] D. F. Holt, Handbook of Computational Group Theory, Chapman \& Hall, Boca Raton, 2005.
[9] H. Sakiyama, T. Abiko, M. Ito, R. Mitsuhashi, M. Mikuriya, K. Waki, Conformational analysis of an octahedral zinc(II) complex with six dimethylsulfoxide, Polyhedron 119 (2016) 512-516.
[10] H. Sakiyama, T. Abiko, M. Ito, R. Mitsuhashi, M. Mikuriya, K. Waki, T. Usuki, Reversible crystal-to-crystal phase transition of an octahedral zinc(II) complex with six dimethylsulfoxide, Polyhedron 158 (2019) 494-498.
[11] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.7.9; 2015. (http://www.gap-system.org)
[12] X-Ability Co., Ltd., Winmostar Software, Version 7.025; 2017. (http://winmostar.com)

