
Concordant Generation of Mark Tables and
USCI-CF (Unit Subduced Cycle Indices
with Chirality Fittingness) Tables on the

Basis of Combined–Permutation
Representations

Shinsaku Fujita
Shonan Institute of Chemoinformatics and Mathematical Chemistry,

Kaneko 479-7 Ooimachi, Ashigara-Kami-Gun, Kanagawa-Ken,

258-0019 Japan

shinsaku_fujita@nifty.com

(Received September 20, 2018)

Abstract

Combined-permutation representations (CPRs) have been used in the GAP
(Groups, Algorithms, Programming) system to cover Fujita’s USCI (Unit-Subduced-
Cycle-Index) approach for symmetry-itemized enumerations of 3D structures. New
GAP functions for constructing USCI-CF tables and for constructing the concor-
dant mark tables have been developed to support the practical usage of Fujita’s
USCI approach. The source code containing these newely-defined functions is at-
tached as an appendix. Concordant generation of mark tables and USCI-CF tables
is applied to a CPR (degree = 4 + 2) based on a tetrahedral skeleton as well as to
another CPR (degree = 10 + 2) based on an adamantane skeleton. Although these
CPRs are different in their degrees, they are capable of generating an identical set of
a mark table and a USCI table for the point group Td. The USCI-CF table enables
us to generate a list of subduced cycle indices with chirality fittingness (SCI-CFs),
which is multiplied by an inverse mark table to give a list of partial cycle indices
with chirality fittingness (PCI-CFs). Each element of the list of PCI-CFs gives the
PCI-CF for each subgroup. Thereby, symmetry-itemized enumeration based on a
tetrahedral skeleton of Td is conducted by means of the PCI method of Fujita’s
USCI approach. The results are summarized in a tabular form. The relationship
between PCI-CFs and CI-CFs is discussed.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 82 (2019) 295-326

 ISSN 0340 - 6253

1 Introduction

Chemical compounds have long been enumerated as graphs (not 3D structures) in the

conventional stereochemistry, as implied by the title of Pólya’s book [1] (“Combinatorial

Enumeration of Groups, Graphs, and Chemical Compounds”), which is an English trans-

lation of his famous article [2] on Pólya’s theorem. After the proposal of the concept of

sphericities [3] and of the proligand-promolecule model [4], the author (Fujita) has devel-

oped several approaches for the enumeration of compounds as 3D structures, the sum-

maries of which have been published as monographs, e.g., Fujita’s proligand method [5] for

gross enumerations of 3D structures, Fujita’s USCI approach [6,7] for symmetry-itemized

enumerations, and Fujita’s stereoisogram approach [8] for the integration of geometric

features and stereoisomeric features of 3D structures.

The remaining tasks are to catch up with the recent development of computer software

(e.g., the GAP (Groups, Algorithms, Programming) system as a free software [9]) and to

develop convenient tools for executing enumeration of compounds as 3D structures.

GAP utilities for enumeration are mainly based on permutation groups (without con-

sidering reflections), where permutations are essentially insufficient to treat 3D struc-

tures. To make up the shortcoming of permutations, the author (Fujita) has recently

developed combined-permutation representations (CPRs) [10], where a permutation is

combined with a mirror-permutation of 2-cycle. The CPRs have been used to treat

point groups [10, 11] and RS-stereoisomeric groups [12]. Thereby, the GAP function

CalcConjClassCICF for calculating cycle indices with chirality fittingness (CI-CFs) has

been developed during the application of Fujita’s proligand method [5] to gross enumer-

ations of 3D structures.

The next task is to develop GAP functions for executing Fujita’s USCI approach [6,7],

where symmetry-itemized enumerations are based on subduced cycle indices with chirality

fittingness (SCI-CFs). A brief survey of Fujita’s USCI approach has appeared in Chapter

2 of Ref. [5]. Such SCI-CFs are calculated from unit subduced cycle indices with chirality

fittingness (USCI-CFs), each of which is calculated by means of the subduction of a

coset representation [13, 14]. The present paper is devoted to develop GAP functions for

calculating USCI-CFs and related matters.

-296-

2 Mark Tables (Table of Marks)
Because a tetrahedral skeleton as an RS-stereogenic center (so-called “chiral center”) and

an allene skeleton as an RS-stereogenic axis (so-called “chiral axis”) widely attract the

attention of organic chemists, the present paper deals mainly with the point group Td

of a tetrahedral skeleton 1 and the point group D2d of an allene skeleton 2 (Figure 1),

where the four substitution positions are numbered sequentially from 1 to 4. However,

the discussions described below are applicable to any other point groups.

1

3

4

2

C

s

s

s

s

3

2

1

4

C C C

s

s

"

"

s

s

1 2

Figure 1. Reference tetrahedral skeleton 1 and allene skeleton 2. The orbit of the
four vertices of 1 corresponds to the coset representation (C3v\)Td under
the point group Td. The orbit of the four vertices of 2 corresponds to
the coset representation (Cs\)D2d under the point group D2d.

The CPR of the point group Td has been constructed during the development of

computer-oriented representations for combinatorial enumerations [10, 12], where an ap-

propriate set of generators is selected to be placed in the GAP function Group. The CPR

named Td_tetra is derived from a set of generators [(1,2)(3,4), (2,3,4), (3,4)(5,6)], each

of which is composed of a 4-cycle concerning the locant number 1 to 4 and a 2-cycle of

mirror-permutation ((5)(6) or (5 6)). As a result, the degree of the CPR Td_tetra is equal

to 6 (= 4 + 2). Because 1-cycles are omitted according to the notation of the GAP sys-

tem, the generator (2,3,4), for example, corresponds to a full expression (1)(2 3 4)(5)(6),

where commas are added for the sake of clarity. The CPR named T_tetra for the point

group T is also constructed with omitting the 2-cycles ((5)(6) or (5 6)). The following

codes are executed by inputting after the command prompt gap> of the GAP system.

Source-Code 1
gap> Td_tetra := Group([(1,2)(3,4), (2,3,4), (3,4)(5,6)]);;
gap> Size(Td_tetra); #order of Td
24
gap> T_tetra := AsSubgroup(Td_tetra,Group([(1,3)(2,4), (1,2)(3,4), (2,3,4)]));;
gap> Size(T_tetra); #order of T
12
gap> CosetDecomposition(Td_tetra,T_tetra);
[[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4), (1,4,2),

(1,4,3), (1,4)(2,3)],
[(3,4)(5,6), (2,4)(5,6), (2,3)(5,6), (1,2)(5,6), (1,2,4,3)(5,6), (1,2,3,4)(5,6), (1,4,3,2)(5,6),
(1,4)(5,6), (1,4,2,3)(5,6), (1,3,4,2)(5,6), (1,3)(5,6), (1,3,2,4)(5,6)]]

gap>

-297-

The order of the resulting Td (Td_tetra) is calculated to be 24, while the order of the

resulting T (T_tetra) is calculated to be 12. Then, the coset decomposition of Td by its

subgroup T is calculated by the GAP function CosetDecomposition, so as to generate two

cosets, the transversals of which are I (∼ (), unity) and σd(2) (∼ (3, 4)(5, 6), a reflection).

The result shows that the second coset corresponding to Tσd(2) (σd(2) ∼ (3, 4)(5, 6)) is

characterized by the presence of a mirror-permutation (5, 6).

The GAP system is originally equipped with the function TableOfMarks to generate a

mark table (table of marks). The mark table of the group Td (tom_Td_tetra) is calculated

as follows:

Source-Code 2
gap> Td_tetra := Group([(1,2)(3,4), (2,3,4), (3,4)(5,6)]);;
gap> T_tetra := AsSubgroup(Td_tetra,Group([(1,3)(2,4), (1,2)(3,4), (2,3,4)]));;
gap> tom_Td_tetra := TableOfMarks(Td_tetra);;
gap> Display(tom_Td_tetra);
1: 24
2: 12 4
3: 12 . 2
4: 8 . . 2
5: 6 6 . . 6
6: 6 2 2 . . 2
7: 6 2 2
8: 4 . 2 1 . . . 1
9: 3 3 1 . 3 1 1 . 1
10: 2 2 . 2 2 2
11: 1 1 1 1 1 1 1 1 1 1 1

Each row of the mark table (tom_Td_tetra) corresponds to a coset representation

(Hi\)Td, where Hi is a subgroup up to conjugacy within Td (Td_tetra). The i-th

subgroup Hi (r_tom) can be calculated by using the GAP function RepresentativeTom

and the corresponding set (gen[i]) of generators for Hi (r_tom) can be obtained by using

the GAP function GeneratorsOfGroup as follows:

Source-Code 3
gap> gen := [];;
gap> for i in [1..Size(OrdersTom(tom_Td_tetra))] do
> r_tom := RepresentativeTom(tom_Td_tetra,i);
> gen[i] := GeneratorsOfGroup (r_tom);
> Print("gen[", i, "] := ", gen[i], "\n");
> od;
gen[1] := []
gen[2] := [(1,2)(3,4)]
gen[3] := [(3,4)(5,6)]
gen[4] := [(2,3,4)]
gen[5] := [(1,3)(2,4), (1,2)(3,4)]
gen[6] := [(3,4)(5,6), (1,2)(3,4)]
gen[7] := [(1,3,2,4)(5,6), (1,2)(3,4)]
gen[8] := [(3,4)(5,6), (2,3,4)]
gen[9] := [(1,3)(2,4), (1,2)(3,4), (3,4)(5,6)]
gen[10] := [(1,3)(2,4), (1,2)(3,4), (2,3,4)]
gen[11] := [(1,2)(3,4), (2,3,4), (3,4)(5,6)]
gap> IsomorphismGroups(Group(gen[10]), T_tetra);
[(1,3)(2,4), (1,2)(3,4), (2,3,4)] -> [(1,3)(2,4), (1,2)(3,4), (2,3,4)]

-298-

The subgroups Hi (i = 1, 2, . . . , 11) corresponds to the subgroups of Td as follows,

where usual notations of point groups are given:

H1 (gen[1]) — C1; H2 (gen[2]) — C2; H3 (gen[3]) — Cs; H4 (gen[4]) — C3;
H5 (gen[5]) — D2; H6 (gen[6]) — C2v; H7 (gen[7]) — S4; H8 (gen[8]) — C3v;
H9 (gen[9]) — D2d; H10 (gen[10]) — T; and H11 (gen[11]) — Td;

As a result, the mark table obtained above (tom_Td_tetra) is different in the order

of the appearance of subgroups from the mark table reported in a book (Table A.10

of Ref. [6]). Such mark tables of different modes should be treated flexibly because of

maintaining the consistency of previous reports.

3 Concordant Generation of Mark Tables and USCI-
CF Tables

To cover the results of previous reports flexibly, the order of the appearance of subgroups

in a mark table is given as a list to be considered. For example, the order of subgroups

collected in the mark table reported as Table A.10 of Ref. [6] is adopted as follows,

where gen[5], gen[6], and gen[7] in tom_Td_tetra are sorted to give gen[7], gen[5], and

gen[6]. The corresponding mark table is calculated by the newly-developed function

MarkTableforUSCI (see Appendix A) as follows:

Source-Code 4
gap> Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/USCICF.gapfunc");
gap> Td_tetra := Group([(1,2)(3,4), (2,3,4), (3,4)(5,6)]);;
gap> T_tetra := AsSubgroup(Td_tetra,Group([(1,3)(2,4), (1,2)(3,4), (2,3,4)]));;
gap> tom_Td_tetra := TableOfMarks(Td_tetra);;
gap> #Subgroups of Td given
gap> gen := [];;
gap> gen[1] := [()];; #C1
gap> gen[2] := [(1,3)(2,4)];; #C2
gap> gen[3] := [(2,4)(5,6)];; #Cs
gap> gen[4] := [(2,3,4)];; #C3
gap> gen[5] := [(1,2,3,4)(5,6)];; #S4
gap> gen[6] := [(1,3)(2,4),(1,2)(3,4)];; #D2
gap> gen[7] := [(1,3)(2,4), (2,4)(5,6)];; #C2v
gap> gen[8] := [(2,3,4), (3,4)(5,6)];; #C3v
gap> gen[9] := [(1,3)(2,4),(1,2)(3,4),(2,4)(5,6)];; #D2d
gap> gen[10] := [(1,2)(3,4), (2,3,4)];; #T
gap> gen[11] := [(1,2)(3,4), (2,3,4), (3,4)(5,6)];; #Td
gap> #mark table sorted for USCI table
gap> MarkTableTd := MarkTableforUSCI(Td_tetra,T_tetra,11,gen,4,6);;
gap> Display(MarkTableTd);
1: 24
2: 12 4
3: 12 . 2
4: 8 . . 2
5: 6 2 . . 2
6: 6 6 . . . 6
7: 6 2 2 . . . 2
8: 4 . 2 1 . . . 1
9: 3 3 1 . 1 3 1 . 1

-299-

10: 2 2 . 2 . 2 . . . 2
11: 1 1 1 1 1 1 1 1 1 1 1

Thereby, the original mark table tom_Td_tetra produced above is converted into the

sorted mark table MarkTableTd, which is equivalent to Table A.10 of Ref. [6], Table 1 of

Ref. [15], and Table II of Ref. [3]. It should be noted the function MarkTableforUSCI is

stored in the file named USCICF.gapfunc (Appendix A), which is loaded by means of the

GAP command Read.

At the same time, the corresponding USCI-CF table is calculated by means of the

newly-developed function constructUSCITable (also stored in the file USCICF.gapfunc

(Appendix A)), as follows:

Source-Code 5
gap> #USCI-CF Table of Td
gap> USCITableTd := constructUSCITable(Td_tetra,T_tetra,11,gen,4,6);
[[b_1^24, b_2^12, c_2^12, b_3^8, c_4^6, b_4^6, c_4^6, c_6^4, c_8^3, b_12^2, c_24],
[b_1^12, b_1^4*b_2^4, c_2^6, b_3^4, c_2^2*c_4^2, b_2^6, c_2^2*c_4^2, c_6^2, c_4^3, b_6^2, c_12],
[b_1^12, b_2^6, c_2^5*a_1^2, b_3^4, c_4^3, b_4^3, c_4^2*a_2^2, c_6*a_3^2, c_8*a_4, b_12, a_12],
[b_1^8, b_2^4, c_2^4, b_1^2*b_3^2, c_4^2, b_4^2, c_4^2, c_2*c_6, c_8, b_4^2, c_8],
[b_1^6, b_1^2*b_2^2, c_2^3, b_3^2, c_4*a_1^2, b_2^3, c_2*c_4, c_6, c_4*a_2, b_6, a_6],
[b_1^6, b_1^6, c_2^3, b_3^2, c_2^3, b_1^6, c_2^3, c_6, c_2^3, b_3^2, c_6],
[b_1^6, b_1^2*b_2^2, c_2^2*a_1^2, b_3^2, c_2*c_4, b_2^3, c_4*a_1^2, a_3^2, c_4*a_2, b_6, a_6],
[b_1^4, b_2^2, c_2*a_1^2, b_1*b_3, c_4, b_4, a_2^2, a_1*a_3, a_4, b_4, a_4],
[b_1^3, b_1^3, c_2*a_1, b_3, c_2*a_1, b_1^3, c_2*a_1, a_3, c_2*a_1, b_3, a_3],
[b_1^2, b_1^2, c_2, b_1^2, c_2, b_1^2, c_2, c_2, c_2, b_1^2, c_2],
[b_1, b_1, a_1, b_1, a_1, b_1, a_1, a_1, a_1, b_1, a_1]]

gap>

The resulting USCI-CF table (USCITableTd) is equivalent to Table 16 of Ref. [16] and

Table E.10 of Ref. [6] (the USCI-CF a2 at the intersection between 10th row and 5th

column should be corrected to be c2).

Such a set of codes as described above can be written in an appropriate file, which is

loaded in a lump to the GAP system. For example, let a file named D2d-USCI-CF2.gap

contain the following codes:

Source-Code 6
#The file D2d-USCI-CF2.gap
#Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/D2d-USCI-CF2.gap");
LogTo("c:/fujita00/fujita2018/subductionTd/calcGAP3/D2d-USCI-CF2log.txt");

Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/USCICF.gapfunc");

D2d := Group([(1,3)(2,4), (1,2)(3,4), (2,4)(5,6)]);
D2 := Group([(1,3)(2,4), (1,2)(3,4)]);
gen := [];
gen[1] := []; #C1
gen[2] := [(1,3)(2,4)]; #C2
gen[3] := [(1,2)(3,4)]; #C2'
gen[4] := [(2,4)(5,6)]; #Cs
gen[5] := [(1,3)(2,4), (1,2,3,4)(5,6)]; #S4
gen[6] := [(2,4)(5,6), (1,3)(5,6)]; #C2v
gen[7] := [(1,3)(2,4), (1,2)(3,4)]; #D2
gen[8] := [(1,3)(2,4), (1,2)(3,4), (2,4)(5,6)]; #D2d

-300-

MarkTableD2d := MarkTableforUSCI(D2d,D2,8,gen,4,6);
Display("##Mark table for USCI-CF table (MarkTableD2d) : \n");
Display(MarkTableD2d);
USCITableD2d := constructUSCITable(D2d,D2,8,gen,4,6);
Display("##USCI-CF table (USCITableD2d) :");
Display(USCITableD2d);

LogTo();

In the above code, sets of generators for the respective subgroups up to conjugacy

(gen[1]–gen[8]) are given in accord with the mark table reported previously (Table IV

of Ref. [3] and Table A.8 of Ref. [6]). The concrete forms of these generators have

been obtained according to the above-mentioned procedure using the GAP function

RepresentativeTom(tom_D2d,i), where the original mark table of D2d (tom_D2d) is

calculated by tom_D2d := TableOfMarks(D2d). The resulting set of generators is sorted

to meet the the mark table reported previously (gen[1]–gen[8] in Table IV of Ref. [3] and

Table A.8 of Ref. [6]). Then, the mark table at issue is generated by means of the newly-

developed function MarkTableforUSCI. The corresponding USCI-CF table is generated

by means of the newly-developed function constructUSCITable.

For the purpose of execution, the file (D2d-USCI-CF2.gap) is uploaded by means of

the GAP command Read in the command prompt. That is to say, the first sentence

due to Read in the file is copied and pasted after the prompt word gap>. Thereby, the

codes written in the file (Source-Code 6) are executed to give the following results in

the command prompt, and simultaneously in a log file named D2d-USCI-CF2log.txt by

means of the GAP command LogTo.

Source-Code 7

gap> Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/D2d-USCI-CF2.gap");
##Mark table for USCI-CF table (MarkTableD2d) :

1: 8
2: 4 4
3: 4 . 2
4: 4 . . 2
5: 2 2 . . 2
6: 2 2 . 2 . 2
7: 2 2 2 . . . 2
8: 1 1 1 1 1 1 1 1

##USCI-CF table (USCITableD2d) :
[[b_1^8, b_2^4, b_2^4, c_2^4, c_4^2, c_4^2, b_4^2, c_8],
[b_1^4, b_1^4, b_2^2, c_2^2, c_2^2, c_2^2, b_2^2, c_4],
[b_1^4, b_2^2, b_1^2*b_2, c_2^2, c_4, c_4, b_2^2, c_4],
[b_1^4, b_2^2, b_2^2, c_2*a_1^2, c_4, a_2^2, b_4, a_4],
[b_1^2, b_1^2, b_2, c_2, a_1^2, c_2, b_2, a_2],
[b_1^2, b_1^2, b_2, a_1^2, c_2, a_1^2, b_2, a_2],
[b_1^2, b_1^2, b_1^2, c_2, c_2, c_2, b_1^2, c_2],
[b_1, b_1, b_1, a_1, a_1, a_1, b_1, a_1]]

gap>

-301-

The resulting sorted mark table (MarkTableD2d) is equivalent to Table IV of Ref.

[3] and Table A.8 of Ref. [6], which have been manually constructed by counting fixed

points under the subduction of coset representations. On the other hand, the USCI-CF

table (USCITableD2d) is equivalent to Table E.8 of Ref. [6], which has been manually

constructed by examining the subduction of coset representations (Chapter 9 of Ref. [6]).

4 Generation of SCI-CFs
To pursue the process of enumeration, SCI-CFs for a given skeleton with one or more orbits

should be evaluated from the respective USCI-CFs for each orbit. The four vertices of the

tetrahedral skeleton 1 generates one orbit which corresponds to the coset representation

(C3v\)Td under the point group Td (Figure 1). It follows that the USCI-CFs appearing

in the (C3v\)Td-row (the 8th row) of the USCI-CF table (USCITableTd) are equivalent

to SCI-CFs for the tetrahedral skeleton 1.

Because the CPR Td_tetra (degree 4 + 2) is used in the above discussion, the fixed

point vector (FPV) for the coset representation (C3v\)Td appears in the 8th row of the

mark table (MarkTableTd) or the corresponding matrix calculated by the GAP func-

tion MatTom. The newly-developed function calculateFPvector (Appendix A) is capa-

ble of calculating the fixed point vector (FPVTd) by starting from the CPR Td_tetra.

Then, the newly-developed function constructSCICF generates the corresponding SCI-

CFs, which is identical with the USCI-CFs appearing in the 8th row of the USCI-CF table

(USCITableTd).

Source-Code 8
gap> #After setting data to be required
gap>
gap> Matrix_tomTd := MatTom(MarkTableTd);;
gap> Display(Matrix_tomTd);
[[24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[12, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[12, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0],
[8, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0],
[6, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0],
[6, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0],
[6, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0],
[4, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0],
[3, 3, 1, 0, 1, 3, 1, 0, 1, 0, 0],
[2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

gap>
gap> FPVTd := calculateFPvector(Td_tetra,T_tetra,11,gen,4,6);;
gap> Display(FPVTd);
[4, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0]
gap>
gap> l_SCICF_tetra := constructSCICF(Td_tetra,T_tetra,Matrix_tomTd,USCITableTd,FPVTd);;
gap> Display(l_SCICF_tetra);

-302-

[b_1^4, b_2^2, c_2*a_1^2, b_1*b_3, c_4, b_4, a_2^2, a_1*a_3, a_4, b_4, a_4]

An adamantane skeleton 3 consists of two orbits, as shown in Figure 2. The four

methine carbons of 3 (the locant number 1 to 4) are equivalent under the action of the

point group Td. The resulting orbit corresponds to a coset representation (C3v\)Td,

where each position is fixed under the local symmetry C3v. On the other hand, the six

methylene carbons (the locant number 5 to 10) construct another orbit governed by a

coset representation (C2v\)Td, where each position is fixed under the local symmetry

C2v.

7

2

1

5

3

6

4

10

9

8

3

Figure 2. Adamantane skeleton having two orbits under the action of the point
group Td. The one orbit of four methine carbons with the locant number
1 to 4 belongs to a coset representation (C3v\)Td. The other orbit of
six methylene carbons with the locant number 5 to 10 belongs to a coset
representation (C2v\)Td.

The FPV (FPVadam) for the adamantane skeleton 3 is obtained to be [10, 2, 4,

1, 0, 0, 2, 1, 0, 0, 0] by counting the number of fixed points under the manual

application of each subgroup. Then, the GAP function DecomposedFixedPointVector is

applied to FPVadam, where the data of the mark table MarkTableTd is used.

Source-Code 9
gap> #After setting data to be required
gap> FPVadam := [10, 2, 4, 1, 0, 0, 2, 1, 0, 0, 0];;
gap> DecomposedFixedPointVector(MarkTableTd,FPVadam);
[0, 0, 0, 0, 0, 0, 1, 1]

The resulting list indicates the participation of the 7th (C3v\)Td-row and the 8th

(C2v\)Td-row of MarkTableTd. In fact, the sum of the two rows is equal to FPVadam.

The point group Td can be treated as a CPR based on the adamantane skeleton 3.

The CPR named Td_adam is derived from a set of generators, each of which is composed

of 10-cycle (4-cycle for four methine carbons and 6-cycle for methylene carbons) and a

2-cycle of mirror-permutation ((11)(12) or (11 12)). As a result, the degree of the CPR

Td_adam is equal to 12 (= 10 + 2). The CPR named T_adam for the point group T is

-303-

also constructed with omitting the 2-cycles ((11)(12) or (11 12)).

Source-Code 10 (stored as Td-adamX.gap)
#Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/Td-adamX.gap");
LogTo("c:/fujita00/fujita2018/subductionTd/calcGAP3/Td-adamXlog.txt");

Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/USCICF.gapfunc");

Td_adam := Group([(1,2)(3,4)(5,10)(6,8), (2,3,4)(5,6,7)(8,9,10), (3,4)(5,6)(8,10)(11,12)]);;
T_adam := AsSubgroup(Td_adam,

Group([(1,3)(2,4)(7,9)(6,8),(1,2)(3,4)(5,10)(6,8), (2,3,4)(5,6,7)(8,9,10)]));;

tom_Td_adam := TableOfMarks(Td_adam);;
#Display(tom_Td_adam); #identical with tom_Td_tetra

##Subgroups of Td given
gen := [];;
gen[1] := []; #C1
gen[2] := [(1, 2)(3, 4)(5,10)(6, 8)]; #C2
gen[3] := [(3, 4)(5, 6)(8,10)(11,12)]; #Cs
gen[4] := [(2, 3, 4)(5, 6, 7)(8, 9,10)]; #C3
gen[6] := [(1, 3)(2, 4)(6, 8)(7, 9), (1, 2)(3, 4)(5,10)(6, 8)]; #D2
gen[7] := [(3, 4)(5, 6)(8,10)(11,12), (1, 2)(3, 4)(5,10)(6, 8)]; #C2v
gen[5] := [(1, 3, 2, 4)(5, 8,10, 6)(7, 9)(11,12), (1, 2)(3, 4)(5,10)(6, 8)]; #S4
gen[8] := [(3, 4)(5, 6)(8,10)(11,12), (2, 3, 4)(5, 6, 7)(8, 9,10)]; #C3v
gen[9] := [(1, 3)(2, 4)(6, 8)(7, 9), (1, 2)(3, 4)(5,10)(6, 8), (3, 4)(5, 6)(8,10)(11,12)];

#D2d
gen[10] := [(1, 3)(2, 4)(6, 8)(7, 9), (1, 2)(3, 4)(5,10)(6, 8), (2, 3, 4)(5, 6, 7)(8, 9,10)];

#T
gen[11] := [(1, 2)(3, 4)(5,10)(6, 8), (2, 3, 4)(5, 6, 7)(8, 9,10), (3, 4)(5, 6)(8,10)(11,12)];

#Td

#USCI Table of Td
USCITableTdadam := constructUSCITable(Td_adam,T_adam,11,gen,10,12);;
#Display(USCITableTdadam); #identical with USCITableTd

#mark table sorted for USCI table
MarkTableTdadam := MarkTableforUSCI(Td_adam,T_adam,11,gen,10,12);;
#Display(MarkTableTdadam); #identical with MarkTableTd

#Matrix form of mark table
Matrix_tomTdadam := MatTom(MarkTableTdadam);
#Display(Matrix_tomTdadam); #identical with Matrix_tomTd

Display("#Fixed point vector for adamantane");
FPVadam := calculateFPvector(Td_adam,T_adam,11,gen,10,12);;
Display(FPVadam);

Display("#SCI-CF for adamantane");
l_SCICF_adam := constructSCICF(Td_adam,T_adam,Matrix_tomTdadam,USCITableTdadam,FPVadam);;
Display(l_SCICF_adam);

LogTo();

The mark table tom_Td_adam calculated by TableOfMarks(Td_adam) (Source-Code
10) is identical with tom_Td_tetra described above (Source-Code 2). The list of sub-

groups of Td is given by sorting the results obtained in accord with the CPR of degree
12. Note that the order of appearance is maintained due to the output of tom_Td_adam,

while the sequence number i in the gen[i] is renumbered to match the sorted mark table
MarkTableTdadam (Source-Code 10). The sorted mark table MarkTableTdadam calculated
by using the function MarkTableforUSCI is identical with MarkTableTd described above
(Source-Code 4). The corresponding USCI-CF table (USCITableTdadam) is identical with

-304-

USCITableTd described above (Source-Code 5).

The source-code file TdadamX.gap (Source-Code 10) is loaded by the GAP function

Read. Thereby, the FPV (FPVadam due to calculateFPvector) for the adamantane

skeleton 3 and the set of SCI-CFs (l_SCICF_adam due to constructSCICF) are calculated

as follows.

Source-Code 11
gap> Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/Td-adamX.gap");
#Fixed point vector for adamantane
[10, 2, 4, 1, 0, 0, 2, 1, 0, 0, 0]
#SCI-CF for adamantane
[b_1^10, b_1^2*b_2^4, c_2^3*a_1^4, b_1*b_3^3, c_2*c_4^2, b_2^3*b_4, c_4*a_1^2*a_2^2, a_1*a_3^3,
c_4*a_2*a_4, b_4*b_6, a_4*a_6]

The SCI-CFs can alternatively be derived by referring to the 7th (C3v\)Td-row and

the 8th (C2v\)Td-row of the USCI-CF table USCITableTd (Source-Code 5) or of the

USCI-CF table USCITableTdadam (calculated in Source-Code 10, but not printed).

5 Generation of PCI-CFs
Fujita’s USCI approach provides us with four methods of symmetry-itemized enumer-

ation [6, 7], i.e., the fixed-point matrix (FPM) method [13, 17, 18], the partial-cycle-

index (PCI) method [19, 20], the elementary-superposition (ES) method [21], and the

partial-superposition (PS) method [19, 21]. Among them, the FPM method [22], the

PCI method [23], and the ES method [24] have been applied to the symmetry-itemized

enumeration of cubane derivatives as common targets.

Because the GAP system has convenient functions of treating polynomials for group

theory, the PCI-CF method (cf. Sections 16.3 and 19.5 of Ref. [6]) is one of the best

choices for developing practical devices for the symmetry-itemized enumeration, where

partial cycle indices (PCI-CFs) for respective subgroups are calculated as polynomials

from a list of SCI-CFs (such as l_SCICF_tetra and l_SCICF_adam).

Let us exemplify the procedure of calculating a list of PCI-CFs for a tetrahedral skele-

ton 1. Definition 19.6 of Ref. [6] teaches us that a list of PCI-CFs (l_PCICF_tetra)

is obtained by the multiplication of a list of SCI-CFs and the inverse mark table, i.e.,

l_SCICF_tetra * invMatrix_tomTd, where the inverse mark table (invMatrix_tomTd)

is calculated by the GAP function (Inverse) from the mark table (Matrix_tomTd) ob-

tained above (Source-Code 8). The following source list is executed by the GAP system.

Source-Code 12

-305-

gap> #Matrix_tomTd calculated above (Source-Code 8)
gap> Matrix_tomTd :=
> [[24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

(omitted)

> [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]];;
gap> #Inverse mark table of Matrix_tomTd
gap> invMatrix_tomTd := Inverse(Matrix_tomTd);
[[1/24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-1/8, 1/4, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[-1/4, 0, 1/2, 0, 0, 0, 0, 0, 0, 0, 0], [-1/6, 0, 0, 1/2, 0, 0, 0, 0, 0, 0, 0],
[0, -1/4, 0, 0, 1/2, 0, 0, 0, 0, 0, 0], [1/12, -1/4, 0, 0, 0, 1/6, 0, 0, 0, 0, 0],
[1/4, -1/4, -1/2, 0, 0, 0, 1/2, 0, 0, 0, 0], [1/2, 0, -1, -1/2, 0, 0, 0, 1, 0, 0, 0],
[0, 1/2, 0, 0, -1/2, -1/2, -1/2, 0, 1, 0, 0], [1/6, 0, 0, -1/2, 0, -1/6, 0, 0, 0, 1/2, 0],
[-1/2, 0, 1, 1/2, 0, 1/2, 0, -1, -1, -1/2, 1]]

gap> #Definition of variables
gap> b_1 := Indeterminate(Rationals, "b_1");; b_2 := Indeterminate(Rationals, "b_2");;
gap> b_3 := Indeterminate(Rationals, "b_3");; b_4 := Indeterminate(Rationals, "b_4");;
gap> a_1 := Indeterminate(Rationals, "a_1");; a_2 := Indeterminate(Rationals, "a_2");;
gap> a_3 := Indeterminate(Rationals, "a_3");; a_4 := Indeterminate(Rationals, "a_4");;
gap> c_2 := Indeterminate(Rationals, "c_2");; c_4 := Indeterminate(Rationals, "c_4");;
gap> #List of SCI-CF calculated above (Source-Code 8)
gap> l_SCICF_tetra :=
> [b_1^4, b_2^2, c_2*a_1^2, b_1*b_3, c_4, b_4, a_2^2, a_1*a_3, a_4, b_4, a_4];;
gap> #List of PCI-CF calculated from list of SCI-CF
gap> l_PCICF_tetra := l_SCICF_tetra * invMatrix_tomTd;
[1/24*b_1^4-1/4*a_1^2*c_2-1/6*b_1*b_3-1/8*b_2^2+1/2*a_1*a_3+1/4*a_2^2+1/4*b_4-1/2*a_4,
1/4*b_2^2-1/4*a_2^2-1/4*b_4+1/2*a_4-1/4*c_4, 1/2*a_1^2*c_2-a_1*a_3-1/2*a_2^2+a_4,
1/2*b_1*b_3-1/2*a_1*a_3-1/2*b_4+1/2*a_4, -1/2*a_4+1/2*c_4, 0, 1/2*a_2^2-1/2*a_4, a_1*a_3-a_4,
0, 1/2*b_4-1/2*a_4,a_4]

gap> #PCI-CFs for subgroups
gap> for i in [1..11] do
> Print("PCI-CF[", i, "] := ", l_PCICF_tetra[i], "\n");
> od;
PCI-CF[1] := 1/24*b_1^4-1/4*a_1^2*c_2-1/6*b_1*b_3-1/8*b_2^2+1/2*a_1*a_3+1/4*a_2^2+1/4*b_4-1/2*a_4
PCI-CF[2] := 1/4*b_2^2-1/4*a_2^2-1/4*b_4+1/2*a_4-1/4*c_4
PCI-CF[3] := 1/2*a_1^2*c_2-a_1*a_3-1/2*a_2^2+a_4
PCI-CF[4] := 1/2*b_1*b_3-1/2*a_1*a_3-1/2*b_4+1/2*a_4
PCI-CF[5] := -1/2*a_4+1/2*c_4
PCI-CF[6] := 0
PCI-CF[7] := 1/2*a_2^2-1/2*a_4
PCI-CF[8] := a_1*a_3-a_4
PCI-CF[9] := 0
PCI-CF[10] := 1/2*b_4-1/2*a_4
PCI-CF[11] := a_4
gap> #CI-CF derived from PCI-CFs
gap> sum_l_PCICF_tetra := Sum(l_PCICF_tetra);;
gap> Print("CICF_Td := ", sum_l_PCICF_tetra, "\n");
CICF_Td := 1/24*b_1^4+1/4*a_1^2*c_2+1/3*b_1*b_3+1/8*b_2^2+1/4*c_4
gap>

Each element of the list of PCI-CFs (l_PCICF_tetra) is the PCI-CF (PCI-CF[i]) cor-

responding to the respective subgroup numbered sequentially, where the sets of generators:

gen[i] (i = 1, 2, . . . , 11) correspond to PCI-CF[i] for the point groups C1, C2, Cs, C3, S4,

D2, C2v, C3v, D2d, T, and Td, respectively. Hence, the above PCI-CFs (PCI-CF[i]) can

be written in usual notation (cf. Definition 19.6 of Ref. [6]) as follows:

PCI-CF(C1, $d) =
1

24
b41 −

1

4
a21c2 −

1

6
b1b3 −

1

8
b22 +

1

2
a1a3 +

1

4
a22 +

1

4
b4 −

1

2
a4 (1)

PCI-CF(C2, $d) =
1

4
b22 −

1

4
a22 −

1

4
b4 +

1

2
a4 −

1

4
c4 (2)

-306-

PCI-CF(Cs, $d) =
1

2
a21c2 − a1a3 −

1

2
a22 + a4 (3)

PCI-CF(C3, $d) =
1

2
b1b3 −

1

2
a1a3 −

1

2
b4 +

1

2
a4 (4)

PCI-CF(S4, $d) = −1

2
a4 +

1

2
c4 (5)

PCI-CF(D2, $d) = 0 (6)

PCI-CF(C2v, $d) =
1

2
a22 −

1

2
a4 (7)

PCI-CF(C3v, $d) = a1a3 − a4 (8)

PCI-CF(D2d, $d) = 0 (9)

PCI-CF(T, $d) =
1

2
b4 −

1

2
a4 (10)

PCI-CF(Td, $d) = a4 (11)

where the symbol $d represents ad, cd, or bd and the subscript d represents a positive

integer.

6 Enumeration by the PCI-CF method

Suppose that the four positions of the tetrahedral skeleton 1 are occupied by a set of four

proligands selected from the following ligand inventory:

L = {A,B,C,D, p/p, q/q, r/r, s/s, }, (12)

where the uppercase letters, A, B, C, and D, indicate achiral proligands, while a pair

of lowercase letters without and with an overline, p/p, q/q, r/r, or s/s, indicates a pair

of enantiomeric proligands when detached. Then, the following inventory-functions are

calculated:

ad =Ad + Bd + Cd +Dd (no lowercase terms) (13)

cd =Ad + Bd + Cd +Dd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 (14)

bd =Ad + Bd + Cd +Dd + pd + pd + qd + qd + rd + rd + sd + sd (15)

These inventory-functions are introduced into the right-hand side of each PCI-CF

(Eqs. 1–11). The resulting equation is expanded to give a generating function, in which the

coefficient of the term AaBbCcDdppppqqqqrrrrssss (representing the composition at issue)

indicates the number of isomeric promolecules belonging to the corresponding subgroup.

The composition is represented by the following partition:
[θ] = [a, b, c, d; p, p, q, q, r, r, s, s], (16)

-307-

where the respective elements represent non-negative integers which satisfy the following

condition:

a+ b+ c+ d+ p+ p+ q + q + r + r + s+ s = 4. (17)

Because of symmetric appearance of the terms, the restriction condition, a ≥ b ≥ c ≥ d as

well as p ≥ q ≥ r ≥ s (p ≥ p, q ≥ q, r ≥ r, s ≥ s), is postulated without losing generality.

The procedures of generating the generating functions from the PCI-CFs and of cal-

culating the coefficients of respective compositions (in the file enum-tetra.gap attached

as Appendix B) are similar to the procedures concerning CI-CFs [11]. Note that the

GAP functions developed to treat CI-CFs [11], e.g., calcCoeffGen, are capable of treat

PCI-CFs as they are. Hence, the file CICFgenCC.gapfunc (Appendix A of [11]) should be

loaded to use the function calcCoeffGen along a similar way to Appendix B of [11].

The results obtained from the attached Appendix B are summarized in Table 1. The

value in a row attached by an asterisk (*) should be duplicated because the value 1/2

means the presence of a pair of enantiomers. For example, the partition [3, 0, 0, 0, 1, 0, . . . ,

0] (A3p) is coupled with the counterpart partition [3, 0, 0, 0, 0, 1, . . . , 0] (A3p) in the form

of 1
2
(A3p + A3p), which indicates a pair of enantiomers.

In contrast, the value in the row without an asterisk should be used as it is, so

that it may indicate the number of achiral or chiral promolecules. For exmaple, the

value 2 at the intersection between the [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]-row and the Cs-column

indicates the presence of two achiral promolecules, e.g., two RS-diastereomers having the

composition ABpp [4]. The two RS-diastereomers of ABpp are paired to give a pair of

RS-diastereomers, which is characterized by a type-V stereoisogram [25]. On the other

hand, the value 1 at the intersection between the [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]-row and

the C1-column indicates the presence of one pair of enantiomeric promolecules [4], e.g.,

a pair of enantiomers with the composition ppqq, which is characterized by a type-I

stereoisogram [25].

The values of Table 1 are consistent with the data reported previously in Table 1 of

Ref. [4] and Table 21.1 of Ref. [6], which are obtained in terms of the fixed-point matrix

(FPM) Method of Fujita’s USCI approach [22].

-308-

Table 1. The Symmetry-Itemized Enumeration of Isomers Derived from a Tetra-
hedral Skeleton on the Basis of the PCI-CF Method

[θ] C1 C2 Cs C3 S4 D2 C2v C3v D2d T Td

[4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 1
[3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 1 0 0 0
[3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]* 0 0 0 1/2 0 0 0 0 0 0 0
[2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 1 0 0 0 0
[2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]* 0 1/2 0 0 0 0 0 0 0 0 0
[2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 1 0 0 0 0 0 0 0 0
[2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 1 0 0 0 0 0 0 0 0
[2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 1 0 0 0 0 0 0 0 0 0 0
[1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]* 1 0 0 0 0 0 0 0 0 0 0
[1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 2 0 0 0 0 0 0 0 0
[1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]* 1 0 0 0 0 0 0 0 0 0 0
[1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]* 0 0 0 1/2 0 0 0 0 0 0 0
[1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0]* 1 0 0 0 0 0 0 0 0 0 0
[1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0]* 1 0 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0]* 0 0 0 0 0 0 0 0 0 1/2 0
[0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0]* 0 0 0 1/2 0 0 0 0 0 0 0
[0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0]* 0 0 0 1/2 0 0 0 0 0 0 0
[0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0] 0 0 0 0 1 0 0 0 0 0 0
[0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0]* 0 1/2 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0]* 1/2 0 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] 1 0 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0]* 1 0 0 0 0 0 0 0 0 0 0
[0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0]* 1 0 0 0 0 0 0 0 0 0 0
* To be duplicated.

-309-

7 PCI-CFs vs. CI-CFs

The summation of PCI-CFs for symmetry-itemized enumeration generates a cycle index

with chirality fittingness (CI-CF) for gross enumeration (Definition 16.5, 19.7 and 19.8

of Ref. [6]). The last part of Source-Code 12 indicates that the application of the GAP

function Sum to the list of PCI-CFs for the tetrahedral skeleton 1 (l_PCICF_tetra) give

the sum of Eqs. 1–11 (sum_l_PCICF_tetra), which is equal to the CI-CF for 1. The

summation procedure can be written in usual notation as follows:

CI-CF(Td, $) =PCI-CF(C1, $) + PCI-CF(C2, $) + PCI-CF(Cs, $) + PCI-CF(C3, $)

+ PCI-CF(S4, $) + PCI-CF(D2, $) + PCI-CF(C2v, $)

+ PCI-CF(C3v, $) + PCI-CF(D2d, $) + PCI-CF(T, $) + PCI-CF(Td, $)

=
1

24
b41 +

1

4
a21c2 +

1

3
b1b3 +

1

8
b22 +

1

4
c4 (18)

The coefficients appearing in the CI-CF (e.g., Eq. 18) are obtained from the corre-

sponding inverse mark table in accord with Theorem 16.2 of Ref. [6] and Theorem 2.8 of

Ref. [5]. A practical calculation due to the GAP system is shown in Source-Code 13.

Source-Code 13
gap> #Inverse mark table of Matrix_tomTd calculated above (Source-Code 12)
gap> invMatrix_tomTd :=
> [[1/24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-1/8, 1/4, 0, 0, 0, 0, 0, 0, 0, 0, 0],

(omitted)

> [-1/2, 0, 1, 1/2, 0, 1/2, 0, -1, -1, -1/2, 1]];;
gap> #sum of each row in inverse mark table (invMatrix_tomTd)
gap> row_sum := [];;
gap> for i in [1..11] do
> row_sum[i] := Sum(invMatrix_tomTd[i]);
> od;
gap> Display(row_sum);
[1/24, 1/8, 1/4, 1/3, 1/4, 0, 0, 0, 0, 0, 0]
gap> #Definition of variables
gap> b_1 := Indeterminate(Rationals, "b_1");; b_2 := Indeterminate(Rationals, "b_2");;
gap> b_3 := Indeterminate(Rationals, "b_3");; b_4 := Indeterminate(Rationals, "b_4");;
gap> a_1 := Indeterminate(Rationals, "a_1");; a_2 := Indeterminate(Rationals, "a_2");;
gap> a_3 := Indeterminate(Rationals, "a_3");; a_4 := Indeterminate(Rationals, "a_4");;
gap> c_2 := Indeterminate(Rationals, "c_2");; c_4 := Indeterminate(Rationals, "c_4");;
gap> #List of SCI-CF calculated above (Source-Code 8)
gap> l_SCICF_tetra :=
> [b_1^4, b_2^2, c_2*a_1^2, b_1*b_3, c_4, b_4, a_2^2, a_1*a_3, a_4, b_4, a_4];;
gap> #CI-CF derived from SCI-CFs
gap> ip_l_SCICF_tetra := l_SCICF_tetra*row_sum;;
gap> Print("CICF_Td_x := ", ip_l_SCICF_tetra, "\n");
CICF_Td_x := 1/24*b_1^4+1/4*a_1^2*c_2+1/3*b_1*b_3+1/8*b_2^2+1/4*c_4
gap>

The properties of inverse mark tables such as invMatrix_tomTd have been generally

discussed in Chapter 2 and Appendix B of Ref. [5].

-310-

As shown in Source-Code 13, the application of the GAP function Sum to each row of

the inverse mark table (invMatrix_tomTd) gives a column vector, which is then transposed

into a list of sums (row_sum) as a row vector. The resulting list (row_sum) [1/24, 1/8, 1/4,

1/3, 1/4, 0, …] contains positive fractional values for respective cyclic subgroups and zero

values for respective non-cyclic subgroups. This is consistent with the general theorem

previously reported (Theorem 16.2 of Ref. [6] and Theorem 2.8 of Ref. [5]).

The list of SCI-CFs calculated in Source-Code 8 (l_SCICF_tetra) is multiplied by the

list of coefficients (row_sum) to give the corresponding inner product (ip_l_SCICF_tetra),

which is identical with the CI-CF (sum_l_PCICF_tetra of Source-Code 12, Eq. 18).

On the other hand, the function CalcConjClassCICF was developed to calculate CI-

CFs according to Fujita’s proligand method [5]. The source code was delivered as a file

named CICFgenCC.gapfunc (Appendix A of Ref. [11]). The following Source-Code 14

indicates that the function CalcConjClassCICF is capable of calculating the CI-CF for

the tetrahedral skeleton 1. The resulting CI-CF (CICF_Td) is identical with the above-

mentioned inner product (ip_l_SCICF_tetra of Source-Code 13) as well as the CI-CF

(sum_l_PCICF_tetra of Source-Code 12, Eq. 18).

Source-Code 14
gap> #Loading of CICFgenCC.gapfunction
gap> Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/CICFgenCC.gapfunc");
gap> #Fujita's CI-CF
gap> Td_tetra := Group([(1,2)(3,4), (2,3,4), (3,4)(5,6)]);;
gap> CICF_Td := CalcConjClassCICF(Td_tetra, 4, 6);
1/24*b_1^4+1/4*a_1^2*c_2+1/3*b_1*b_3+1/8*b_2^2+1/4*c_4
gap>

It should be noted that the CI-CFs due to Fujita’s proligand method (e.g., Source-

Code 14) are based on the concept of the sphericities of cycles [26], while the counterparts

due to Fujita’s USCI approach (e.g., Source-Codes 12 and 13) are based on the concept

of the sphericity of orbits for cyclic subgroups [26] (cf. Section 7.2 of Ref. [5]).

8 Conclusion

Combined-permutation representations (CPRs), which were originally developed for the

application of Fujita’s proligand method [5] to gross enumerations of 3D structures, have

been used to cover Fujita’s USCI approach [6] for symmetry-itemized enumerations of 3D

structures. New GAP functions for constructing USCI-CF tables (constructUSCITable)

and for constructing the concordant mark tables (MarkTableforUSCI) have been devel-

-311-

oped to support the practical usage of Fujita’s USCI approach (Appendix A). Concordant

generation of mark tables and USCI-CF tables is applied to a CPR (degree = 4 + 2) based

on a tetrahedral skeleton (Source-Codes 4 and 5) and to another CPR (degree = 10 +

2) based on an adamantane skeleton (Source-Code 10), so that these CPRs are capable

of generating an identical set of a mark table and a USCI-Table for the point group Td.

One or more rows of a USCI-CF table generate(s) a list of subduced cycle indices with

chirality fittingness (SCI-CFs), which is multiplied by an inverse mark table to give a

list of partial cycle indices with chirality fittingness (PCI-CFs). Each element of the list

of PCI-CFs gives the PCI-CF for each subgroup (Source-Code 12). Thereby, symmetry-

itemized enumeration based on a tetrahedral skeleton of Td is conducted by means of

the PCI method of Fujita’s USCI approach (Appendix B). The results are summarized in

Table 1. The relationship between PCI-CFs and CI-CFs is discussed.

Appendix A. USCICF.gapfunc Containing Functions for
Concordant Generation of Mark Tables and USCI-CF
Tables
The file USCICF.gapfunc contains several basic functions, i.e., CosetRepCF for calculat-

ing a coset representation (CR); detectTomSubgroup for detecting a row correspond-

ing to the local subgroup of the CR; constructUSCICF for construction of a USCI-CF;

constructUSCICFlist for construction of the list of USCI-CFs corresponding to the

CR; and constructSCICFlist for construction of the list of USCI-CFs corresponding

to the CR. Thereafter, the file USCICF.gapfunc defines several utility functions, i.e.,

constructUSCITable for construction of a USCI-CF table (for examples, see Source-

Code 5, Source-Code 6, and Source-Code 10); MarkTableforUSCI for construction of a

mark table corresponding to a USCI-CF table due to function constructUSCITable (for

examples, see Source-Code 4, Source-Code 6, and Source-Code 10); constructSCICF for

construction of the list of SCI-CFs (or USCI-CFs) corresponding to a set of CRs (for

examples, see Source-Code 8 and Source-Code 10); and calculateFPvector for calculat-

ing a fixed-point vector (FPV) which corresponds to a group derived by a given set of

generators (for examples, see Source-Code 8 and Source-Code 10).

(USCICF.gapfunc)
#Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/USCICF.gapfunc");

-312-

#MakeReadWriteGlobal("Glgrp");; #global symmetry
Glgrp := Group([()]);; #tentative setting for global symmetry
#MakeReadWriteGlobal("Locgrp");; #local symmetry
Locgrp := Group([()]);; #tentative setting for local symmetry
#MakeReadWriteGlobal("MxChgrp");; #maximum chiral subgroup
MxChgrp := Group([()]);; #tentative setting for max chiral subgroup
#MakeReadWriteGlobal("row_list");; #fixed-point vector
row_list := [];; #tentative setting for fixed-point vector
#MakeReadWriteGlobal("DegCGr");; #degree
DegCGr := 0;; #tentative setting for degree
#MakeReadWriteGlobal("DegGr");; #full degree
DegGr := 0;; #tentative setting for full degree
#MakeReadWriteGlobal("tom_Glgrp");; #table of marks of Glgrp
tom_Glgrp := TableOfMarks(Glgrp);; #tentative setting for tom of Glgrp
##
##
Function for Calculating a Coset Representation
globalgr(/localgrp)
##
fixedpoint := 1; #Global fixed point (default)
isstabilizer := 1; #Global stabilizer or not
CosetRepCF := function(globalgrp,localgrp,maxchgrp,degree,degreefull)
#CosetRepCF := function(Glgrp,Locgrp,MxChgrp,DegCGr,DegGr)
local i, j, k,
#Glgrp, Locgrp, MxChgrp, DegCGr, DegGr,
l_elm_Glgrp, l_elm_MxChgrp,
cd_Gl_MxC,cd_Gl_Loc, l_rep, calcdegree,
perm_cd, s_perm_cd, l_perm, ll_perm, cosetrep;
Glgrp := globalgrp;
Locgrp := localgrp;
MxChgrp := maxchgrp;
DegCGr := degree; DegGr := degreefull;
l_elm_Glgrp := Elements(Glgrp); l_elm_MxChgrp := Elements(MxChgrp);
##
#Display("#Coset Decomposition Global/MaxChiral"); # #for debug
##
cd_Gl_MxC := CosetDecomposition(Glgrp, MxChgrp);
#Display(IsList(cd_Gl_MxC)); Display(cd_Gl_MxC); #for debug
###
#Display("#Coset Decomposition Global/Local");# #for debug
###
calcdegree := Size(Glgrp)/Size(Locgrp);
#Display(calcdegree); Display(calcdegree = DegCGr); #for debug
if calcdegree = DegCGr then
if isstabilizer = 1 then #harmonization
l_rep := []; cd_Gl_Loc := [];
for j in [1..DegCGr] do
#Print("####### j = ", j, "#########\n"); #for debug
l_rep[j] := RepresentativeAction(Glgrp, fixedpoint, j);
cd_Gl_Loc[j] := Elements(RightCoset(Locgrp, l_rep[j]));
od;
#Display(IsList(l_rep)); Display(l_rep); #for debug
#Display(IsList(cd_Gl_Loc)); Display(cd_Gl_Loc); #for debug
else #no harmonization
cd_Gl_Loc := CosetDecomposition(Glgrp, Locgrp);
#Display(IsList(cd_Gl_Loc)); Display(cd_Gl_Loc); #for debug
fi;
else #no harmonization
cd_Gl_Loc := CosetDecomposition(Glgrp, Locgrp);
#Display(IsList(cd_Gl_Loc)); Display(cd_Gl_Loc); #for debug
fi;
##
#Display("#Coset Representation Global(/Local)");# #for debug
##
s_perm_cd := [1..DegGr]; cosetrep := [];
for k in [1..Size(l_elm_Glgrp)] do
#Print("#### k:=", k, "#### \n"); #for debug
l_perm := cd_Gl_Loc*l_elm_Glgrp[k];
ll_perm := cd_Gl_MxC*l_elm_Glgrp[k];
#Display(l_elm_Glgrp[k]); #for debug
#Display(l_perm); #for debug
#Display(ll_perm); #for debug
perm_cd := [];

-313-

for j in [1..Size(cd_Gl_Loc)] do
for i in [1..Size(cd_Gl_Loc)] do
if IsEqualSet(cd_Gl_Loc[i],l_perm[j]) then
perm_cd[j] := i; break; fi;
od; od;
if DegCGr <> DegGr then
for j in [1..Size(cd_Gl_MxC)] do
for i in [1..Size(cd_Gl_MxC)] do
if IsEqualSet(cd_Gl_MxC[i],ll_perm[j]) then
perm_cd[DegCGr+j] := DegCGr+i; break; fi;
od; od;
fi;
#Display(perm_cd); #for debug
cosetrep[k] := PermListList(s_perm_cd, perm_cd);
#Display(cosetrep[k]); #for debug
od;
return cosetrep;
end; #end of CosetRepCF
##
##
Function for detecting a row corresponding to
the local subgroup of globalgr(/localgrp)
##
detectTomSubgroup := function(globalgrp,localgrp,maxchgrp,degree,degreefull)
#detectTomSubgroup := function(Glgrp,Locgrp,MxChgrp,DegCGr,DegGr)
local i, j, k,
#Glgrp, Locgrp, MxChgrp, DegCGr, DegGr,
#l_elm_Glgrp, l_elm_MxChgrp,
tom_Glgrp,
l_conj_Locgrp, size_tom,
l_subsub, l_subsubX, l_marks;
Glgrp := globalgrp; Locgrp := localgrp; MxChgrp := maxchgrp;
DegCGr := degree; DegGr := degreefull;
#l_elm_Glgrp := Elements(Glgrp); l_elm_MxChgrp := Elements(MxChgrp);
l_conj_Locgrp := ConjugateSubgroups(Glgrp,Locgrp);
tom_Glgrp := TableOfMarks(Glgrp);
size_tom := Size(ConjugacyClassesSubgroups(Glgrp));
l_subsub := []; l_subsubX := []; l_marks := [];
for j in [1..size_tom] do
#Print("####### j = ", j, "#########\n"); #for debug
for i in [1..Size(l_conj_Locgrp)] do
if IsEqualSet(Elements(RepresentativeTom(tom_Glgrp,j)), Elements(l_conj_Locgrp[i]))
then
l_subsub := [j,i];
l_subsubX := [RepresentativeTom(tom_Glgrp,j),Locgrp];
l_marks := MatTom(tom_Glgrp)[j];
break;
fi;
od;
if l_subsub <> [] then break; fi;
od;
return [l_subsub,l_subsubX,l_marks];
end; #end of detectTomSubgroup

##
##
function constructUSCICF
for construction of a USCI-CF
#
##To use this function solely, the following data #
##should be beforehand loaded: #
(sample data of an octahedron of the point group Oh)
DegCGr := 6; #degree
DegGr := 8; #full degree
Glgrp := Oh_octa; # Global group
(Locgrp := C4v_octa; # Local group) not required
MxChgrp := O_octa; # Maximal chiral subgroup
tom_Glgrp := tom_Oh_octa; # tom of Glgrp
row_list := (vector of fixed points for Glgrp(/Locgrp)
##If not, it will ended with the return value 'false'. #
##
row_list :=[]; #to be replaced by a suitable list

-314-

constructUSCICF := function(subgroup_no)
local i, j, k, ii, kk,
#Glgrp, Locgrp, MxChgrp, # to be given globally
#DegCGr, DegGr, row_list, # to be given globally
#tom_Glgrp, # to be given globally
size_tom, alignsub_group, alignsubX_group,
calclist_subGr, l_AchOrCh,
InnSubGr, InnSubGr_list, sizeInnSubGr_list,
submark, submarkno, sub_group, sub_groupA, sub_groupTemp,
tom_subgroup, mattom_subgroup,invmattom_subgroup, sorted,
InnSubSubGr,InnSubSubGr_list,
subsub_group, subsub_groupX,
subsublist, sublist, memb_subsublist, permX,
submarkX, row_subduction,
list_subduction, permutedSubTom, size_CR, transpinvmat,
tempSI, tempSIX, tempSIY, USCI_CF;
##################################
Check for an independent usage
##################################
#Print("#####",row_list, "####\n"); #for debug
#Print("######## Glgrp =", Glgrp, "########\n");
if Glgrp = Group([()]) then return false; fi;
if row_list = [] then return false; fi;
###
list for checking achiral or chiral subgroups
###
size_tom := Size(ConjugacyClassesSubgroups(Glgrp));
calclist_subGr := []; l_AchOrCh := [];
for i in [1..size_tom] do
calclist_subGr[i] := RepresentativeTom(tom_Glgrp,i);
if IsSubgroup(MxChgrp,calclist_subGr[i]) then
l_AchOrCh[i] := 1; #chiral
else
l_AchOrCh[i] := 2; #achiral
fi;
od;
#Display(calclist_subGr); #for debug
#Display(l_AchOrCh); #for debug
###
Non-redundunt set of inner subgroups (SSG) of each subgroup
###
#Display("#Inner subgroups of each subgroup"); #for debug
InnSubGr := SubsTom(tom_Glgrp);
#Display(InnSubGr); #for debug
#Display(Length(InnSubGr)); #for debug
#Display(IsList(InnSubGr)); #for debug
InnSubGr_list := InnSubGr[subgroup_no];
#Display(InnSubGr_list); #for debug
#Display(IsList(InnSubGr_list)); #for debug
sizeInnSubGr_list := Size(InnSubGr_list);
#Display(sizeInnSubGr_list); #for debug
##
Construct a "tentative" row vector of subduced marks
Note:
A set of conjugate subgroups in Glgrp may be
divided into one or more sets of conjugate subgroups
in a subgroup to be considered.
Compare InnSubGr with InnSubSubGr.
##
#Display("#Construct a row vector of subduced marks"); #for debug
submark := [];
for i in [1..sizeInnSubGr_list] do
submarkno := InnSubGr_list[i];
Add(submark,row_list[submarkno]);
od;
#Display(submark); #for debug
###
Table of marks (tom) of a subgroup_no
###
#Display("#Subgroup of subgroup_no"); #for debug
sub_group := RepresentativeTom(tom_Glgrp,subgroup_no);
#Display(sub_group); #for debug
#Display("#Tom of subgroup of subgroup_no, AsSubgroup"); #for debug

-315-

#Print("###sub_group =", sub_group, "####\n");
sub_groupA := AsSubgroup(Glgrp,sub_group);
#Print("###sub_groupA =", sub_groupA, "####\n");
tom_subgroup := TableOfMarks(sub_groupA);
#Display(tom_subgroup); #for debug
##################################
Inner subsubgroups of subgroup
Compare:
InnSubGr vs. InnSubSubGr
##################################
#Display("#Inner subsubgroups of subgroup"); #for debug
InnSubSubGr := SubsTom(tom_subgroup);
#Display(InnSubSubGr); #for debug
#Display(Length(InnSubSubGr)); #for debug
#Display(IsList(InnSubSubGr)); #for debug
InnSubSubGr_list := InnSubSubGr[Length(InnSubSubGr)];
#Display(InnSubSubGr_list); #for debug
###
Permutation of inner subsubgroups of subgroup
InnSubSubGr in accord with InnSubGr
###
#Display("#Calculation of Correspondence of InnSubSubGr to InnSubGr"); #for debug
subsublist:= InnSubSubGr_list;
sublist:= InnSubGr_list;
#Display(Size(sublist)); #for debug
#Display(Size(subsublist)); #for debug
alignsub_group := [];
alignsubX_group := [];
for i in [1..Size(subsublist)] do
#Display("#Subgroup of Sub_Gno"); #for debug
subsub_group := RepresentativeTom(tom_subgroup,subsublist[i]);
#Display(subsub_group); #for debug
subsub_groupX := AsSubgroup(Glgrp,subsub_group);
#Display(subsub_groupX); #for debug
for j in [1..Size(subsublist)] do
sub_groupTemp:= RepresentativeTom(tom_Glgrp,sublist[j]);
#Display(sub_groupTemp); #for debug
if IsEqualSet(ConjugateSubgroups(Glgrp,subsub_groupX), ConjugateSubgroups(Glgrp,sub_groupTemp)) then
Add(alignsub_group,sublist[j]);
Add(alignsubX_group,j);
break;
fi;
od; od;
#Display("#Correspondence of InnSubSubGr to InnSubGr"); #for debug
#Display(alignsub_group); Display(alignsubX_group); #for debug
#Display("#Calculation of permutation to be applied to Tom"); #for debug
for i in [2..Size(subsublist)] do
memb_subsublist := alignsubX_group[i];
#Display(memb_subsublist); #for debug
k := 0;
for j in [i+1..Size(subsublist)] do
if memb_subsublist = alignsubX_group[j] then
#membX_subsublist := memb_subsublist;
k := k+1;
fi;
od;
#Display("#Kvalue"); #for debug
#Display(k); #for debug
if k > 0 then
kk := 0;
for ii in [2..Size(subsublist)] do
if alignsubX_group[ii] = memb_subsublist then
kk := kk + 1;
alignsubX_group[ii] := alignsubX_group[ii] + kk-1;
elif alignsubX_group[ii] > memb_subsublist then
alignsubX_group[ii] := alignsubX_group[ii] + k;
fi;
#Display(alignsubX_group); #for debug
od;
fi;
od;
#Display("#Permuted subgroups of InnSubSubGr in accord with InnSubGr"); #for debug
#Display(alignsubX_group); #for debug

-316-

#Display("#Permutation to be applied to Tom of InnSubSubGr in accord with InnSubGr"); #for debug
permX := PermListList(subsublist,alignsubX_group);
#Display(permX); #for debug
#Display("#SSG of the subgroup subgroup_no"); #for debug
permutedSubTom := Permuted(alignsub_group,permX);
#Display(permutedSubTom); #for debug
#Display("#validity of the SSG of the subgroup SubGno"); #for debug
#Display(InnSubGr_list); #for debug
#Display(InnSubGr_list = permutedSubTom); #for debug
#Display(IsEqualSet(InnSubGr_list, permutedSubTom)); #for debug
##
Sorted Tom of sub_group due to the allignment of the orignal group
##
#Display("#Sorted Tom of sub_group due to the allignment of the orignal group"); #for debug
sorted := SortedTom(tom_subgroup, permX);
#Display(sorted); #for debug
##
Matrix of sorted Tom of sub_group due to the allignment of the orignal group
##
#Display("#Matrix form of Tom of sub_group"); #for debug
mattom_subgroup := MatTom(sorted);
#Display(mattom_subgroup); #for debug
##
Inverse Matrix of sorted Tom of sub_group due to the allignment of the orignal group
##
#Display("#Inverse matrix form of Tom of sub_group"); #for debug
invmattom_subgroup := Inverse(mattom_subgroup);
#Display(invmattom_subgroup); #for debug
#Display("#Mark vector of the subgroup"); #for debug
#Display(row_list); #for debug
#Display("#Subgroups of the subgroup subgroup_no within Glgrp"); #for debug
#Display(InnSubGr_list); #for debug
#Display(submark); #for debug
#Display("#Modified allignment of subgroups of the subgroup subgroup_no within subgroup_no"); #for debug
#Display(permutedSubTom); #for debug
#Display("#Transposed matrix of Inverse matrix form of Tom of sub_group"); #for debug
transpinvmat := TransposedMat(invmattom_subgroup);
#Display(transpinvmat); #for debug
##
Calculation of Modified mark vector of the subgroup subgroup_no within subgroup_no
##
#Display("#Modified mark vector of the subgroup subgroup_no within subgroup_no"); #for debug
submarkX:=[];
for i in [1..Size(permutedSubTom)] do
submarkX[i] := row_list[permutedSubTom[i]];
od;
#Display(submarkX); #for debug
###
Calculation of subduction vector of the subgroup SubGno
###
#Display("#subduction vector of the subgroup subgroup_no"); #for debug
row_subduction := submarkX*invmattom_subgroup;
#Display(row_subduction); #for debug
#Display(DecomposedFixedPointVector(sorted,submarkX));#check #for debug
#Display("#subduction of global(/local) into subgroup_no"); #for debug
list_subduction:= [];
for i in [1..Size(row_subduction)] do
if row_subduction[i] > 0 then
Add(list_subduction, [row_subduction[i], subgroup_no, "/", permutedSubTom[i]]); #LLLLLL
fi;
od;
#Display(list_subduction); #for debug
#Display("#USCI-CF calculation"); #for debug
USCI_CF := 1;
for i in [1..Size(row_subduction)] do
tempSI := [];
if row_subduction[i] > 0 then
size_CR := Size(calclist_subGr[subgroup_no])/Size(calclist_subGr[permutedSubTom[i]]);
#Display(size_CR); #for debug
#Print("global =", subgroup_no, "; chiral or achiral= ", l_AchOrCh[subgroup_no], "\n"); #for debug
#Print("local =", permutedSubTom[i], "; chiral or achiral= ",
l_AchOrCh[permutedSubTom[i]], "\n"); #for debug
if l_AchOrCh[subgroup_no] = 2 then

-317-

if l_AchOrCh[permutedSubTom[i]] = 2 then
tempSI := ["a_", size_CR]; #homospheric cycle

elif l_AchOrCh[permutedSubTom[i]] = 1 then
tempSI := ["c_", size_CR]; #enantiospheric cycle

fi;
elif l_AchOrCh[subgroup_no] = 1 then

tempSI := ["b_", size_CR]; #hemispheric
fi;
fi;

tempSIX := JoinStringsWithSeparator(tempSI, "");
tempSIY := Indeterminate(Rationals, tempSIX);
USCI_CF := USCI_CF*tempSIY^row_subduction[i];

od;
return USCI_CF;
end; #end of constructUSCICF

###
###
function: constructUSCICFlist
for construction of the list of USCIs
corresponding to Clgrp(/Locgrp):
e.g.,
DegCGr := 6; #degree
DegGr := 8; #full degree
Glgrp := Oh_octa; # Global group
Locgrp := C4v_octa; # Local group
###
constructUSCICFlist := function(globalgrp,localgrp,maxchgrp,degree,degreefull)
#constructUSCICFlist := function(Glgrp,Locgrp,MxChgrp,DegCGr,DegGr)
local i,
#Glgrp, Locgrp, MxChgrp, DegCGr, DegGr, row_list,
l_USCICFs,
#tom_Glgrp,
size_tomX, subgrpTomGlLoc;
Glgrp := globalgrp; Locgrp := localgrp; MxChgrp := maxchgrp;
DegCGr := degree; DegGr := degreefull;
tom_Glgrp := TableOfMarks(Glgrp);
size_tomX := Size(ConjugacyClassesSubgroups(Glgrp));
#Display("#Calculation of a vector of fixed points"); #for debug
subgrpTomGlLoc := detectTomSubgroup(Glgrp, Locgrp, MxChgrp, DegCGr, DegGr);
#Display(subgrpTomGlLoc); #for debug
row_list := subgrpTomGlLoc[3]; #marks of the coset representation
#Display(row_list); #for debug
#Display("#Calculation of list of USCI-CFs"); #for debug
l_USCICFs := [];
for i in [1..size_tomX] do
#Print("######## i =", i, "########\n");
#Print("######## Glgrp =", Glgrp, "########\n");
l_USCICFs[i] := constructUSCICF(i);
od;
return l_USCICFs;
end; #end of the function constructUSCICFlist

###
###
function: constructSCICFlist
for construction of the list of USCIs
corresponding to Clgrp(/Locgrp):
e.g.,
DegCGr := 6; #degree
DegGr := 8; #full degree
Glgrp := Oh_octa; # Global group
row_list := [...];
###
constructSCICFlist := function(globalgrp,maxchgrp,fixedpointvector,degree,degreefull)
#constructSCICFlist := function(Glgrp,MxChgrp,row_list,DegCGr,DegGr)
local i,
#Glgrp, Locgrp, MxChgrp, DegCGr, DegGr, row_list,
l_SCICFs,
#tom_Glgrp,
size_tom, subgrpTomGlLoc;
Glgrp := globalgrp;

-318-

MxChgrp := maxchgrp;
DegCGr := degree; DegGr := degreefull;
tom_Glgrp := TableOfMarks(Glgrp);
size_tom := Size(ConjugacyClassesSubgroups(Glgrp));
#Display("#Calculation of a vector of fixed points");
#subgrpTomGlLoc := detectTomSubgroup(Glgrp, Locgrp, MxChgrp, DegCGr, DegGr);
#Display(subgrpTomGlLoc);
##row_list := subgrpTomGlLoc[3]; #marks of the coset representation
row_list := fixedpointvector;
#Display(row_list); #for debug
#Display("#Calculation of list of SCI-CFs"); #for debug
l_SCICFs := [];
for i in [1..size_tom] do
l_SCICFs[i] := constructUSCICF(i);
od;
return l_SCICFs;
end; #end of the function constructSCICFlist

##
2017/5/20 by Shinsaku Fujita
##
function constructUSCITable
for construction of a USCI-CF table
#
globalgrp (Glgrp) Global group
maxchgrp (MxChgrp) Maximum Chiral subgroup
num_gen Number of generators for subgrups
gen Generators for subgroups
degree Degree of a permutation group
degreefull Degree of a combined permutation group
##
constructUSCITable := function(globalgrp,maxchgrp,num_gen,gen,degree,degreefull)
local i, j, k,
l_subgroupGlgrp, l_cosetGlgrp,
templ_USCICFs,USCITable;
Glgrp := globalgrp;
MxChgrp := maxchgrp;
#
#List of Subgroups of Glgrp
l_subgroupGlgrp := []; #subgroup list
for i in [1..num_gen] do
l_subgroupGlgrp[i] := Subgroup(Glgrp,gen[i]);
od;
#Display(l_subgroupGlgrp);
#
#Use of the function 'detectTomSubgroup'
l_cosetGlgrp := [];
for i in [1..num_gen] do
l_cosetGlgrp[i] := detectTomSubgroup(Glgrp, l_subgroupGlgrp[i], MxChgrp, 6, 8);
od;
#Display(l_cosetGlgrp);
#####USCI-CFs#####
templ_USCICFs := [];
for i in [1..num_gen] do
templ_USCICFs[i] := constructUSCICFlist(Glgrp, l_subgroupGlgrp[i], MxChgrp, 6, 8);
od;
#####USCI Table####
USCITable := [];
for i in [1..num_gen] do
USCITable[i] := [];
for j in [1..num_gen] do
USCITable[i][j] := templ_USCICFs[i][l_cosetGlgrp[j][1][1]];
od;
od;
#Display(USCITable);
return USCITable;
end; #end of constructUSCITable
##
2017/5/20 by Shinsaku Fujita
##
function MarkTableforUSCI
corresponding to a USCI-CF table

-319-

due to function constructUSCITable
#
globalgrp (Glgrp) Global group
maxchgrp (MxChgrp) Maximum Chiral subgroup
num_gen Number of generators for subgrups
gen Generators for subgroups
degree Degree of a permutation group
degreefull Degree of a combined permutation group
##
MarkTableforUSCI := function(globalgrp,maxchgrp,num_gen,gen,degree,degreefull)
local i, j, k,
l_subgroupGlgrp, l_cosetGlgrp,
templ_USCICFs,USCITable,
tempperm, permXtom, tom, sorted;
Glgrp := globalgrp;
MxChgrp := maxchgrp;
#
#List of Subgroups of Glgrp
l_subgroupGlgrp := []; #subgroup list
for i in [1..num_gen] do
l_subgroupGlgrp[i] := Subgroup(Glgrp,gen[i]);
od;
#Display(l_subgroupGlgrp);
#
#Use of the function 'detectTomSubgroup'
l_cosetGlgrp := [];
for i in [1..num_gen] do
l_cosetGlgrp[i] := detectTomSubgroup(Glgrp, l_subgroupGlgrp[i], MxChgrp, 6, 8);
od;
#Display(l_cosetGlgrp);
#
tempperm := [];
for i in [1..num_gen] do
tempperm[i] := l_cosetGlgrp[i][1][1];
od;
#Display(tempperm);
permXtom := PermListList(tempperm,[1..Size(tempperm)]);
#Display(permXtom);
#####Mark table#####
tom := TableOfMarks(Glgrp);
#Display(tom);
#####Sorted mark table####
sorted := SortedTom(tom, permXtom);
#Display(sorted);
return sorted;
end; #end of MarkTableforUSCI

##
2017/6/5 by Shinsaku Fujita
##
function constructSCICF
for construction of a list of SCI-CFs
#
globalgrp (Glgrp) Global group
maxchgrp (MxChgrp) Maximum Chiral subgroup
USCITable USCI table corresponding to matrixtom
matrixtom, matrix form of a mark table
FPvector Fixed point vector
degree Degree of a permutation group
degreefull Degree of a combined permutation group
##
#constructSCICF := function(globalgrp,maxchgrp,matrixtom,USCITable,FPvector,degree,degreefull)
constructSCICF := function(globalgrp,maxchgrp,matrixtom,USCITable,FPvector)
local i, j, k, temp,
l_multi2, size_tom, USCI_Table, l_SCI_CF;
Glgrp := globalgrp;
MxChgrp := maxchgrp;
#list of multiplicities of coset representations
l_multi2 := FPvector*Inverse(matrixtom);
#Display(l_multi2); #for debug
#size of a mark table
size_tom := Size(ConjugacyClassesSubgroups(Glgrp));

-320-

#Display(size_tom); #for debug
#USCI table
USCI_Table := USCITable;
#calculation of SCI-CF
l_SCI_CF := [];
for i in [1..size_tom] do

temp := 1;
for j in [1..size_tom] do
if l_multi2[j] = 0 then
else
temp := temp*USCI_Table[j][i]^l_multi2[j];

fi;
od;
l_SCI_CF[i] := temp;

od;
#Display(l_SCI_CF); #for debug
return(l_SCI_CF);
end; #end of function constructSCICF

##
2017/6/6 by Shinsaku Fujita
##
function calculateFPvector
for a group derived by a given set of generators
#
globalgrp (Glgrp) Global group
maxchgrp (MxChgrp) Maximum Chiral subgroup
num_gen Number of generators for subgrups
gen Generators for subgroups
degree Degree of a permutation group
degreefull Degree of a combined permutation group
##
calculateFPvector := function(globalgrp,maxchgrp,num_gen,gen,degree,degreefull)
local i, j, k,
size_tom, l_elements, l_fixedpoint, templist, size_group;
Glgrp := globalgrp;
MxChgrp := maxchgrp;
size_tom := Size(ConjugacyClassesSubgroups(Glgrp));
l_fixedpoint := [];
gen[1] := [()]; #debug 2017/5/7
for j in [1..size_tom] do
l_elements := Elements(Group(gen[j]));
size_group := Size(Group(gen[j]));
templist := [];
for i in [1..size_group] do
templist[i] := RestrictedPerm(l_elements[i], [1..degree]);
od;
#Display(templist); #for debug
#Display(NrMovedPoints(templist)); #for debug
l_fixedpoint[j] := degree - NrMovedPoints(templist);
od;
#Display(l_fixedpoint); #for debug
return(l_fixedpoint);
end; #end fo function calculateFPvector

Appendix B. enum-tetra.gap for Symmetry-Itemized
Enumeration Based on a Tetrahedral Skeleton
The following souce code enum-tetra.gap aims at symmetry-itemized enumeration based

on a tetrahedral skeleton, where the PCI method of Fujita’s USCI approach is adopted.
The file enum-tetra.gap is loaded by Read as shown in the first line (commented by #).

The PCI-CFs (PCICF[1]–PCICF[11]), which have been calculated in Source-Code 12,

are copied and converted into the corresponding generating functions (f_C1–f_Td). The

-321-

function calcCoeffGen is used to evaluate the number of isomers with each composi-
tion (e.g., A4), which appears as the coefficient of each monomial (e.g., A4 corresponds
to the partition [4,0,0,0,0,0,0,0,0,0,0,0]) in the generating functions derived from respec-
tive PCI-CFs (f_C1–f_Td). The function calcCoeffGen was defined in the file named
CICFgenCC.gapfunc (Appendix A of Ref. [11]), which should be loaded at the first part
of the source code. The results are collected in a tabular form (Table 1).
(enum-tetra.gap)

#Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/enum-tetra.gap");
LogTo("c:/fujita00/fujita2018/subductionTd/calcGAP3/enum-tetralog.txt");

Read("c:/fujita00/fujita2018/subductionTd/calcGAP3/CICFgenCC.gapfunc"); #Loading of CICFgenCC.gapfunc

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");
b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");
a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2");
a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4");
c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4");

PCICF := [];
PCICF[1] := 1/24*b_1^4-1/4*a_1^2*c_2-1/6*b_1*b_3-1/8*b_2^2+1/2*a_1*a_3+1/4*a_2^2+1/4*b_4-1/2*a_4;
PCICF[2] := 1/4*b_2^2-1/4*a_2^2-1/4*b_4+1/2*a_4-1/4*c_4;
PCICF[3] := 1/2*a_1^2*c_2-a_1*a_3-1/2*a_2^2+a_4;
PCICF[4] := 1/2*b_1*b_3-1/2*a_1*a_3-1/2*b_4+1/2*a_4;
PCICF[5] := -1/2*a_4+1/2*c_4;
PCICF[6] := 0;
PCICF[7] := 1/2*a_2^2-1/2*a_4;
PCICF[8] := a_1*a_3-a_4;
PCICF[9] := 0;
PCICF[10] := 1/2*b_4-1/2*a_4;
PCICF[11] := a_4;

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");
C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");
p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");
q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");
r := Indeterminate(Rationals, "r"); R := Indeterminate(Rationals, "R");
s := Indeterminate(Rationals, "s"); S := Indeterminate(Rationals, "S");

aa_1 := A + B + C + D;
aa_2 := A^2 + B^2 + C^2 + D^2;
aa_3 := A^3 + B^3 + C^3 + D^3;
aa_4 := A^4 + B^4 + C^4 + D^4;
bb_1 := A + B + C + D + p + q + r + s + P + Q + R + S;
bb_2 := A^2 + B^2 + C^2 + D^2 + p^2 + q^2 + r^2 + s^2 + P^2 + Q^2 + R^2 + S^2;
bb_3 := A^3 + B^3 + C^3 + D^3 + p^3 + q^3 + r^3 + s^3 + P^3 + Q^3 + R^3 + S^3;
bb_4 := A^4 + B^4 + C^4 + D^4 + p^4 + q^4 + r^4 + s^4 + P^4 + Q^4 + R^4 + S^4;
cc_2 := A^2 + B^2 + C^2 + D^2 + 2*p*P + 2*q*Q + 2*r*R + 2*s*S;
cc_4 := A^4 + B^4 + C^4 + D^4 + 2*p^2*P^2 + 2*q^2*Q^2 + 2*r^2*R^2 + 2*s^2*S^2;

f_C1 := Value(PCICF[1],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_C2 := Value(PCICF[2],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_Cs := Value(PCICF[3],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_C3 := Value(PCICF[4],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],

-322-

[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_S4 := Value(PCICF[5],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

#f_D2 := Value(PCICF[6],
#[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
#[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_D2 := 0;

f_C2v := Value(PCICF[7],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_C3v := Value(PCICF[8],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

#f_D2d := Value(PCICF[9],
#[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
#[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_D2d := 0;

f_T := Value(PCICF[10],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

f_Td := Value(PCICF[11],
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);;

list_partitions :=[];
calcCoeffGentetra := function(list_partitions)
local list_ligand_L, l_pp;
list_ligand_L := [A,B,C,D,p,P,q,Q,r,R,s,S];
l_pp := list_partitions;
Print("$", l_pp, "$ & ",
calcCoeffGen(f_C1, list_ligand_L, list_partitions), " & ",
calcCoeffGen(f_C2, list_ligand_L, list_partitions), " & ",
calcCoeffGen(f_Cs, list_ligand_L, list_partitions), " & ",
calcCoeffGen(f_C3, list_ligand_L, list_partitions), " & ",
calcCoeffGen(f_S4, list_ligand_L, list_partitions), " & ",
#calcCoeffGen(f_D2, list_ligand_L, list_partitions), " & ",
0, " & ",
calcCoeffGen(f_C2v, list_ligand_L, list_partitions), " & ",
calcCoeffGen(f_C3v, list_ligand_L, list_partitions), " & ",
#calcCoeffGen(f_D2d, list_ligand_L, list_partitions), " & ",
0, " & ",
calcCoeffGen(f_T, list_ligand_L, list_partitions), " & ",
calcCoeffGen(f_Td, list_ligand_L, list_partitions), " \\\\ \n");
end;

calcCoeffGentetra([4,0,0,0,0,0,0,0,0,0,0,0]);
calcCoeffGentetra([3,1,0,0,0,0,0,0,0,0,0,0]);
calcCoeffGentetra([3,0,0,0,1,0,0,0,0,0,0,0]);
calcCoeffGentetra([2,2,0,0,0,0,0,0,0,0,0,0]);
calcCoeffGentetra([2,0,0,0,2,0,0,0,0,0,0,0]);
calcCoeffGentetra([2,1,1,0,0,0,0,0,0,0,0,0]);
calcCoeffGentetra([2,1,0,0,1,0,0,0,0,0,0,0]);
calcCoeffGentetra([2,0,0,0,1,1,0,0,0,0,0,0]);
calcCoeffGentetra([2,0,0,0,1,0,1,0,0,0,0,0]);
calcCoeffGentetra([1,1,1,1,0,0,0,0,0,0,0,0]);
calcCoeffGentetra([1,1,1,0,1,0,0,0,0,0,0,0]);
calcCoeffGentetra([1,1,0,0,2,0,0,0,0,0,0,0]);
calcCoeffGentetra([1,1,0,0,1,1,0,0,0,0,0,0]);
calcCoeffGentetra([1,1,0,0,1,0,1,0,0,0,0,0]);
calcCoeffGentetra([1,0,0,0,3,0,0,0,0,0,0,0]);
calcCoeffGentetra([1,0,0,0,2,1,0,0,0,0,0,0]);
calcCoeffGentetra([1,0,0,0,2,0,1,0,0,0,0,0]);

-323-

calcCoeffGentetra([1,0,0,0,1,1,1,0,0,0,0,0]);
calcCoeffGentetra([1,0,0,0,1,0,1,0,1,0,0,0]);
calcCoeffGentetra([0,0,0,0,4,0,0,0,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,3,1,0,0,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,3,0,1,0,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,2,2,0,0,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,2,1,1,0,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,2,0,2,0,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,2,0,1,1,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,2,0,1,0,1,0,0,0]);
calcCoeffGentetra([0,0,0,0,1,1,1,1,0,0,0,0]);
calcCoeffGentetra([0,0,0,0,1,1,1,0,1,0,0,0]);
calcCoeffGentetra([0,0,0,0,1,0,1,0,1,0,1,0]);

LogTo();

References

[1] G. Pólya, R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds, Springer, New York, 1987.

[2] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemis-
che Verbindungen, Acta Math. 68 (1937) 145–254.

[3] S. Fujita, Chirality fittingness of an orbit governed by a coset representation. Inte-
gration of point-group and permutation-group theories to treat local chirality and
prochirality, J. Am. Chem. Soc. 112 (1990) 3390–3397.

[4] S. Fujita, Promolecules for characterizing stereochemical relationships in non-rigid
molecules, Tetrahedron 47 (1991) 31–46.

[5] S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and
Chemical Compounds, Univ. Kragujevac, Kragujevac, 2013.

[6] S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer, Berlin,
1991.

[7] S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of
Stereoisomers, Univ. Kragujevac, Kragujevac, 2007.

[8] S. Fujita, Mathematical Stereochemistry, De Gruyter, Berlin, 2015.

[9] https://www.gap-system.org/.

[10] S. Fujita, Computer-oriented representations of point groups and cycle indices with
chirality fittingness (CI-CFs) calculated by the GAP system. Enumeration of three-
dimensional structures of ligancy 4 by Fujita’s proligand method, MATCH Commun.
Math. Comput. Chem. 76 (2016) 379–400.

-324-

[11] S. Fujita, Computer-oriented representations of Oh-skeletons for supporting combi-
natorial enumeration by Fujita’s proligand method. GAP calculation of cycle indices
with chirality fittingness (CI-CFs), MATCH Commun. Math. Comput. Chem. 77
(2017) 409–442.

[12] S. Fujita, Computer-oriented representations of RS-stereoisomeric groups and cycle
indices with chirality fittingness (CI-CF) calculated by the GAP system. Enumer-
ation of RS-stereoisomers by Fujita’s proligand method, MATCH Commun. Math.
Comput. Chem. 77 (2017) 443–478.

[13] S. Fujita, Systematic enumeration of high symmetry molecules by means of unit
subduced cycle indices with and without chirality fittingness, Bull. Chem. Soc. Jpn.
63 (1990) 203–215.

[14] S. Fujita, Unit subduced cycle indices with and without chirality fittingness for Ih
group. An application to systematic enumeration of dodecahedrane derivatives, Bull.
Chem. Soc. Jpn. 63 (1990) 2759–2769.

[15] S. Fujita, Systematic enumerations of highly symmetric cage-shaped molecules by
unit subduced cycle indices, Bull. Chem. Soc. Jpn. 62 (1989) 3771–3778.

[16] S. Fujita, Systematic classification of molecular symmetry by subductions of coset
representations, Bull. Chem. Soc. Jpn. 63 (1990) 315–327.

[17] S. Fujita, Subduction of coset representations. An application to enumeration of
chemical structures, Theor. Chim. Acta 76 (1989) 247–268.

[18] S. Fujita, Subduction of coset representations. An application to enumeration of
chemical structures with achiral and chiral ligands, J. Math. Chem. 5 (1990) 121–156.

[19] S. Fujita, Enumeration of digraphs with a given automorphism group, J. Math. Chem.
12 (1993) 173–195.

[20] S. Fujita, Generalization of partial cycle indices and modified bisected mark tables
for combinatorial enumeration, Bull. Chem. Soc. Jpn. 73 (2000) 329–339.

[21] S. Fujita, The USCI approach and elementary superposition for combinatorial enu-
meration, Theor. Chim. Acta 82 (1992) 473–498.

[22] S. Fujita, Symmetry-itemized enumeration of cubane derivatives as three-dimensional
entities by the fixed-point matrix method of the USCI approach, Bull. Chem. Soc.
Jpn. 84 (2011) 1192–1207.

-325-

[23] S. Fujita, Symmetry-itemized enumeration of cubane derivatives as three-dimensional
entities by the partial-cycle-index method of the USCI approach, Bull. Chem. Soc.
Jpn. 85 (2012) 793–810.

[24] S. Fujita, Symmetry-itemized enumeration of cubane derivatives as three-dimensional
entities by the elementary-superposition method of the USCI approach, Bull. Chem.
Soc. Jpn. 85 (2012) 811–821.

[25] S. Fujita, Integrated discussion on stereogenicity and chirality for restructuring ste-
reochemistry, J. Math. Chem. 35 (2004) 265–287.

[26] S. Fujita, Graphs to chemical structures 1. Sphericity indices of cycles for stereo-
chemical extension of Pólya’s theorem, Theor. Chem. Acc. 113 (2005) 73–79.

-326-

