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Abstract

We introduce an algebraic criterion that we call the MM-condition, and which
can be used to analyze the chemical mechanisms that are used to explain sponta-
neous enantioselective synthesis, something that apparently occurred in prebiotic
earth. We exemplify the power and soundness of our criterion using a concrete
network as probe model. We choosed to work with a complex network introduced
by Plasson and which is called the APED model. We can explain, using our math-
ematical criteria, some facts related to the qualitative behavior of this model and
which were previously observed by means of computer simulations. It is impor-
tant to remark that our analytical machinery can be fully automatized, and that
it can be used to analyze any feasible network model of the prebiotic synthesis of
enantiopure compounds.

1 Introduction

The strongly biased chirality of biomolecules is one of the most intriguing phenomena

related to the chemistry of life. We would like to shed some light on the chemical mech-

anisms that favour enantioselective synthesis [3]. We have that most of the proposed

models of enantioselective synthesis are constituted by two main steps:
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1. Spontaneous mirror symmetry breaking, which corresponds to the creation of a small

enantiomeric excess [9].

2. Chiral amplification, which corresponds to the creation of a large enantiomeric excess

from a negligible gap between the initial concentrations of the enantiomeric species.

Known mechanisms for the production of small enantiomeric gaps include electroweak

interaction and circularly polarized light [3]. We are interested in the second step, namely

chiral amplification, which corresponds to a qualitative feature of the dynamical systems

that are determined by the chemical reaction networks that exhibit this kind of behavior.

We focus on the following problem:

To develop a mathematical (and algorithmic) methodology that can be used to detect

the chemical reaction networks exhibiting chiral amplification.

Linear stability analysis (LSA, for short) is a mathematical methodology that can be

used to detect the reaction networks exhibiting chemical instabilities. However, we are

not interested in general instabilities, we are interested in a specific type of instabilities,

the ones that can produce chiral amplification. Thus, we would try to adapt some of the

tools provided by LSA in order to deal with our problem.

Let Ω be a chemical reaction network, let s be a state of Ω, and let JΩ (s) be the

Jacobian of s. According to LSA: s encodes a chemical instability depending on the

structure of the eigenvalues of JΩ (s). Intuition tell us that: s produces chiral amplification

depending on the eigenvectors of JΩ (s) and not only in its eigenvalues. We claim that s

can produce chiral amplification, if and only if, matrix JΩ (s) is non-singular and it has a

symmetry-breaking eigenvector (see below). Thus, our problem can be formulated in the

following way:

Problem 1 Check-and-Sample

• Input: Ω, where Ω is a chemical network.

• Problem: decide if Ω admits symmetry-breaking eigenvectors and, in that case,

sample the set of steady states admitting symmetry-breaking eigenvectors.

We would like to remark that any algorithmic solution to the above problem presup-

poses a mathematical characterization of the states that can produce chiral amplification.
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We are mainly interested in the latter mathematical problem, and not in the implemen-

tation of an algorithmic tool that can be obtained as a product of our investigations. We

have discovered an algebraic criterion that allow us to effectively solve the above problem

for the restricted class of chiral networks ( [2], [7]), and for the more general class of

pseudochiral networks. The aforementioned criterion yields an algorithm that can be used

to automatize the analysis of pseudochiral networks. However, we have to remark that

this algorithm is inefficient, and it could be useless when applied to networks whose size

is moderately large. We use the aforementioned algebraic criterion to develop a rigorous

and detailed mathematical analysis of a network model of chiral amplification: the APED

Model introduced by Plasson et al [8]. Actually, this paper could be read as a rigorous

mathematical analysis of the APED model, but taking into account that it is not an ad-

hoc analysis, and that any other network model of chiral amplification can be analyzed

along the lines of the present work.

2 Chemical Networks and Mass Action Kinetics

A chemical reaction over the chemical species X1, ..., Xn is an expression like

c1X1 + · · ·+ cnXn → d1X1 + · · ·+ dnXn,

where c1, ..., cn and d1, ..., dn are small integers (some of which could be equal to zero).

The above expression indicates that the mixture of c1 units of X1, ..., and cn units of Xn

gives place to d1 units of X1 , ..., and dn units of Xn.

Definition 2 A chemical network over the species {X1, ..., Xn} is a set of chemical reac-

tions, say the set {R1, ..., Rr} , over this set of species.

Given a chemical network Ω = ((X1, ..., Xn) , (R1, ..., Rr)) we use the expression

c1iX1 + · · ·+ cniXn → d1iX1 + · · ·+ dniXn

to denote the reaction Ri.

Notation 3 Let Ω = ((X1, ..., Xn) , (R1, ..., Rr)) be a chemical network, we use variables

[X1] , ..., [Xn] to denote the concentrations of the n chemical species.

Let (k1, ..., kr) be a vector of rate constants related to the reactions R1, ..., Rr, if the

values of k1, ..., kr correspond to the rate constants of those reactions then, and according
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to the law of mass-action, the dynamics of the network is governed by the polynomial

system of differential equations given by

dxi

dt
=

r∑
j=1

kj (dij − cij) ([X1]
cij · · · · · [Xn]

cij) , i = 1, ..., n.

We say, by an abuse of language, that the above system is the ODE system determined

by Ω.

We want to study the dynamics of the chemical reaction networks that could model

enantioselective synthesis in prebiotic earth, and which we suppose governed by the law

of mass-action. Notice that all those dynamics are deterministic, and hence the time-

evolution of all those chemical mechanisms are completely determined by their initial

states. An initial state of the network Ω can be fully described by a (n+ r)-tuple([
X0

1

]
, ...,

[
X0

n

]
, k0

1, ..., k
0
s

)
,

of non-negative reals.

Definition 4 We say that the state ([X1] , ..., [Xn] , k1, ..., ks) is a steady state, if and only

if, it satisfies the steady state conditions given by

0 =
r∑

i=1

(d1i − c1i) ki [X1]
c1i · · · [Xn]

cni .

...

0 =
r∑

i=1

(dni − cni) ki [X1]
c1i · · · [Xn]

cni .

Notation 5 Let Ω be a chemical reaction network, we use the symbol JΩ to denote the

symbolic Jacobian of the ODE system determined by Ω. Notice that all the entries of JΩ

are polynomials over the variables

[X1] , ..., [Xn] , k1, ..., kr.

Given a steady state s, we use the symbol JΩ (s) to denote the Jacobian of s, which

is the numerical matrix that is obtained after evaluating JΩ at s (after evaluating all the

polynomial entries of JΩ at s )

3 Analysis of Chiral Networks
Enantiomers are, to some extent and in the absence of chiral agents, indiscernible from the

point of view of chemical kinetics. The latter implies that any realistic network model of
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chiral amplification must satisfy some symmetries that are related to the indiscernibility

of enantiomers. The first symmetry constraint that comes to mind is the following one

Definition 6 Suppose that Ω = ((I1, I2, X3, ..., Xn) , (R1, ..., Rr)) is a chemical netw-

ork and suppose that I1 and I2 represent a pair of enantiomers. We say that Ω =

((I1, I2, X3, ..., Xn) , (R1, ..., Rr)) is a chiral network, if and only if, given Ri equal to

aI1 + bI2 + c3X3 + · · ·+ cnXn → a∗I1 + b∗I2 + d3X3 + · · ·+ dnXn,

there exists j ≤ r such that Rj is equal to

bI1 + aI2 + c3X3 + · · ·+ cnXn → b∗I1 + a∗I2 + d3X3 + · · ·+ dnXn.

We say in the latter case that reactions Ri and Rj are dual reactions. Moreover, if Ri

and Rj are dual reactions their reactions rates must be the same. The latter fact allows

us to talk about the reaction rate of the dual pair (Ri, Rj) .

If reaction Rj has the form

aI1 + aI2 + c3X3 + · · ·+ cnXn → bI1 + bI2 + d3X3 + · · ·+ dnXn,

we say that it is a self-dual reaction since it is equal to its dual reaction.

It happens that many different models of biological homochirality are chiral networks,

as it is the case with the classical Frank model [4], the network of Kondepudi-Nelson [6]

and the network of Iwamoto [5]. It also happens that those networks are fairly easy to

analyze.

Definition 7 We say that s is a symmetry-breaking state for the pair ({1} , {2}) , if and

only if, there exists an eigenvalue of JΦ (s), say the eigenvalue λ, such that:

1. Re(λ) > 0.

2. There exists a vector v such that JΦ (s) · v = λv and v [1] 6= v [2] .

Let Ω = ((I1, I2, X3, ..., Xn) , (R1, ..., Rr)) be a chiral network. It can be argued that the

symmetry-breaking states of Ω are the states that can produce chiral amplification [1], [2].

Thus, we are interested in testing and sampling the set

SB (Ω) =
{
s ∈ Rn+r : s is a symmetry-breaking state of Ω for the pair ({1} , {2})

}
.

We have that (see reference [2]).
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Theorem 8 Frank Inequality

Let Ω be a chiral network, let s be a steady state of Ω and let JΩ (s) be the Jacobian

of s, we have that state s is a symmetry-breaking state, if and only if, the inequality

JΩ (s) [1, 1]− JΩ (s) [1, 2] > 0

holds.

The above theorem (algebraic criterion) allows us to compute a good semialgebraic

definition of the set SB (Ω), a definition that can be effectively used for checking non-

emptiness and for sampling the set of symmetry-breaking states. We have illustrated the

latter claim with the analysis of Frank and Kondepudi-Nelson models (see [1] and [2]).

4 Analysis of Pseudochiral Networks

If a chiral network has symmetry-breaking states, then it contains a dual pair of autocat-

alytic reactions within its set of chemical reactions. The latter fact explains a common

feature of chiral models: all those models are based on (contain) autocatalytic steps. It

is important to remark, at this point, that there are examples of autocatalytic reactions

in nature, and that it has been proved that those reactions give place to chiral amplifi-

cation [11]. However, autocatalytic reactions seem to be very scarce. Therefore, different

authors have introduced (pseudochiral) network models of biological homochirality that

avoid the presence of the latter type of reactions. Plasson et al introduced one of those

models, the APED model [8], which is equivalent to the pseudochiral network ΩAPED

defined below.

The constituent species are the species L,L∗, LL,DL,D,D∗, DD and LD. The set of

reactions is given by

1. A dual pair of Activation reactions

L → L∗ and D → D∗,

whose reaction rate constant is denoted with the symbol a. The network also includes

a dual pair of reverse reactions

L∗ → L and D∗ → D,

whose reaction rate constant is denoted with the letter b.
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2. A dual pair of homochiral Polymerization reactions

L+ L∗ → LL and D +D∗ → DD,

whose reaction rate constant is denoted with the letter p. The network also includes

a dual pair of heterochiral polymerization reactions

L+D∗ → DL and D + L∗ → LD,

whose reaction rate constant is denoted with the symbol αp.

3. A dual pair of Epimerization reactions

DL → LL and LD → DD,

whose reaction rate constant is denoted with the letter e. The network also includes

a dual pair of reverse reactions

LL → DL and DD → LD,

whose reaction rate constant is denoted with the symbol γe.

4. Depolymerization of the formed dimers, given by the dual pairs of reactions

LL → L+ L and DD → D +D;

DL → D + L and LD → D + L,

whose reaction rate constants are denoted with the symbols h and βh.

We have to observe that the enantiomers L and D can be discerned in the network:

notice that L reacts with L∗ to produce the homochiral dimer LL, while D reacts with L∗

to produce the heterochiral dimer LD. However, we have to observe that the network is

constituted by two enantiomeric clusters, the sets {L,L∗, LL,DL} and {D,D∗, DD,LD},

which cannot be distinguished in the network.

Definition 9 A pseudochiral network is a chemical reaction network that contains a

pair of enantiomeric clusters within its set of species, and which are indiscernible in the

network.
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Let Ω be pseudochiral network, and let {L1, ..., Lk} ; {D1, ..., Dk} be its pair of enan-

tiomeric clusters, we say that Ω is a pseudochiral network of order k. Notice that chiral

networks are exactly the pseudochiral networks of order 1. As far as we know all the

network models of symmetric enantioselective synthesis proposed in the literature are

pseudochiral networks. We claim that it has to be that way since the symmetry con-

straint that defines the class of pseudochiral networks is the weakest symmetry constraint

that must be satisfied by any feasible network model of biological homochirality. If net-

work Ω is not pseudochiral, there is an asymmetry in the structure of Ω that favours

the synthesis of the species in one of the two clusters, and it implies that the synthesis

mechanism modeled by Ω is an asymmetric one (the kinetical structure of the network

encodes the action of a chiral agent like e.g. circular polarized light).

4.1 The MM-Condition

Frank inequality is specific of chiral networks, and we cannot use it to analyze pseudochiral

networks of order higher than 1. Thus, we have to look for a mathematical criterion that

can be applied to the more general class of pseudochiral networks.

Let

Ω = {(L1, ..., Lk, D1, ..., Dk, X2k+1, ..., Xn) ;R1, ..., Rr}

be a pseudochiral network of order k. We want to track the evolution of the concentrations

[L1] , ..., [Lk] , [D1] , ..., [Dk−1] and [Dk] .

Remark 10 From now on we use the above ordering of the species in Ω.

Let s be a steady state (with respect to those 2k chiral species), and let JΩ (s) be the

2k × 2k Jacobian matrix at state s. Let us suppose that s is a racemic state, and let us

remark that the racemic condition for Ω is given by the equalities

[L1] = [D1] , ..., [Lk] = [Dk] .

The indiscernibility of the enantiomeric clusters, together with the racemic condition,

imply that there exist two k × k matrices As and Bs such that

JΩ (s) =

[
As Bs

Bs As

]
.

We say that (As, Bs) is the pair of k-blocks of matrix JΩ (s).
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Definition 11 Let v be a n-dimensional vector and let I = {i1, ..., ik} , J = {j1, ..., jk} be

two disjoint subsets of {1, ..., n} of the same size. We say that v is racemic with respect to

the pair (I, J), if and only if, for all l ≤ k the equality v [il] = v [jl] holds. On the other

hand, we say that v is a symmetry-breaking vector with respect to the pair (I, J), if and

only if, vector v is not racemic with respect to the latter pair.

Let s be a steady state of the pseudochiral network Ω, let JΩ (s) be its Jacobian matrix

and let (As, Bs) be its pair of k-blocks. We say that s is a symmetry-breaking state, if and

only if, the following two conditions are satisfied:

1. Matrix JΩ (s) has an eigenvalue with a positive real part, and this eigenvalue has

an eigenvector which is symmetry-breaking with respect to the pair ({1, ..., k} ,

{k + 1, ..., 2k}) .

2. det (As −Bs) 6= 0.

We claim that the symmetry-breaking states are the states that can produce chiral

amplification.

Remark 12 If we suppose that JΩ (s) is hyperbolic, we get that s is a symmetry-breaking

state, if and only if, it can locally produce chiral amplification. We conjecture that the

same is true if we replace the hyperbolic condition by the weaker (non-singularity) condition

given by det (As −Bs) 6= 0.

Definition 13 Let n ≥ 2 and let m ≤ n
2
, we say that a n × n matrix is a pseudochiral

matrix of order m, if and only if, there exist two m × m matrices A and B, and there

exist two matrices H and R, such that M is equal to A B R
B A R
H H ∗

 .

We say in the latter case that (A,B) is the pair of m-blocks of matrix M.

It is important to remark that chiral matrices are the pseudochiral matrices of order

1

Definition 14 We say that a matrix N is Hurwitz-unstable, if and only if, there exists

an eigenvalue of N whose real part is positive.
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Next theorem is a generalization of Frank inequality to pseudochiral networks of higher

orders.

Theorem 15 The MM-Condition

Let M be a pseudochiral matrix of order m, and let (A,B) be its pair of m-blocks,

matrix M has a symmetry-breaking eigenvector for the pair

({1, ...,m} , {m+ 1, ..., 2m}) ,

if and only if, the m×m matrix A−B is non-singular and Hurwitz-unstable.

Proof. Suppose that A−B has an eigenvalue λ whose real part is positive, and let v be

a non-null eigenvector of M related to the eigenvalue λ. Set w = (v,−v, 0, ..., 0) . Notice

that w is symmetry-breaking for the pair ({1, ...,m} , {m+ 1, ..., 2m}) . Moreover, it is

easy to check that M · w = λ · w. We get that the Hurwtiz-instability of A − B entails

the existence of an eigenvector of M that is symmetry-breaking for the pair

({1, ...,m} , {m+ 1, ..., 2m}) .

Now suppose that λ is not an eigenvalue of A − B and let v be a non-null vector

such that M · v = λ · v. Let us write v as the triple (v1,v2, s), where v1 and v2 are

m-dimensional vectors. Let us use the symbol F i
A to denote the ith row of A, and let us

use the symbol F i
B to denote the ith row of B. If we fix i ≤ m we get that the equalities

〈
F i
A : v1

〉
+
〈
F i
B : v2

〉
+

n∑
j=2m+1

M [i, j] · s [j] = λ · v1 [i] ,

〈
F i
B : v1

〉
+
〈
F i
A : v2

〉
+

n∑
j=2m+1

M [m+ i, j] · s [j] = λ · v2 [i] .

hold. If we sum up those two equalities we get that

(
F i
A − F i

B

)
· (v1 − v2) = λ · ((v1 − v2) [i]) .

Altogether we get that

(A−B) · (v1 − v2) = λ · (v1 − v2) .

Recall that λ does not belong to the spectrum of A−B. Then, we have that v1−v2 = 0,

and the vector v is racemic for the pair ({1, ...,m} , {m+ 1, ..., 2m}) .
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Remark 16 It is interesting to observe that Frank inequality corresponds to the MM-

Condition for pseudochiral matrices of order 1. Notice that if m = 1, the pair of m-blocks

of M is equal to ([M [1, 1]] , [M [1, 2]]). Moreover, we have that the 1 × 1 real matrix

[M [1, 1]] − [M [1, 1]] has an eigenvalue whose real part is positive, if and only if, the

inequality M [1, 1] − M [1, 2] > 0 holds. If (A,B) is the pair of 1-blocks of M , the

inequality M [1, 1]−M [1, 2] > 0 also implies that A−B is non-singular.

Let Ω be a pseudochiral network, we can use the MM-Condition to determine the set of

symmetry-breaking states of Ω. The latter set is defined by the semialgebraic conditions

listed below (see [2] and the references therein):

1. The steady state conditions which, as remarked before, constitute a system of poly-

nomial equations.

2. The positivity conditions given by

L1, ..., Lk, D1, ..., Dk, X2k+1, ..., Xn, R1, ..., Rr ≥ 0.

3. The polynomial inequality

det (As −Bs)
2 > 0.

4. The polynomial inequalities (Hurwitz-Routh inequalities, see [10]) asserting that

As −Bs is Hurwtiz-unstable.

The above theorem yields an algorithm that can be used to analyze any pseudochiral

network. This algorithm can be used to check if the input network has symmetry-breaking

states, and, in that case, it can also be used to sample the set constituted by all those

states. The aforementioned algorithm is based on the above semialgebraic definition of

the set of symmetry-breaking states.

We can also obtain, besides of the latter algorithm, an important reduction in the

dimensionality of the problem. Suppose that Ω is a pseudochiral network of order k. We

are interested in tracking the evolution of the 2k chiral species. Then, we can focus the

analysis on the Jacobian matrix for those 2k species. Let s be a racemic state of Ω, and

let JΩ (s) be the corresponding 2k × 2k Jacobian matrix. We have that

JΩ (s) =

[
A B
B A

]
.
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We use the symbol SP (JΩ (s)) to denote the spectrum of JΩ (s). It is important to

observe that

SP (JΩ (s)) = SP (A−B) ∪ SP (A+B) .

The above equation allows us to reduce the spectral analysis of JΩ (s) to the spectral

analysis of the matrices A−B and A+B. We know that the eigenvalues in SP (A−B)

are the eigenvalues that contribute with symmetry-breaking eigenvectors. Therefore, we

say that these are the symmetry-breaking eigenvalues of M. It is easy to check that the

eigenvalues in SP (A+B) contribute with racemic eigenvectors.

5 Analysis of the APED Model

We discovered, in the previous section, an algebraic criterion that can be used to detect

and analyze the pseudochiral networks that exhibit chiral amplification. We would like to

use our criterion in the analysis of a real material system exhibiting mirror symmetry

breaking and chiral amplification. We only know of some few real material systems

that behaves approximately in this way, as it is the case with Soai reaction [11] and

Viedma process [12], and we have that none of those chemical mechanisms count with a

suitable network description. However, there are some network models that approximately

describe those chemical mechanisms, and we decided to choose one of those networks to

test our methodology. We have chosen to work with the APED model of Plasson et al [8],

as introduced above, and which can be considered as a rough network description of Soai

reaction.

Let us begin with the analysis. The steady state conditions for the species L,L∗, LL

and DL are equal to

d [L]

dt
= 0 = −a [L] + b [L∗]− p [L] [L∗]− αp [L] [D∗]

+2h [LL] + βh ([DL] + [LD]) ,

d [L∗]

dt
= 0 = a [L]− b [L∗]− p [L] [L∗]− αp [D] [L∗] ,

d [LL]

dt
= 0 = p [L] [L∗] + e [DL]− γe [LL]− h [LL] ,

d [DL]

dt
= 0 = αp [L] [D∗]− e [DL]− γe [LL]− βh [DL] .

The pair of symbolic 4-blocks, denoted with the symbol (A,B), is given by the equal-
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ities

A =


−a− p [L∗]− αp [D∗] b− p [L] 2h βh

a− p [L∗] −b− p [L]− αp [D] 0 0
p [L∗] p [L] −γe− h e
αp [D∗] 0 −γe −e− βh


and

B =


0 −αp [L] 0 βh

−αp [L∗] 0 0 0
0 0 0 0
0 αp [L] 0 0

 .

Recall that the racemic condition corresponds to the following set of equations

[L] = [D] ; [L∗] = [D∗] ; [LL] = [DD] ; [LD] = [DL] .

Thus, if we assume the racemic condition, the steady state equations become equal to

d [L]

dt
= 0 = −a [L] + b [L∗] + [L] [L∗] (−p− αp) + 2h [LL] + 2βh [DL] ,

d [L∗]

dt
= 0 = a [L]− b [L∗] + [L] [L∗] (−p− αp) ,

d [LL]

dt
= 0 = p [L] [L∗]− [LL] (γe+ h)− e [DL] ,

d [DL]

dt
= 0 = αp [L] [L∗]− γe [LL]− [DL] (e+ βh) .

Let s be a steady state, we use the symbol As − Bs to denote the numerical matrix

that is obtained from A − B after evaluating it at s. If s is a racemic state, the matrix

As −Bs becomes equal to
−a− [L∗] (p+ αp) b− [L] (p− αp) 2h 0
a− [L∗] (p− αp) −b− [L] (p+ αp) 0 0

p [L∗] p [L] −γe− h e
αp [L∗] −αp [L] −γe −e− βh

 .

We know that the latter matrix is the symbolic matrix that we have to analyze.

However, this task seems to be a hard one because of the many independent parameters

occurring in this matrix. We will try to simplify our current task as much as possible and

without assuming restrictive hypothesis.

Proposition 17 Let s = (X,K) be a racemic steady state, let α > 0 and set sα =

(X, α ·K). We have that s is a symmetry-breaking state, if and only if, the state sα is

also symmetry-breaking.

-17-



Proof. Let λ be an eigenvalue of As − Bs with a positive real part, we have that αλ is

an eigenvalue of Asα − Bsα with a positive real part. Moreover, we have that As − Bs is

non-singular, if and only if, the matrix Asα −Bsα is non-singular.

Let Ω be a pseudochiral network, and suppose we choose one of the reaction-rate

parameters, say the parameter k, and we assign to it a random positive value c. The

assignment k = c determines a cross-section of the set of racemic steady states of Ω.

We use the symbol Sk=c (Ω) to denote the latter cross-section, and we use the symbol

SB (Ω) to denote the whole set of symmetry-breaking states. It follows from the above

proposition that SB (Ω) is the disjoint union of the following two sets

SB0 (Ω) = SB (Ω) ∩ Sk=0 (Ω) and

SB 6=0 (Ω) = {sα : α > 0 & s ∈ SB (Ω) ∩ Sk=c (Ω)} .

The above fact tells us that we can choose a reaction parameter, say the reaction

parameter k, and consider only two cases, the cases k = 0 and k = 1. Let us choose the

reaction rate parameter p. If we suppose that p = αp = 0, we get the singular matrix
−a b 2h 0
a −b 0 0
0 0 −γe− h e
0 0 −γe −e− βh

 .

Then, we have that SB0 (ΩAPED) = ∅, and we are forced to suppose that p, αp > 0.

Thus, we suppose, without loss of generality, that p = 1. We get the symbolic matrix
−a− [L∗] (1 + α) b− [L] (1− α) 2h 0
a− [L∗] (1− α) −b− [L] (1 + α) 0 0

[L∗] [L] −γe− h e
α [L∗] −α [L] −γe −e− βh

 .

Now, we have to determine the parameter values that make the above matrix becomes

Hurwitz-unstable. Let s ∈ Sp=1 (ΩAPED) , and let

pAs−Bs (X) = X4 + a3 (s)X
3 + ...+ a4 (s)

be the characteristic polynomial of As − Bs. The Hurwitz-Routh criterion implies that

As − Bs is Hurwitz-unstable, if and only if, at least one of the following four conditions

holds true (see reference [10]):

1. a3 (s) < 0.

2. a0 (s) < 0.
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3. a3 (s) a2 (s)− a1 (s) < 0.

4. (a3 (s) a2 (s)− a1 (s)) a1 (s)− a0 (s) (a3 (s))
2 < 0.

Recall that

a3 (s) = −tr1 (As −Bs) , a2 (s) = tr2 (As −Bs) ,

a1 (s) = −tr3 (As −Bs) and a0 = det (As −Bs) ,

where given i = 1, 2, 3 the symbol tri (As −Bs) denotes the sum of all the i-size diagonal

minors of As − Bs. Notice that for all i = 0, 1, 2, 3 the function ai (s) is a polynomial

function over the parameters a, b, h, e, α, γ, β, [L] and [L∗] . Thus, we have computed three

polynomial inequalities, which, together with the steady state (polynomial) equalities and

the polynomial inequalities

(det (As −Bs))
2 > 0 and a, b, h, e, α, γ, β, [L] , [L∗] ≥ 0,

determine a semialgebraic definition of the set SB (Ω) ∩ Sp=1 (Ω) .

We begin analyzing the first inequality, we have that

a3 (s) = a+ [L∗] (1 + α) + b+ [L] (1 + α) + γe+ h+ e+ βh,

and we get that for all s the coefficient a3 (s) is non-negative. Then, we have to check

the other three inequalities.

We computed the polynomial expressions related to these inequalities, but it results

in three huge expressions that cannot be suitably displayed in this paper. The latter

implies that we have to process those huge polynomial expressions using some of the

aforementioned algorithms. It happens that all those algorithms are inefficient (double

exponential time), hard to implement, and it was not possible to find a free-software

implementation of at least one of them. Thus, we could not process our semialgebraic

condition. However, it is worth to remark that our analytic methodology can be fully

automatized.

5.1 Assuming the hypothesis of Plasson et al

It seems that we cannot continue with the analysis without assuming some restrictive

hypothesis. Does ΩAPED have symmetry-breaking states? It has been claimed, before

of this work, that there exist states of ΩAPED that produce chiral amplification [8]. The
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authors of the aforementioned reference studied the set of states satisfying the conditions

b = β = γ = 0. If we assume those equalities we get that

As −Bs=


−a− [L∗] (1 + α) − [L] (1− α) 2h 0
a− [L∗] (1− α) − [L] (1 + α) 0 0

[L∗] [L] −h e
α [L∗] −α [L] 0 −e

 .

Notice that if one wants to analyze the above matrix, he can focus on the matrix

N0 =


−a− [L∗] (1 + α) − (1− α) 2 0
a− [L∗] (1− α) − (1 + α) 0 0

[L∗] 1 −1 1
α [L∗] −α 0 −1

 .

since the equality

det (As −Bs) = e · h · [L] · det (N0)

holds. Notice also that, if the conditions h = e = [L] = 1 are fulfilled, the equality

As − Bs = N0 holds. Thus, we set h = e = [L] = 1. It is interesting to remark that

Plasson et al also assumed, at some point in their analysis, that h = e = [L] = 1. From

now on we focus on the set of racemic steady states of ΩAPED satisfying the conditions

[L] = h = e = p = 1 and b = β = γ = 0.

We use the symbol SBP (ΩAPED) to denote the above set.

5.1.1 Analysis of SBP (ΩAPED)

We use the MM-Condition to study the fine structure of SBP (ΩAPED) .

Lemma 18 The states of SBP (ΩAPED) can be fully described using the parameters a and

α.

Proof. Suppose that s ∈ SBP (ΩAPED) , we know that

[L] = [D] = h = e = p = 1 and b = β = γ = 0.

Thus, it only remains to determine the values of the parameters [LL] , [DL] , a, α and

[L∗] . The steady state conditions, together with the racemic condition, imply that

[L∗] =
a

1 + α
; [LL] = [DD] = a and [DL] = [LD] =

αa

1 + α
.

The lemma is proved.
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Given a pair (a, α) of non-negative real numbers, this pair determines an state in

SP (ΩAPED) . Thus, from now on, we identify the set SP (ΩAPED) with the North-East

quadrant of R2 that we denote with the symbol R2
+. Plasson et al studied the set

SP (ΩAPED) by means of massive computer simulations [8]. They observed that given

(a, α) ∈ SP (ΩAPED), if the inequality α < 1 holds the state (a, α) produces chiral ampli-

fication [8]. We can use our analytical machinery to explain the aforementioned experi-

mental observation.

Theorem 19 Let (a, α) ∈ SP (ΩAPED), if the inequalities α < 1 and a > 0 both hold, the

state (a, α) is a symmetry-breaking state.

Proof. Set

a3 (a, α, [L
∗]) = a+ α + [L∗] (α + 1) + 3,

a2 (a, α, [L
∗]) = 4a+ 2α + 6α [L∗] + 3,

a1 (a, α, [L
∗]) = 3a+ α− [L∗] + 3α [L∗] + 1,

a0 (a, α, [L
∗]) = 2α (a− 2 [L∗]) .

We have that the polynomial

pAPED (X) = X4 + a3 (a, α, [L
∗]) ·X3 + · · ·+ a0 (a, α, [L

∗])

is equal to the characteristic polynomial of matrix N0.

We observed before that the polynomial a3 (a, α, [L∗]) cannot take negative values for

all the non-negative values of the parameters a, α and [L∗] . On the other hand, we have

that a0 (a, α, [L
∗]) < 0, if and only if, the inequality

[L∗] >
a

2

holds. If we substitute [L∗] by a
1+α

in the above inequality, we get that a0 (a, α, [L
∗]) is

negative, if and only if, α < 1. Thus, we get that for all α < 1 and for all a > 0 the matrix

A(a,α) −B(a,α) is not singular and Hurwitz-unstable.

We get that the inequality α < 1, which was inferred by Plasson et al [8] using experi-

mental methods, is the inequality that forces the negativity of the coefficient a0 (a, α, [L∗])

as well as the non-singularity of the matrix A(a,α) −B(a,α).

It is easy to sample the set of symmetry-breaking states of ΩAPED satisfying the

conditions

[L] = h = e = p = 1; b = β = γ = 0 and α < 1.
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To do the latter we can proceed as follows:

1. Set [L] = [D] = h = e = p = 1; b = β = γ = 0

2. Pick α ∈ [0, 1) .

3. Pick a ∈ (0,∞) .

4. Set [L∗] = [D∗] = a
(1+α)

and [LL] = [DD] = a.

5. Set [DL] = αa
1+α

.

We can use the above procedure to compute infinite many symmetry-breaking states of

ΩAPED. For instance, if we set α = 0.1 and a = 0.55, we get one of the two states explicitly

computed by Plasson et al [8], and exhibiting, according to the computer simulations

performed by those authors, chiral amplification. If we set α = 0.1 and a = 0.55 we get

the second state.

The authors of [8] observed that given a > 1, there exists a (apparently) large value αa

such that for all α > αa the racemic state represented by the pair (a, α) produces chiral

amplification. Does there exist such a critical value? Where does it come from?

If we substitute [L∗] by a
1+α

, we get that the coefficients of pAPED (X) are given by

the equalities:

• a3 (a, α) = 2a+ α + 3.

• a2 (a, α) =
4a+5α+10aα+2α2+3

1+α
.

• a1 (a, α) =
2a+2α+6aα+α2+1

1+α
.

• a0 (a, α) =
2aα2−2aα

1+α
.

Notice that we only analyzed the inequalities

a3 (a, α) < 0 and a0 (a, α) < 0,

and we did not analyze the inequalities

1. a3 (a, α) · a2 (a, α)− a1 (a, α) < 0.
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2. (a3 (a, α) · a2 (a, α)− a1 (a, α)) · a1 (a, α)− a0 (a, α) · (a3 (a, α))2 < 0.

The inequality

a3 (a, α) · a2 (a, α)− a1 (a, α) < 0

is equivalent to the polynomial inequality

20a2α + 8a2 + 14aα2 + 50aα + 16a+ 2α3 + 12α2 + 20α + 10 < 0,

which cannot be satisfied for non-negative values of the parameters. Thus, we have to

focus on the second inequality, which is equivalent to the polynomial inequality

120a3α2 + 96a3α + 16a3 + 80a2α3 + 384a2α2 + 256a2α + 40a2 + 14aα4 +

138aα3 + 286aα2 + 200aα + 36a+ 2α5 + 16α4 + 46α3 + 62α2 + 40α + 10

< 8a3α3 + 8a2α4 + 2aα5.

Theorem 20 Let a > 1, there exists αa > 1 such that if α > αa, the racemic steady state

represented by (a, α) is a symmetry-breaking state.

Proof. Suppose that a > 0 and set βa = 322a3+740a2+674a+176
2a−2

. It is easy to check that

given α ≥ βa the above inequality holds. Moreover, if α 6= 1 the matrix A(a,α) − B(a,α) is

not singular.

Remark 21 Let a > 1, we use the symbol αa to denote the quantity

inf {βa : βa > 1 and if α > βa the state (a, α) is symmetry-breaking}

Thus, we could prove, using purely analytical tools, the existence of the critical value

αa. Moreover, we could compute an upper bound for this critical value.

We can also prove that

Proposition 22 If a ≤ 1 the inequality

(a3 (a, α) · a2 (a, α)− a1 (a, α)) · a1 (a, α)− a0 (a, α) · (a3 (a, α))2 < 0

cannot be satisfied for non-negative values of α.

Plasson et al also observed, by means of their computer simulations, that SBP (ΩAPED)

is partitioned into three regions, the regions

A = {(a, α) ∈ SBP (ΩAPED) : α < 1} ,

B = {(a, α) ∈ SBP (ΩAPED) : (a ≤ 1 and α ≥ 1) or α ∈ [1, αa]} ,

C = {(a, α) ∈ SBP (ΩAPED) : a > 1 and α > αa} ,

-23-



that seem to correspond to three different dynamical regimes (see [8]). According to those

authors the region A is constituted by unstable states that trigger dynamics converging

to enantiopure states; the region B is constituted by states that cannot produce chiral

amplification; and, finally, they observed a mixture of symmetry breaking and oscillatory

behavior in region C.

We can use our analytical machinery to explain the above observations. First an easy

proposition.

Proposition 23 Let a > 0, if α < 1 the inequality

(a3 (a, α) · a2 (a, α)− a1 (a, α)) · a1 (a, α)− a0 (a, α) · (a3 (a, α))2 < 0

does not hold.

Let (a, α) ∈ A, and let
(
A(a,α), B(a,α)

)
be its pair of 4-blocks. We have from the

previous lemma and Theorem 19 that state (a, α) satisfies only one of the Hurwitz-Routh

inequalities, the inequality a0 (a, α) < 0. Then, we have that there is only one change

of signs in the Routh-Hurwitz array of the matrix A(a,α) − B(a,α). This implies that the

latter matrix has only one eigenvalue with a positive real part, and it implies, in turn,

that this eigenvalue is a positive real number. Thus, the Jacobian matrix of (a, α) has

only one (linear independent) symmetry-breaking eigenvector, whose action is modulated

by a pure exponential function. The latter explains the convergence to enantiopure states.

On the other hand we have that region B is constituted by states for which the

matrix A(a,α) − B(a,α) is Hurwitz-stable, and as consequence they cannot produce chiral

amplification.

Finally we get to region C.

Theorem 24 Let (a, α) ∈ SBP (ΩAPED) and suppose that α > αa, the matrix A(a,α) −

B(a,α) has exactly two eigenvalues with a positive real part.

Proof. The first column of the Routh-Hurwitz array of A(a,α) −B(a,α) is equal to
1

a3 (a, α)
a3(a,α)a2(a,α)−a1(a,α)

a3(a,α)
(a3(a,α)a2(a,α)−a1(a,α))a1(a,α)−a0(a,α)(a3(a,α))

2

a3(a,α)a2(a,α)−a1(a,α)
a3(a,α)

a0 (a, α)

 .
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We know that the first three entries as well as the last entry are positive. On the

other hand, if α > αa the fourth entry is negative. Then, we have exactly two changes

of signs. We conclude that A(a,α) −B(a,α) is a non-singular matrix which has exactly two

eigenvalues with a positive real part.

Notice that if the two symmetry-breaking eigenvalues of A(a,α) − B(a,α) are complex

numbers (conjugated to each other), then the dynamics triggered by (a, α) are oscillating.

Let us consider the case a = 1.1. The inequality

(a3 (a, α) · a2 (a, α)− a1 (a, α)) · a1 (a, α)− a0 (a, α) · (a3 (a, α))2 < 0

is equivalent to the inequality

−0.2α5 + 21.74α4 + 6587.2α3 + 582.3α2 + 697.54α + 119.30 < 0.

The polynomial

−0.2α5 + 21.72α4 + 6587.2α3 + 582.3α2 + 697.54α + 119.30

has only one positive root, and this positive root is (approx) equal to 243.76. The latter

means that α1.1 ≈ 243.76.

Remark 25 Given a0 > 1, the quantity αa0 can be suitably computed as the unique
positive root of the polynomial

(1 + α)2
((

a3
(
a0, α

)
· a2

(
a0, α

)
− a1

(
a0, α

))
· a1

(
a0, α

)
− a0

(
a0, α

)
· (1 + α) ·

(
a3

(
a0, α

))2)
.

Let us pick four states, the states (1.1, 0.5) ∈ A, the state (1.1, 2) ∈ B, the state

(1.1, 300) ∈ C and the state (1.1, 243.76) . We have that

• The spectrum of the first state is equal to

6.264 3× 10−2; − 0.876 43; − 2.443 1 + i (0.842 49) and − 2.443 1− i (0.842 49) ,

and it contains exactly one eigenvalue with a positive real part, the eigenvalue

6.264 3× 10−2.

• The spectrum of (1.1, 2) is equal to

−0.316 97− i (0.164 18) ; − 0.316 97 + i (0.16418) ;

−3.283 + i (0.85546) i, − 3.283− i (0.85546) ,

and it does not contain symmetry-breaking eigenvalues.
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• The spectrum of (1.1, 300) is equal to

0.012 1 + i (1.0280) ; 0.012 1− i (1.0280) ; − 2.046,−303.18,

and it contains, as expected, two eigenvalues with a positive real part. Notice that

those two eigenvalues are complex numbers conjugated to each other. Then, we

have that the dynamics driven by the symmetry-breaking eigenvectors of this state

are modulated by the product of an exponential function and a sum of trigonometric

functions. The latter explains the oscillatory behavior of those dynamics.

• The spectrum of (1.1, 243.76) is equal (modulus numerical error) to

i; − i; − 2.047 7; − 246.93,

and we have that the latter state is a Hopf-bifurcation. Notice that for all a > 1

the state (a, αa) must be a Hopf-bifurcation given that it represents the transition

between the stable region B and the unstable region C.

We would like to remark that it is easy to sample the regions A,B and C. For instance,

if one wants to sample the region C he can proceed as follows:

1. Set [L] = [D] = h = e = p = 1; b = β = γ = 0

2. Pick a ∈ (1,∞) .

3. Compute αa, and pick α > αa.

4. Set [L∗] = [D∗] = a
(1+α)

and [LL] = [DD] = a.

5. Set [DL] = αa
1+α

.

We claim that we have analyzed in full detail the set SBP (ΩAPED) . Notice that

we could use our analytical machinery to establish (and explain) the conditions that

define the set of symmetry-breaking states included in SBP (ΩAPED) . We could also

explain the partition of SBP (ΩAPED) that was previously observed by means of computer

experiments. It is noticeable that we can use our analytical tools to deduce some previous

results that were obtained by numerical methods and massive computer simulations.
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6 Concluding Remarks
We have developed an algebraic methodology for the analysis of network models of bio-

logical homochirality. The methodology is based on:

1. An algebraic criterion that seems to characterize the steady states that produce

chiral amplification. We claim that our criterion, the MM-Condition, characterizes

the hyperbolic steady states that (locally) produce mirror-symmetry breaking. We

have decided to replace the hyperbolicity condition by the non-singularity condition,

which is semialgebraic.

2. Relaxing the hyperbolicity condition makes our notion of symmetry-breaking state

becomes a more comprehensive notion, and it also makes it becomes an effective

notion. Given a pseudochiral network we can effectively compute a semialgebraic

definition of the set of symmetry-breaking states. The latter semialgebraic definition

is the conjunction of the steady state conditions, the positivity conditions, the non-

singularity condition and the Hurwtiz-Routh inequalities asserting that A − B is

unstable.

3. We have reduced the stability analysis of pseudochiral networks of order k, to the

stability analysis of two k×k symbolic matrices. The latter represents an important

reduction in the dimension of the problem. Take into account that we want to track

the evolution of 2k species, and it means that the symbolic Jacobian that we have

to analyze is of order 2k × 2k.

We could use our mathematical machinery to analyze a complex model of biological

homochirality. We think that it is the first time that this model is analyzed with this

level of rigor and detail, and using an uniform methodology based on non-linear algebra

and the MM-Condition. We claim that any network model can be fully analyzed using

the aforementioned methodology. We think that a fine-grained understanding of the sets

of parameter values that give place to symmetry-breaking states can shed some light on

the origin and mechanisms of biological homochirality.

Acknowledgement: The authors thank the financial support provided by COLCIENCIAS
under the project number 110171250639, contract 463-2016. We also thank Universidad
Nacional de Colombia and specially the financial support provided by DIB Universidad
Nacional de Colombia project HERMES-44048. We would like to thank Jesus Agreda
who asked us some questions that were the origin of these investigations.

-27-



References
[1] J. Agreda, R. Bourdon, E. Cruz, C. Mejia, A. Montoya, On the stability analysis

of chiral networks and the emergence of homochirality, MATCH Commun. Math.
Comput. Chem. 80 (2018) 311–344.

[2] J. Agreda, C. Mejia, J. A. Montoya, On the linear algebra of biological homochirality,
J. Math. Chem. 56 (2018) 1782–1810.

[3] H. Bersini, D. Kondepudi, R. Plasson, Emergence of homochirality in far-from-
equilibrium systems: Mechanisms and role in prebiotic chemistry, Chirality 19 (2007)
589–600.

[4] C. Frank, On spontaneous asymmetric synthesis, Biochim. Biophys. Acta 11 (1953)
459–463.

[5] K. Iwamoto, Spontaneous appearance of chirally asymmetric steady states in a re-
action model including imperfectly stereoselective, chirally autocatalytic reactions,
Phys. Chem. Chem. Phys. 4 (2002) 3975–3979.

[6] D. Kondepudi, G. Nelson, Chiral symmetry breaking in nonequilibrium systems,
Phys. Rev. Lett. 50 (1983) 1023–1026.

[7] C. Mejia, J. Andres Montoya, Linear programming and the algorithmic analysis of
chiral networks, Available at research gate.

[8] R. Plasson, H. Bersini, A. Commeyras, Recycling Frank: spontaneous emergence
of homochirality in noncatalytic systems, Proc. Natl. Acad. Sci USA 101 (2004)
16733–16738.

[9] J. Ribó, D. Hochberg, J. Crusats, Z. El-Hachemi, A. Moyano, Spontaneous mirror
symmetry breaking and origin of biological homochirality, J. R. Soc. Interface 14
(2017) #20170699.

[10] E. Routh, A Treatise on the Stability of a Given State of Motion: Particularly Steady
Motion, Macmillan, New York, 1877.

[11] K. Soai, T. Shibata, H. Morioka, K. Choji, Asymmetric autocatalysis and amplifica-
tion of enantiomeric excess of a chiral molecule, Nature 378 (1975) 767–768.

[12] C. Viedma, Chiral Symmetry breaking during crystallization: Complete chiral purity
induced by nonlinear autocatalysis and recycling, Phys. Rev. Lett. 94 (2005) #65504.

-28-


