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Abstract

Recently, Furtula et al. found that the symmetric division deg (SDD) index is a
potentially useful molecular descriptor in structure-property and structure-activity
relationships studies. In this paper, we determine the n-vertex trees with the second
and the third for n ≥ 7, and the fourth for n ≥ 11 minimum SDD indices, unicyclic
graphs with the first for n ≥ 3, the second and the third for n ≥ 5, and the fourth
for n ≥ 8 minimum SDD indices, and bicyclic graphs with the first for n ≥ 4, the
second for n ≥ 6, and the third for n ≥ 7 minimum SDD indices. In addition, we
establish an upper bound for the n-vertex chemical trees (the trees with maximum
degree no more than four).

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G), where

|V (G)| = n and |E(G)| = m. A graph G is said to be a tree, a unicyclic graph, and

a bicyclic graph if and only if m = n − 1, n, and n + 1, respectively. For each vertex

u ∈ V (G), let du be the degree of vertex u. The maximum degree of G is denoted by

∆(G).

Topological indices play an important role in mathematical chemistry especially in the

QSPR/QSAR investigations [1,4,9,10,12,13]. Various topological indices are introduced
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to characterize the physical-chemical properties of molecules [12]. In 2010, Vukičević

and Gašperov [16] proposed 148 discrete Adriatic indices and evaluated their predictive

properties against the benchmark dataset of the International Academy of Mathematical

Chemistry [11]. Among them, just 20 indices were selected as significant predictors of

physical-chemical properties.

The symmetric division deg index, which was selected in [16] as a significant predictor

of total surface area of polychlorobiphenyls and for which the extremal graphs obtained

with the help of MathChem [15] have a particularly simple and elegant structure, is defined

as

SDD(G) =
∑

uv∈E(G)

(
du
dv

+
dv
du

)
.

In 2014, Vasilyev [14] gave some lower and upper bounds of this index in some classes

of graphs and determined the corresponding extremal graphs. Recently, Furtula et al. [6]

found that SDD index deserves to be considered as a viable and applicable topological

index, whose quality exceeds that of some popular topological indices. For some mathe-

matically oriented investigations, the readers are referred to the works [7, 8, 14].

Recall that a pendent edge is an edge incident with a vertex of degree one, whereas a

path u1u2 . . . ul is said to be a pendent path at u1 if du1 ≥ 3, dui
= 2 for i = 2, . . . , l − 1,

and dul
= 1. It should be stressed that the number of pendent paths is an important graph

invariant in studying the extremal graphs [2, 3]. For convenience, we use k to denote the

number of pendent paths in G.

In this paper, we determine the n-vertex trees with the second and the third for n ≥ 7,

and the fourth for n ≥ 11 minimum SDD indices, unicyclic graphs with the first for n ≥ 3,

the second and the third for n ≥ 5, and the fourth for n ≥ 8 minimum SDD indices, and

bicyclic graphs with the first for n ≥ 4, the second for n ≥ 6, and the third for n ≥ 7

minimum SDD indices. Besides, we establish an upper bound for the n-vertex chemical

trees.

2 Preliminaries

For any edge uv of G, du
dv
+ dv

du
≥ 2 with equality if and only if du = dv. In our following

proof, we will use this fact frequently.
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Lemma 1. If there are k pendent paths in a graph G, then

SDD(G) ≥ 2

3
k + 2|E(G)|.

Proof. For any edge uv of G, when du is fixed, as a function on dv, du
dv

+ dv
du

is increasing

for du ≤ dv ≤ ∆(G). Then the edge of a path with length 1 contributes to SDD(G) at

least 1
3
+ 3 > 2

3
+ 2, and the edges of a pendent path with length m ≥ 2 contributes to

SDD(G) at least (1
2
+ 2) + (2

2
+ 2

2
)(m− 2) + (2

3
+ 3

2
) = 2

3
+ 2m. Therefore, the edges of a

pendent path with length m ≥ 1 contributes to SDD(G) at least 2
3
+2m. Note that there

are k pendent paths in G, then we have SDD(G) ≥ 2
3
k + 2|E(G)|.

3 SDD indices of trees

It follows from [14] that the path Pn is the unique tree with the minimum SDD index

among the n-vertex trees. In this section, we will determine the n-vertex trees with the

second and the third for n ≥ 7, and the fourth for n ≥ 11 minimum SDD indices. Finally,

we will give an upper bound for the n-vertex chemical trees.

Theorem 2. Among the set of n-vertex trees,

(i) for n ≥ 7, the trees with a single vertex of maximum degree three, adjacent to three

vertices of degree two are the unique trees with the second minimum SDD index,

which is equal to 2n.

(ii) the trees of order n ≥ 7 with a single vertex of maximum degree three, adjacent to

one vertex of degree one and two vertices of degree two, and the trees of order n ≥ 10

with exactly two adjacent vertices of maximum degree three, each adjacent to two

vertices of degree two are the unique trees with the third minimum SDD index, which

is equal to 2n+ 2
3
.

(iii) for n ≥ 11, the trees with exactly two vertices of maximum degree three, each adjacent

to three vertices of degree two are the unique trees with the fourth minimum SDD

index, which is equal to 2n+ 1.

Proof. Let G be an n-vertex tree different from Pn, where n ≥ 7. Then there are at least

three pendent paths in G, that is, k ≥ 3.
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Figure 1. Examples of the trees in Theorem 2 (i)-(iii) with smallest numbers of
vertices.

If k = 3, then there is only one vertex with maximum degree three in G. In this

case, if G is a tree with a single vertex of maximum degree three, adjacent to two vertices

of degree one and one vertex of degree two, then SDD(G) =
(
1
3
+ 3

)
× 2 +

(
2
3
+ 3

2

)
+(

1
2
+ 2

)
+ 2(n − 5) = 2n + 4

3
> 2n + 1. If G is a tree with a single vertex of maximum

degree three, adjacent to one vertex of degree one and two vertices of degree two, then

SDD(G) =
(
1
3
+ 3

)
+
(
2
3
+ 3

2

)
× 2 +

(
1
2
+ 2

)
× 2 + 2(n− 6) = 2n + 2

3
. If G is a tree with

a single vertex of maximum degree three, adjacent to three vertices of degree two, then

SDD(G) =
(
2
3
+ 3

2

)
× 3 +

(
1
2
+ 2

)
× 3 + 2(n− 7) = 2n.

If k = 4, then we need to consider the following two cases: (1) there is only one

vertex of maximum degree four and other vertices are of degree one or two in G; (2)

there are exactly two vertices of maximum degree three in G. If (1) is true, note that(
1
4
+ 4

)
+
(
2
2
+ 2

2

)
>

(
2
4
+ 4

2

)
+
(
1
2
+ 2

)
, then we obtain

SDD(G) ≥
(
2

4
+

4

2
+

1

2
+ 2

)
× 4 + 2(n− 9) = 2n+ 2 > 2n+ 1.

Next, we assume that (2) is true. For convenience, the two vertices of degree three in G

are denoted by u and v, respectively. Note that
(
1
3
+ 3

)
+
(
2
2
+ 2

2

)
>

(
2
3
+ 3

2

)
+
(
1
2
+ 2

)
.

If there is at least one pendent path of length one in G, then we have

SDD(G) ≥
(
2

3
+

3

2
+

1

2
+ 2

)
× 3 +

(1
3
+ 3

)
+ 2(n− 8) = 2n+

4

3
> 2n+ 1.

If all the four pendent paths of G are of length at least two, then we need to consider

the relation between u and v. If u and v are adjacent, then n ≥ 10 and SDD(G) =
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(
2
3
+ 3

2
+ 1

2
+ 2

)
× 4 + 2(n − 9) = 2n + 2

3
. If u and v are non-adjacent, then n ≥ 11 and

SDD(G) =
(
2
3
+ 3

2

)
× 6 +

(
1
2
+ 2

)
× 4 + 2(n− 11) = 2n+ 1.

If k ≥ 5, then it follows immediately by Lemma 1 that

SDD(G) ≥ 2

3
k + 2(n− 1) ≥ 2

3
× 5 + 2(n− 1) = 2n+

4

3
> 2n+ 1.

From the above arguments, the result follows easily (Fig. 1).

Similar to the proof technique used in [5], we will give an upper bound for the n-vertex

chemical trees.

Theorem 3. Let Tn be a chemical tree with n ≥ 4 vertices. Then,

SDD(Tn) ≤
27n+ 1

8
. (3.1)

Proof. Let us consider the following function

f(Tn) =
∑

uv∈E(Tn)

(
du
dv

+
dv
du

− 5

2

)
. (3.2)

Note that f(Tn) = SDD(Tn) − 5
2
(n − 1), then the following inequality is equivalent to

(3.1):

f(Tn) ≤
7(n+ 3)

8
. (3.3)

Denote αij =
i
j
+ j

i
− 5

2
. If there is some n and some chemical tree H ′

n with n vertices such

that f(H ′
n) >

7(n+3)
8

, then let Hn be the one with the smallest number of vertices among

these trees with minimal value of m12+m13. First, we will prove that m11(Hn)+m12(Hn)+

m13(Hn) = 0. Since m11(Hn) = 0, then we just need to prove m12(Hn) +m13(Hn) = 0.

In the opposite case, we consider one of the following two cases:

CASE 1: m12(Hn) > 0.

Let u be a vertex of degree two adjacent to the vertex v of degree one and vertex w

of degree greater than one. Note that m12(Hn − v) +m13(Hn − v) ≤ m12(Hn) +m13(Hn)

and n(Hn − v) < n(Hn), thus we have

f(Hn − v) ≤ 7[(n− 1) + 3]

8
<

7(n+ 3)

8
< f(Hn). (3.4)

On the other hand, since dw ≥ 2, then

f(Hn−v) = f(Hn)−α12−α2dw +α1dw = f(Hn)+
dw
2

− 1

dw
≥ f(Hn)+

1

2
> f(Hn), (3.5)
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a contradiction.

CASE 2: m13(Hn) > 0.

Let u be a vertex of degree three adjacent to vertex of degree one and vertices v

and w. Let H+
n be a tree obtained by adding one pendent vertex to u. Note that

m12(H
+
n ) +m13(H

+
n ) ≤ m12(Hn) +m13(Hn), but

f(H+
n ) = f(Hn) + α14 + (α14 − α13) + (α4dv − α3dv) + (α4dw − α3dw)

≥ 7(n+ 3)

8
α14 + (α14 − α13) + 2 min

1≤i≤4
(α4i − α3i)

=
7n+ 41

8

≥ 7[(n+ 1) + 3]

8
,

a contradiction.

Above all, we have m11(Hn) +m12(Hn) +m13(Hn) = 0. Note that

max
2≤i≤j≤4

αij + 2 ·
(
i−2
i

+ j−2
j

)
· α14

5
2
i−4

i
+

5
2
j−4

j

=
α24 + 2 ·

(
2−2
2

+ 4−2
4

)
· α14

5
2
·2−4

2
+

5
2
·4−4

4

=
α24 + α14

2
=

α14

2
.

(3.6)

Similar to the proof of the theorem in [5], we have

f(Hn) ≤
α14

2
(n1(Hn) + n2(Hn) + n3(Hn) + n4(Hn)− 5) + 4α14

=
α14

2
(n− 5) + 4α14

=
n+ 3

2
α14

=
7(n+ 3)

8
.

This proves the theorem.

It should be noted that this upper bound is tight. For the families of trees given in

Fig. 2, one can easily calculate that SDD(T ′
4k+5) =

17
4
(2k+4)+ 5

2
· 2k = 27

2
k+17 = 27n+1

8
.

Figure 2. Tree T ′
4k+5, k ≥ 1.
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4 SDD indices of unicyclic graphs
In this section, we will determine the n-vertex unicyclic graphs with the first for n ≥ 3,

the second and the third for n ≥ 5, and the fourth for n ≥ 8 minimum SDD indices.

Theorem 4. Among the set of n-vertex unicyclic graphs,

(i) for n ≥ 3, the cycle Cn is the unique graph with the minimum SDD index, which is

equal to 2n.

(ii) for n ≥ 5, the graphs with a single vertex of maximum degree three, adjacent to three

vertices of degree two are the unique graphs with the second minimum SDD index,

which is equal to 2n+ 1.

(iii) the graphs of order n ≥ 5 with a single vertex of maximum degree three, adjacent

to one vertex of degree one and two vertices of degree two, and the graphs of order

n ≥ 7 with exactly two adjacent vertices of maximum degree three, each adjacent to

two vertices of degree two are the unique graphs with the third minimum SDD index,

which is equal to 2n+ 5
3
.

(iv) the graphs of order n ≥ 8 with exactly two vertices of maximum degree three, each

adjacent to three vertices of degree two, and the graphs of order n ≥ 9 obtained by

attaching a path on at least two vertices to every vertex of a triangle are the graphs

with the fourth minimum SDD index, which is equal to 2n+ 2.

Proof. Let G be an n-vertex unicyclic graph, where n ≥ 3. If k = 0, then G = Cn and

SDD(G) = 2n.

If k = 1, then there is only a vertex of maximum three. In this case, if G is a graph

with a single vertex of maximum degree three, adjacent to three vertices of degree two,

then n ≥ 5 and SDD(G) =
(
2
3
+ 3

2

)
× 3+

(
1
2
+2

)
+2(n− 4) = 2n+1. If G is a graph with

a single vertex of maximum degree three, adjacent to one vertex of degree one and two

vertices of degree two, then n ≥ 4 and SDD(G) =
(
2
3
+ 3

2

)
×2+

(
1
3
+3

)
+2(n−3) = 2n+ 5

3
.

If k = 2, then we need to consider the following two cases: (I) there is only one vertex

on the cycle of G with maximum degree four and other vertices of G are of degree one

or two. (II) there are exactly two vertices with maximum degree three in G. Note that(
1
4
+ 4

)
+
(
2
2
+ 2

2

)
>

(
2
4
+ 4

2

)
+
(
1
2
+ 2

)
. If (I) is satisfied, then we have

SDD(G) ≥
(
2

4
+

4

2
+

1

2
+ 2

)
× 2 +

(
2

4
+

4

2

)
× 2 + 2(n− 6) = 2n+ 3 > 2n+ 2.
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Now, we assume that (II) is satisfied. For convenience, the two vertices of degree three in

G are denoted by u and v, respectively. If the two pendent paths are all of length one in

G, then

SDD(G) ≥
(
1

3
+ 3

)
× 2 + 2(n− 2) = 2n+

8

3
> 2n+ 2.

If there is only one pendent path of length one in G, then there are at least three edges

in G connecting vertices of degree two and three. Together with the two pendent edges

in G, we obtain

SDD(G) ≥
(
2

3
+

3

2

)
× 3 +

(
1

2
+ 2

)
+

(
1

3
+ 3

)
+ 2(n− 5) = 2n+

7

3
> 2n+ 2.

Otherwise, the two pendent paths are of length at least two. When u and v are

adjacent, we have n ≥ 7 and SDD(G) =
(
2
3
+ 3

2

)
×4+

(
1
2
+2

)
×2+

(
3
3
+ 3

3

)
+2(n−7) = 2n+ 5

3
.

When u and v are non-adjacent, we have n ≥ 8 and SDD(G) =
(
2
3
+ 3

2

)
× 6 +

(
1
2
+ 2

)
×

2 + 2(n− 8) = 2n+ 2.

If k = 3, then we need to consider two cases: (1) there is at least one pendent path of

length one in G, then

SDD(G) ≥
(
1

3
+ 3

)
+

(
2

3
+

3

2
+

1

2
+ 2

)
× 2 + 2(n− 5) = 2n+

8

3
> 2n+ 2.

(2) there is no pendent path of length one in G. In this case, if there is a pendent path

at the vertex of degree at least four, then

SDD(G) ≥
(
1

2
+ 2 +

4

2
+

2

4

)
+

(
2

3
+

3

2
+

1

2
+ 2

)
× 2 + 2(n− 6) = 2n+

7

3
> 2n+ 2.

Otherwise, ∆(G) = 3. Assume that the three pendent paths in G are all at the vertices,

say x, y, z, of degree three. If at most two pairs of vertices x, y, z are adjacent, then

one can see that there are at least five edges connecting vertices of degree two and three.

Note that there are three pendent edges in G, then we have

SDD(G) ≥
(
2

3
+

3

2

)
× 5 +

(
1

2
+ 2

)
× 3 + 2(n− 8) = 2n+

7

3
> 2n+ 2. (4.7)

If x, y, z are pairwise adjacent, then G is a graph formed by attaching a path on at least

two vertices to every vertex of a triangle. Hence, n ≥ 9 and SDD(G) =
(
2
3
+ 3

2

)
×3+

(
1
2
+

2
)
× 3 +

(
3
3
+ 3

3

)
× 3 + 2(n− 9) = 2n+ 2.

If k ≥ 4, then by Lemma 1, we have

SDD(G) ≥ 2

3
k + 2n ≥ 2

3
× 4 + 2n = 2n+

8

3
> 2n+ 2.

From the above arguments, the result follows easily (see Fig. 3).
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Figure 3. Examples of the unicyclic graphs in Theorem 4 (i)-(iv) with smallest
numbers of vertices.

5 SDD indices of bicyclic graphs
In this section, we will determine the n-vertex bicyclic graphs with the first for n ≥ 4,

the second for n ≥ 6, and the third for n ≥ 7 minimum SDD indices. For convenience,

we use some notations to denote some classes of bicyclic graphs as follows:

B1
1(n): the set of bicyclic graphs obtained from Cn by adding an edge, where n ≥ 4.

B2
1(n): the set of bicyclic graphs obtained by joining two vertex-disjoint cycles Ca and

Cb with a+ b = n by an edge, where n ≥ 6.

B2(n): the set of bicyclic graphs obtained from Ca = v0v1 . . . va−1 with 4 ≤ a ≤ n− 2

by joining v0 and v2 by an edge, and attaching a path on n− a vertices to v1.

B1
3(n): the set of bicyclic graphs obtained by joining two non-adjacent vertices of Ca

with 4 ≤ a ≤ n− 1 by a path of length n− a+ 1, where n ≥ 5.

B2
3(n): the set of bicyclic graphs obtained by joining two non-adjacent cycles Ca and

Cb with a+ b < n by a path of length n− a− b+ 1, where n ≥ 7.

B4(n): the set of bicyclic graphs obtained by attaching a path on at least two vertices

to the two vertices of degree two of the unique 4-vertex bicyclic graph, where n ≥ 8.

B1
5(n): the set of bicyclic graphs obtained from a graph in B1

1(k) with k ≥ 5 or B2
1(k)

with k ≥ 6 by attaching a path on n − k ≥ 2 vertices to a vertex of degree two, whose

two neighbors are of degree two and three, where n ≥ 7.

B2
5(n): the set of bicyclic graphs obtained from a graph in B1

3(k) with k ≥ 5 or B2
3(k)

with k ≥ 7 by attaching a path on n − k ≥ 2 vertices to a vertex of degree two, whose

two neighbors are both of degree three, where n ≥ 7.

B6(n): the set of bicyclic graphs obtained from Cn−1 = v0v1 . . . vn−2 by joining v0 and
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v2 by an edge, and attaching a vertex of degree one to v1, where n ≥ 5.

Theorem 5. Among the set of n-vertex bicyclic graphs,

(i) the graphs in B1
1(n) for n ≥ 4 and the graphs in B2

1(n) for n ≥ 6 are the unique

graphs with the minimum SDD index, which is equal to 2n+ 8
3
.

(ii) the graphs in B2(n) ∪ B1
3(n) for n ≥ 6 and the graphs in B2

3(n) for n ≥ 7 are the

unique graphs with the second minimum SDD index, which is equal to 2n+ 3.

(iii) the graphs in B1
5(n) ∪ B2

5(n) for n ≥ 7 and the graphs in B4(n) for n ≥ 8 are the

unique graphs with the third minimum SDD index, which is equal to 2n+ 10
3

.

Proof. Let G be an n-vertex bicyclic graph, where n ≥ 4.

If k = 0, then 3 ≤ ∆ ≤ 4. If G ∈ B1
1(n) or G ∈ B2

1(n) with n ≥ 6, then SDD(G) =(
2
3
+ 3

2

)
× 4+ 2(n− 3) = 2n+ 8

3
. If G ∈ B1

3(n) with n ≥ 5 or G ∈ B2
3(n) with n ≥ 7, then

SDD(G) =
(
2
3
+ 3

2

)
× 6 + 2(n− 5) = 2n+ 3. If G is a graph obtained by identifying one

vertex of two cycles, then SDD(G) =
(
2
4
+ 4

2

)
× 4 + +2(n− 3) = 2n+ 4 > 2n+ 10

3
.

If k = 1, then 3 ≤ ∆ ≤ 5 and we need to consider the following two cases: (a) this

pendent path is of length one, (b) the pendent path is of length at least two. If (a) holds

and ∆ = 4, 5, then there are at least two edges in G connecting vertices of degree two

and ∆. Together with the single pendent edge in G, we have

SDD(G) ≥
(
2

∆
+

∆

2

)
× 2 +

(
1

3
+ 3

)
+ 2(n− 2)

≥
(
2

4
+

4

2

)
× 2 +

(
1

3
+ 3

)
+ 2(n− 2)

= 2n+
13

3

> 2n+
10

3
.

If (a) holds and ∆ = 3, then there are exactly three vertices, say x, y, z, of degree three in

G. Suppose that at most two pairs of vertices x, y, z are adjacent, then there are at least

four edges in G connecting vertices of degree two and three. Together with the unique

pendent edge in G, we obtain

SDD(G) ≥
(
2

3
+

3

2

)
× 4 +

(
1

3
+ 3

)
+ 2(n− 4) = 2n+ 4 > 2n+

10

3
.

Suppose that x, y, z are pairwise adjacent, then G = B6(n) with n ≥ 5 and

SDD(G) ≥
(
2

3
+

3

2

)
× 2 +

(
1

3
+ 3

)
+ 2(n− 2) = 2n+

11

3
> 2n+

10

3
.
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If (b) holds and ∆ = 4, 5, then there are at least three edges in G connecting of degree
two and ∆. Consider the single pendent edge in G, then we have

SDD(G) ≥
(
2

∆
+

∆

2

)
× 3 +

(
1

2
+ 2

)
+ 2(n− 3)

≥
(
2

4
+

4

2

)
× 3 +

(
1

2
+ 2

)
+ 2(n− 3)

= 2n+ 4

> 2n+
10

3
.

If (b) holds and ∆ = 3, then there are three vertices, say u1, u2, u3, of degree three in
G. Assume that at most one pair of vertices u1, u2, u3 is adjacent, then one can see that
there are at least seven edges connecting vertices of degree two and three. Note that there
is a pendent edge in G, we have

SDD(G) ≥
(
2

3
+

3

2

)
× 7 +

(
1

2
+ 2

)
+ 2(n− 7) = 2n+

11

3
> 2n+

10

3
.

Assume that there are two pairs of vertices u1, u2, u3 are adjacent, then G ∈ B1
5(n) or

G ∈ B2
5(n) with n ≥ 7, and

SDD(G) =

(
2

3
+

3

2

)
× 5 +

(
1

2
+ 2

)
+ 2(n− 5) = 2n+

10

3
.

Suppose that u1, u2, u3 are pairwise adjacent, then G ∈ B2(n) with n ≥ 6, and

SDD(G) =

(
2

3
+

3

2

)
× 3 +

(
1

2
+ 2

)
+ 2(n− 3) = 2n+ 3.

If k = 2, then 3 ≤ ∆ ≤ 6. Suppose that 4 ≤ ∆ ≤ 6, then there are at least two edges

in G connecting vertices of degree two and ∆. Note that there are two pendent paths in

G, then we have

SDD(G) ≥
(
2

∆
+

∆

2

)
× 2 +

(
1

2
+ 2 +

2

3
+

3

2

)
× 2 + 2(n− 5)

≥
(
2

4
+

4

2

)
× 2 +

(
1

2
+ 2 +

2

3
+

3

2

)
× 2 + 2(n− 5)

= 2n+
13

3

> 2n+
10

3
.

Suppose that ∆ = 3, then there are exactly four vertices, say v1, v2, v3, v4, of degree three

in G. If there is at least one pendent path of length one, then

SDD(G) ≥
(
1

3
+ 3

)
+

(
1

2
+ 2 +

2

3
+

3

2

)
+ 2(n− 2) = 2n+ 4 > 2n+

10

3
.
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Otherwise, the two pendent paths are of length at least two. Since G is a bicyclic graph,

then at most five pairs of vertices v1, v2, v3, v4 are adjacent. Suppose that at most four

pairs of v1, v2, v3, v4 are adjacent, then there are at least four edges in G connecting

vertices of degree two and three. Consider the two pendent edges in G, then we have

SDD(G) ≥
(
2

3
+

3

2

)
× 4 +

(
1

2
+ 2

)
× 2 + 2(n− 5) = 2n+

11

3
> 2n+

10

3
.

Suppose that there are five pairs of vertices of v1, v2, v3, v4 are adjacent, then G ∈ B4(n)

with n ≥ 8, and

SDD(G) =

(
2

3
+

3

2

)
× 2 +

(
1

2
+ 2

)
× 2 + 2(n− 3) = 2n+

10

3
.

If k ≥ 3, then by Lemma 1, we have

SDD(G) ≥ 2

3
k + 2(n+ 1) ≥ 2

3
× 3 + 2(n+ 1) = 2n+ 4 > 2n+

10

3
.

From the above arguments, the result follows easily (see Fig. 4).

Figure 4. Examples of the bicyclic graphs in Theorem 5 (i)-(iii) with smallest num-
bers of vertices.
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