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Abstract

In this paper, we first determine the order of caterpillar trees (Gutman trees)
in terms of the Hosoya index, and then by using a connection between the Hosoya
index of caterpillar trees and the number of Kekulé structures of hexagonal chains,
polyomino chains, square-hexagonal chains and pentagonal chains, we present the
first ten hexagonal chains, polyomino chains, square-hexagonal chains and pentag-
onal chains with the minimal numbers of Kekulé structures, the first five hexagonal
chains, polyomino chains, square-hexagonal chains with the maximal numbers of
Kekulé structures among all of these polycyclic molecules with given number of
polygons, respectively.

1 Introduction

Kekulé structures have been used in organic chemistry since Kekulé proposed a hexagonal

structure for benzene. In the theory of benzenoid hydrocarbons [2], Kekulé structures

play a significant role, and the number of Kekulé structures in benzenoid hydrocarbons

is a most important quantity because the stability and many other properties of these

hydrocarbons have been found to correlate with the number of Kekulé structures, and is

often used for predicting physical properties and chemical behavior thereof. The Kekulé

structures and various Kekulé-structure-based properties of benzenoid molecules have
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been extensively studied in the past, and many papers have appeared on the problems of

the enumeration of Kekulé structures, for details see [1–3, 5–7, 12–14].

Kekulé structures of a molecule graph G = (V,E) is a set of pairwise disjoint edges of

G that cover all vertices. Denote by K(G) the number of Kekulé structures of a molecule

graph G. The Kekulé structures are also known as perfect matchings or 1-factors in graph

theory. For a general background on matching theory and terminology we refer the reader

to the classical monograph by Lovász and Plummer [11].

For a molecule graph G = (V,E), we denote by m(G, t) the number of ways in which

t mutually independent edges can be selected in G. Thus, m(G, 1) is equal to the number

of edges of G. If n = |V | is even, then m(G, n
2
) is the number K(G) of Kekulé structures

of G. The number of matchings of G is called the Hosoya index [8] and be denoted by

Z(G), i.e., Z(G) =
bn
2
c∑

t=0

m(G, t), where m(G, 0) = 1.

In 1977, Gutman [4] discovered a curious relation between the sextet polynomial of a

hexagonal chain and the matching polynomial of a caterpillar tree (also named as Gutman

tree). This result implied that, for a hexagonal chain G, there exists a corresponding

caterpillar tree T such that the number of Kekulé structures of G is equal to the Hosoya

index of T . For some related results, see [9,17]. More recently, Li and Yan in [10] proved

a similar result for polyomino chains. Xiao and Chen in [15] proved that there exists a

caterpillar tree T such that the number of Kekulé structures of square-hexagonal chains

is equal to the Hosoya index of T . Xiao, Chen and Raigorodskii [16] showed that for a

pentagonal chain G with even number of pentagons, there exists a caterpillar tree T such

that the number of Kekulé structures of G is equal to the Hosoya index of T . This result

can be generalized to any polygonal chain with even number of odd polygons.

Based on the relation above between the Hosoya index of a caterpillar tree and the

number of Kekulé structures of many polycyclic molecules, we will first order the cater-

pillar trees with given number of edges by their Hosoya indices, and then present the first

few hexagonal chains, polyomino chains, square-hexagonal chains and pentagonal chains

with the minimal numbers and the maximal numbers of Kekulé structures among all of

these polycyclic molecules with given number of polygons, respectively.
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2 Ordering caterpillar trees by the Hosoya index

In this section, we are concerned with the ordering of caterpillar trees in terms of the

Hosoya index, and characterize the extremal caterpillar trees with the first ten minimal

Hosoya indices and the first five maximal Hosoya indices among all caterpillar trees with

n edges.

A caterpillar tree C with parameters k1, k2, · · · , kl is obtained by attaching ki pendent

vertices to the i-th vertex of Pl for i = 1, 2, · · · , l. This caterpillar tree will be denoted

by Cl(k1, k2, · · · , kl). It has k1 + k2 + · · · + kl + l vertices and k1 + k2 + · · · + kl + l − 1

edges. Specially, caterpillar trees Cn(0, 0, · · · , 0) and C1(n − 1) are the path Pn and the

star Sn on n vertices, and their Hosoya indices are 1√
5

[(
1+

√
5

2

)n+1

−
(

1−
√
5

2

)n+1
]

and n,

respectively.

The following properties, derived directly from the definition of the Hosoya index,

allow us to enumerate the number of matchings of a graph G by recursively reducing it.

Here G − e denotes the result of deleting an edge e from G but keeping its end-vertices,

while G− u− v denotes the graph obtained from G by deleting vertices u and v and all

edges incident with them.

Lemma 1. Let G be a graph and e its edge, connecting the vertices u and v. Then

Z(G) = Z(G− e) + Z(G− u− v).

Lemma 2. Let G be a graph with components G1, · · · , Gp. Then Z(G) = Z(G1) · · ·Z(Gp).

The following edge-lifting transformation can be easily obtained from Lemmas 1 and

2.

Lemma 3. (Edge-lifting transformation) Let G1 and G2 be two simple and non-trivial

connected graphs. If G is the graph obtained from G1 and G2 by adding an edge between

a vertex u of G1 and a vertex v0 of G2, G′ is the graph obtained by identifying u0 of G1

to v0 of G2 and adding a pendent edge to u0(v0), then Z(G) > Z(G′).

Using Lemma 3 (i.e., the edge-lifting transformation) repeatedly on a tree with n

vertices, we can deduce that the path Pn and the star Sn are the extremal trees with

the maximum Hosoya index and the minimum Hosoya index among all (caterpillar) trees
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with n vertices, respectively, i.e.,

n = Z(Sn) < Z(Cl(k1, k2, · · · , kl)) < Z(Pn) =
1√
5

(1 +
√
5

2

)n+1

−

(
1−

√
5

2

)n+1

(1)

if Cl(k1, k2, · · · , kl) is different from Pn and Sn, where k1 + k2 + · · ·+ kl + l = n.

In the following, we will consider the ordering of caterpillar trees in terms of the Hosoya

index and characterize the extremal trees with smaller Hosoya indices over all caterpillar

trees with n edges.

(I) Firstly, we consider the ordering of all caterpillar trees of form C2(i − 1, n − i)

in terms of the Hosoya index. Note that Cl(k1, k2, · · · , kl) ∼= Cl−1(k2 + 1, k3, · · · , kl) for

k1 = 0 and Cl(k1, k2, · · · , kl) ∼= Cl(kl, kl−1, · · · , k1), we may assume that 2 ≤ i ≤ bn
2
c. By

the definition of Hosoya index, we have

Z(C2(i− 1, n− i)) = 1 + n+ (i− 1)× (n− i) = −i2 + i× (n+ 1) + 1.

Obviously, g(i) = −i2+ i× (n+1)+1 is monotonically increasing for 2 ≤ i ≤ dn
2
e. So,

it achieves the minimum value at i = 2, and g(2) = 2n− 1, g(3) = 3n− 5, g(4) = 4n− 11,

g(5) = 5n− 19, g(6) = 6n− 29, · · · ,

g(2) < g(3) < g(4) < g(5) < g(6) < · · · < g(
⌈n
2

⌉
) (2)

i.e.,

Z(C2(1, n− 2)) < Z(C2(2, n− 3)) < · · · < Z(C2(
⌈n
2

⌉
− 1, n−

⌈n
2

⌉
)

and C2(1, n− 2) is the caterpillar tree with the minimum Hosoya index among all cater-

pillar trees C2(i− 1, n− i) with 2 ≤ 2 ≤ bn
2
c.

From the edge-lifting transformation, we know that the caterpillar tree with the second

minimal Hosoya index over all the caterpillar trees with n edges must be the form of

C2(i−1, n− i), where 2 ≤ 2 ≤ bn
2
c. So, C2(1, n−2) is the caterpillar tree with the second

minimal Hosoya index over all the caterpillar trees with n edges.

(II) Secondly, we consider the ordering of all caterpillar trees of form C3(i − 1, j −

1, n− i− j), where 2 ≤ i ≤ bn
2
c, j ≥ 1 and i+ j ≤ dn

2
e. By Lemmas 1 and 2, we have

Z(C3(i− 1, j − 1, n− i− j)) = 1 + n+ ij(n+ 1− i− j)− j.

Let f(x, y) = 1+n+xy(n+1−x−y)−y. Then Z(C3(i−1, j−1, n− i− j)) = f(i, j).
∂f
∂x

= y(n + 1 − 2x − y) > 0 and ∂f
∂y

= x(n + 1 − 2y − x) − 1 > 0 since 2 ≤ x ≤ bn
2
c and
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x+ y ≤ dn
2
e. So, f(i, j) < f(i+ 1, j) and f(i, j) < f(i, j + 1). Note that

f(2, 1) = 3n− 4, f(2, 2) = 5n− 13, f(2, 3) = 7n− 26, · · ·
f(3, 1) = 4n− 9, f(3, 2) = 7n− 25, f(3, 3) = 10n− 47, · · ·
f(4, 1) = 5n− 16, f(4, 2) = 9n− 41, · · · ,

we have
f(2, 1) < f(3, 1) < f(4, 1) < f(2, 2) < f(2, 3) < · · · (3)

and

Z(C3(1, 0, n− 3)) <Z(C3(2, 0, n− 4)) < Z(C3(3, 0, n− 5)) < Z(C3(1, 1, n− 4))

<Z(C3(1, 2, n− 5)) < · · · .

From the edge-lifting transformation, we know that the caterpillar tree with the third

minimal Hosoya index among all caterpillar trees with n edges must be the form of

C2(i−1, n−i) or C3(i−1, j−1, n−i−j). And Z(C2(1, n−2)) = 2n−1 < Z(C2(2, n−3)) =

3n − 6 < Z(C3(1, 0, n − 3)) = 3n − 4, it is showed that C2(2, n − 3) the caterpillar tree

with the third minimal Hosoya index among all caterpillar trees with n edges.

(III) Next, we consider all caterpillar trees of form C4(x−1, y−1, z−1, n−x−y−z),

where 2 ≤ x ≤ bn−1
2
c, y ≥ 1, z ≥ 1 and x+ y + z ≤ dn

2
e. By Lemmas 1 and 2, we have

Z(C4(x− 1, y − 1, z − 1, n− x− y − z)) = 1 + xy + (xyz + x+ z)(n+ 1− x− y − z).

Let ϕ(x, y, z) = 1 + xy + (xyz + x + z)(n + 1 − x − y − z) = Z(C4(x − 1, y − 1, z −

1, n− x− y − z)) = ϕ(x, y, z).

(i) If y = 1 and z = 1, then Z(C4(x − 1, y − 1, z − 1, n − x − y − z)) = ϕ(x, y, z) =

ϕ(x, 1, 1) = −2x2+(2n−2)x+n = σ(x). σ′(x) = 0 implies x = n−1
2

. Since 2 ≤ x ≤ bn−1
2
c,

we have ϕ(2, 1, 1) = 5n− 12 < ϕ(x, 1, 1) for 3 ≤ x ≤ bn−1
2
c.

(ii) If y ≥ 2 or z ≥ 2, then y+z ≥ 3. ϕ(x, y, z) = Z(C4(x−1, y−1, z−1, n−x−y−z)) >

Z(C3(x− 1, y + z − 1, n− x− y − z)) = f(x, y + z) ≥ f(2, 3) = 7n− 26.

From (i)-(ii), we know that ϕ(x, y, z) > ϕ(2, 1, 1) for (x, y, z) 6= (2, 1, 1), i.e., Z(C4(x−

1, y−1, z−1, n−x−y−z)) > Z(C4(1, 0, 0, n−4)) for (x, y, z) 6= (2, 1, 1). So, C4(1, 0, 0, n−4)

is the caterpillar tree with the minimum Hosoya index among all caterpillar trees of form

C4(x− 1, y − 1, z − 1, n− x− y − z).

Moreover, by the edge-lifting transformation, Z(Cl(k1, k2, · · · , kl)) > Z(C4(k1, k2, k3,

k4 + · · · + kl + n − 4)) for l ≥ 5. So, we can obtain the following result from Equations

(1) and (3).
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Theorem 4. Let G be a caterpillar tree with n ≥ 9 edges, and it does not belong to

{C1(n), C2(1, n − 2), C2(2, n − 3), C3(1, 0, n − 3), C2(3, n − 4), C3(2, 0, n − 4), C2(4, n −

5), C3(3, 0, n− 5), C3(1, 1, n− 4), C4(1, 0, 0, n− 4)}. Then Z(C1(n)) < Z(C2(1, n− 1)) <

Z(C2(2, n− 3)) < Z(C3(1, 0, n− 3)) < Z(C2(3, n− 4)) < Z(C3(2, 0, n− 4)) < Z(C2(4, n−

5)) < Z(C3(3, 0, n− 5)) < Z(C3(1, 1, n− 4)) < Z(C4(1, 0, 0, n− 4)) < Z(G).

Theorem 4 characterizes the caterpillar trees with the first ten minimal Hosoya index

among all caterpillar trees with n edges.

Next, we will characterize the caterpillar trees with larger Hosoya index over all cater-

pillar trees with n edges. From Equation (1), the path Pn+1 with n edges has the maximum

Hosoya index among all caterpillar trees with n edges, this number Z(Pn+1) is equal to

the (n+ 2)-th Fibonacci number.

The Fibonacci sequence is the sequence of integers F1, F2, F3, · · · , defined by means of

the recurrence relation

Fn+2 = Fn+1 + Fn

and by means of the initial conditions F1 = F2 = 1.

Lemma 5. For the Fibonacci sequence Fn, we have

(i) F1 + F2 + · · ·+ Fn = Fn+2 − F2;

(ii) F2t × Fn−2t+1 = Fn−1 + Fn−5 + Fn−9 + · · ·+ Fn−4(t−1)−1;

(iii) F2t+1 × Fn−2t = Fn−1 + Fn−5 + Fn−9 + · · ·+ Fn−4(t−1)−1 + Fn−4t.

Proof. (i) It can be easily proved and can be found in pertinent books.

We prove (ii)-(iii) by the inductive method.

For t = 1, F2 × Fn−1 = Fn−1 and F3 × Fn−2 = 2Fn−2 = Fn−1 + Fn−4.

For t = 2, F4 ×Fn−3 = 3Fn−1 = Fn−1 +Fn−5 and F5 ×Fn−4 = 5Fn−4 = Fn−1 +Fn−5 +

Fn−8.

Now, we assume that it is true for t. Then
F2t+2 × Fn−2t−1 =(F2t+1 + F2t)× Fn−2t−1

=F2t+1 × F(n−1)−2t + F2t × F(n−2)−2t+1

=Fn−2 + Fn−6 + Fn−10 + · · ·+ F(n−1)−4(t−1)−1 + F(n−1)−4t

+ Fn−3 + Fn−7 + Fn−11 + · · ·+ F(n−2)−4(t−1)−1

(by the inductive assumption)
=Fn−1 + Fn−5 + Fn−9 + · · ·+ Fn−4(t−1)−1 + Fn−4t−1
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and

F2t+3 × Fn−2t−2 =(F2t+1 + F2t+2)× Fn−2t−2

=F2t+1 × F(n−2)−2t + F2t+2 × F(n−1)−2t−1

=Fn−3 + Fn−7 + Fn−11 + · · ·+ F(n−2)−4(t−1)−1 + F(n−2)−4t

+ Fn−2 + Fn−6 + Fn−10 + · · ·+ F(n−1)−4(t−1)−1 + F(n−1)−4t−1

(by the inductive assumption)

=Fn−1 + Fn−5 + Fn−9 + · · ·+ Fn−4(t−1)−1 + Fn−4t−1 + Fn−4(t+1).

The proof is complete by the mathematical induction.

In order to find the caterpillar trees with larger Hosoya indices, we should focus on

the caterpillar trees with less leaves.

(I) We consider the ordering of all caterpillar trees with n ≥ 14 edges and exactly

three leaves in terms of the Hosoya index. Let k1 = · · · = ki−1 = ki+1 = · · · = kn = 0 and

ki = 1, where 2 ≤ i ≤ dn
2
e. Cn(k1, k2, · · · , kl) = Cn(0, · · · , 0, 1, 0, · · · , 0) is a caterpillar

tree with n edges and exactly three leaves. By Lemmas 1 and 2, we have

Z(Cn(0, ..., 0, 1, 0, ..., 0)) = Z(Pn) + Z(Pi−1)Z(Pn−i) = Fn+1 + Fi × Fn−i+1.

Let h(i) = Fn+1 + Fi × Fn−i+1 for a given n. By Lemma 5, we have

h(2) =Fn+1 + Fn−2 + Fn−3 = Fn+1 + Fn−1

h(4) =Fn+1 + Fn−2 + Fn−3 + Fn−6 + Fn−7 = Fn+1 + Fn−1 + Fn−5

h(6) =Fn+1 + Fn−2 + Fn−3 + Fn−6 + Fn−7 + Fn−10 + Fn−11 = Fn+1 + Fn−1 + Fn−5 + Fn−9

h(8) =Fn+1 + Fn−1 + Fn−5 + Fn−9 + Fn−13

...

and

h(2r + 2)− h(2r) = Fn−4r−2 + Fn−4r−3 = Fn−4r−1.

Thus,

h(2i) = Fn+1 + Fn−1 + Fn−5 + · · ·+ Fn−4i+3.
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h(3) =Fn+2 − Fn−3 = Fn+1 + Fn−1 + Fn−4

h(5) =Fn+2 − Fn−3 − Fn−7 = Fn+1 + Fn−1 + Fn−5 + Fn−8

h(7) =Fn+2 − Fn−3 − Fn−7 − Fn−11 = Fn+1 + Fn−1 + Fn−5 + Fn−9 + Fn−12

...

and

h(2r + 1)− h(2r − 1) = −Fn−4r − Fn−4r−1 = −Fn−4r+1.

Thus,

h(2i+ 1) = Fn+1 + Fn−1 + Fn−5 + · · ·+ Fn−4i+3 + Fn−4i.

So,

h(2) < h(4) < h(6) < h(8) < · · · < h(2bn+ 1

4
c),

h(3) > h(5) > h(7) > · · · > h(2bn− 1

4
c+ 1).

Since h(2bn−1
4
c+ 1) > h(2bn+1

4
c), we have

h(3) > h(5) > h(7) > · · · > h(6) > h(4) > h(2)

and we can obtain the ordering of all caterpillar trees with n edges and exactly three
leaves

Z(Cn(0, 0, 1, 0, · · · , 0)) > Z(Cn(0, 0, 0, 0, 1, 0, · · · , 0)) > Z(Cn(0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)) >
· · · > Z(Cn(0, 0, 0, 0, 0, 1, 0, · · · , 0)) > Z(Cn(0, 0, 0, 0, 1, 0, · · · , 0)) > Z(Cn(0, 1, 0, · · · , 0)). (4)

So, Cn(0, 0, 1, 0, · · · , 0) is the caterpillar tree with the maximum Hosoya index among

all caterpillar trees with n edges and exactly three leaves.

Note that the caterpillar tree with the second maximal Hosoya index among all the

caterpillar trees with n edges must contain exactly three leaves from the edge-lifting

transformation, Cn(0, 0, 1, 0, · · · , 0) is the caterpillar tree with the second maximal Hosoya

index among all caterpillar trees with n edges.

(II) We consider the ordering of caterpillar trees with n edges and exactly four leaves

in terms of the Hosoya index. In the following, we will show that Z(G) < h(9) for any

caterpillar tree G with n ≥ 17 edges and at least four leaves.

Let G = Cn−1(k1, k2, · · · , kn−1) be a caterpillar tree with n ≥ 17 edges and exactly

four leaves, where k1 + · · ·+ kn−1 = ki + kj = 2, 2 ≤ i ≤ bn
2
c and j ≥ i.
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(i) If j ≥ 8, then by the edge-lifting transformation,

Z(G) < Z(Cn(0, · · · , 0, k′
j+1, 0, · · · , 0)) = h(j + 1) ≤ h(9)

where k′
j+1 = 1.

(ii) If i = j ≤ 7, then by the edge-lifting transformation,

Z(G) < Z(Cn(0, · · · , 0, k′
i, 0, · · · , 0)) = h(i), where k′

i = 1

and Z(G) < Z(Cn(0, · · · , 0, k′
i+1, 0, · · · , 0)) = h(i+ 1), where k′

i+1 = 1

So, Z(G) < min{h(i), h(i+ 1)} ≤ h(8) < h(9) since i or i+ 1 is even.

(iii) If i 6= j ≤ 7, i is even or j is odd, then by the edge-lifting transformation,

Z(G) < Z(Cn(0, · · · , 0, k′
i, 0, · · · , 0)) = h(i) ≤ h(8) < h(9)

or

Z(G) < Z(Cn(0, · · · , 0, k′
j+1, 0, · · · , 0)) = h(j + 1) ≤ h(8) < h(9).

(iv) If i 6= j ≤ 7, i is odd and j is even, then (i, j) ∈ {(3, 4), (3, 6), (5, 6)}.

If i = 3 and j = 4, then by Lemmas 1 and 2, Z(G) = Z(Cn−1(0, 0, 1, 1, 0, · · · , 0)) =

Z(P4)Z(Pn−3) + Z(P2)Z(Pn−5) = F5 × Fn−2 + F3 × Fn−4 = 5Fn−2 + 2Fn−4. It can be

showed easily by the Fibonacci recurrence relation that 5Fn−2 + 2Fn−4 < Fn+1 + Fn−1 +

Fn−5 + Fn−9 + Fn−13 + Fn−16 = h(9). So, Z(G) < h(9).

If i = 3 and j = 6, then by Lemmas 1 and 2, Z(G) = Z(Cn−1(0, 0, 1, 0, 0, 1, 0, · · · , 0)) =

Z(Cn−2(0, 0, 1, 0, · · · , 0)) + Z(C5(0, 0, 1, 0, 0))× Z(Pn−7) = (Fn−1 + Fn−3 + Fn−6) + (F6 +

F4 + F1) × Fn−6 = Fn−1 + Fn−3 + 12Fn−6. By the Fibonacci recurrence relation, we can

show that Fn−1 + Fn−3 + 12Fn−6 < Fn+1 + Fn−1 + Fn−5 + Fn−9 + Fn−13 + Fn−16 = h(9).

So, Z(G) < h(9).

If i = 5 and j = 6, then by Lemmas 1 and 2, Z(G) = Z(P6)Z(Pn−5)+Z(P4)Z(Pn−7) =

F7 × Fn−4 + F5 × Fn−6 = 13Fn−4 + 5Fn−6. From the Fibonacci recurrence relation, it is

easily to prove that 13Fn−4+5Fn−6 < Fn+1+Fn−1+Fn−5+Fn−9+Fn−13+Fn−16 = h(9).

So, Z(G) < h(9).

From (i)-(iv), we know that Z(G) < h(9) for any caterpillar tree G with n ≥ 17 edges

and exactly four leaves.

Moreover, for a caterpillar tree G with n ≥ 17 edges and at least five leaves, by the

edge-lifting transformation, there is a caterpillar tree G′ with n edges and exactly four

leaves such that Z(G) < Z(G′).
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So, we can obtain the following result from Equation (4).

Theorem 6. Let G be a caterpillar tree with n ≥ 17 edges, different from Cn+1(0, · · · , 0),

Cn(0, 0, 1, 0, · · · , 0), Cn(0, 0, 0, 0, 1, 0, · · · , 0), Cn(0, 0, 0, 0, 0, 0, 1, 0, · · · , 0) and

Cn(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0). Then

Z(Cn+1(0, · · · , 0)) > Z(Cn(0, 0, 1, 0, · · · , 0)) > Z(Cn(0, 0, 0, 0, 1, 0, · · · , 0))

>Z(Cn(0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)) > Z(Cn(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0)) > Z(G)

Theorem 6 characterizes the caterpillar trees with the first five Hosoya indices among

all caterpillar trees with n ≥ 17 edges.

3 Applications

In this section, by using Theorems 4 and 6 and a connection between the Hosoya index

of caterpillar trees and the number of Kekulé structures of hexagonal chains, polyomino

chains, square-hexagonal chains and pentagonal chains, we will present the first ten hexag-

onal chains, polyomino chains, square-hexagonal chains and pentagonal chains with the

minimal numbers of Kekulé structures, the first five hexagonal chains, polyomino chains,

square-hexagonal chains with the maximal numbers of Kekulé structures among all of

these polycyclic molecules with given number of polygons, respectively.

3.1 Ordering unbranched catacondensed benzenoid hydrocar-
bons by the number of Kekulé structures

A hexagonal chain or unbranched catacondensed benzenoid hydrocarbon is a benzenoid

system in which no hexagon has more than two neighbors.

As in [4,9], the Kekulé structure count of a hexagonal chain was shown to be equal to

the Hosoya index of the corresponding caterpillar tree.

For a hexagonal chain G with n hexagons c1, c2, · · · , cn, where the hexagons are num-

bered successively. That is, the hexagon ci (1 < i < n) is neighbouring to the hexagons

ci−1 and ci+1. Then it is easy to see that a hexagon in G with exactly two neighbours

is concatenated in one of the two modes: (i) a linear mode–a hexagon adjacent to two

hexagons in which the common edges are parallel, called linearly annelated (L-mode);

(ii) an angular mode–a hexagon adjacent to two hexagons in which the common edges
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are not parallel, called angularly annelated (A-mode). With a hexagonal chain G hav-

ing n hexagons, we associate a n-tuple (S1, S2, · · · , Sn) of symbols L and A, called the

{L,A}-sequence of the hexagonal chain G as follows. We define S1 = Sn = L and for

1 < i < n, Si = L if the i-th hexagon of G is linearly annelated and Si = A if the i-th

hexagon of G is angularly annelated. We often use the {L,A}-sequence of a hexagonal

chain G instead of the graph G.

The general form of the {L,A}-sequence of a hexagonal chain with n hexagon in which

there are t− 1 angularly annelated hexagons is

Lk1ALk2ALk3A · · ·Lkt−1ALkt

where ki is the number of L-mode hexagons lying between the (i−1)-th and i-th angularly

annelated hexagon, i = 2, · · · , t − 1, whereas k1 and kt are, respectively, the number of

the L-mode hexagons before the first and after the last A-mode hexagon. Therefore,

k1, kt ≥ 1, k2, · · · , kt−1 ≥ 0 and

k1 + k2 + · · ·+ kt + (t− 1) = n.

The corresponding caterpillar tree is Ct(k1, k2, · · · , kt).

A result obtained in [4, 9] is the following:
Lemma 7. [4,9] If G is a hexagonal chain whose {L,A}-sequence is Lk1ALk2A · · ·Lkt−1ALkt,
then the number K(G) of its Kekulé structures is equal to the Hosoya index of the caterpillar
tree Ct(k1, k2, · · · , kt).

By Lemma 7, Theorems 4 and 6, we can characterize the first ten hexagonal chains

with the minimal numbers of Kekulé structures and the first five hexagonal chains with the

maximal numbers of Kekulé structures among all of hexagonal chains with given number

of hexagons, respectively.

Theorem 8. Let G be a hexagonal chain with n ≥ 9 hexagons, and its {L,A}-sequence is

different from Ln, LALn−2, L2ALn−3, LA2Ln−3, L3ALn−4, L2A2Ln−4, L4ALn−5, L3A2Ln−5,

LALALn−4, LA3Ln−4. Then K(Ln) < K(LALn−2) < K(L2ALn−3) < K(LA2Ln−3) <

K(L3ALn−4) < K(L2A2Ln−4) < K(L4ALn−5) < K(L3A2Ln−5) < K(LALALn−4) <

K(LA3Ln−4) < K(G).

Theorem 9. Let G be a hexagonal chain with n ≥ 17 hexagons, and its {L,A}-sequence

is different from LAn−2L,LALAn−4L,LA3LAn−6L,LA5LAn−8L,LA7LAn−10L. Then

K(LAn−2L) > K(LALAn−4L) > K(LA3LAn−6L) > K(LA5LAn−8L) >

K(LA7LAn−10L) > K(G).
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3.2 Ordering polyomino chains by the number of Kekulé struc-
tures

A polyomino system is a finite 2-connected plane graph such that each interior face is

surrounded by a regular square of length one. A polyomino chain is a polyomino system

in which no square has more than two neighbors.

As in [10], the Kekulé structure count of a polyomino chain was shown to be equal to

the Hosoya index of the corresponding caterpillar tree.

A squares of a polyomino chain with n squares may be annelated in only three ways:

Each chain possesses exactly two terminal squares whereas all other squares are annelated

either linearly (L) or angularly (A). With a polyomino chain G having n squares, we can

also associate a n-tuple (S1, S2, · · · , Sn) of symbols L and A, called the {L,A}-sequence

of the polyomino chain G as follows. We define S1 = Sn = L and for 1 < i < n, Si = L if

the i-th square of G is linearly annelated and Si = A if the i-th square of G is angularly

annelated.

The general form of the {L,A}-sequence of a polyomino chain G with n squares in

which there are t+ 1 linearly annelated squares is

LAk1LAk2LAk3L · · ·AktL

where ki is the number of A-mode squares lying between the i-th and i + 1-th linearly

annelated square, ki ≥ 0, i = 1, 2, · · · , t and

k1 + k2 + · · ·+ kt + t+ 1 = n.

The corresponding caterpillar tree Ct(k1+1, k2, · · · , kt−1, kt) from the construction method

in [10], and the result obtained in [10] is the following:

Lemma 10. [10] If G is a polyomino chain whose {L,A}-sequence is LAk1LAk2 · · ·LAktL,

then the number K(G) of its Kekulé structures is equal to the Hosoya index of the cater-

pillar tree Ct(k1 + 1, k2, · · · , kt−1, kt).

By Lemma 10, Theorems 4 and 6, we can characterize the first ten polyomino chains

with the minimal numbers of Kekulé structures and the first five polyomino chains with

the maximal numbers of Kekulé structures among all of polyomino chains with given

number of squares, respectively.

Theorem 11. Let G be a polyomino chain with n ≥ 9 squares, and its {L,A}-sequence

is different from LAn−2L, L2An−3L, LALAn−4L, L3An−4L, LA2LAn−5L, LAL2An−5L,

LA3LAn−6L, LA2L2An−6L, L2ALAn−5L, L4An−5L. Then
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K(LAn−2L) < K(L2An−3L) < K(LALAn−4L) < K(L3An−4L) < K(LA2LAn−5L) <

K(LAL2An−5L) < K(LA3LAn−6L) < K(LA2L2An−6L) < K(L2ALAn−5L)

< K(L4An−5L) < K(G).

Theorem 12. Let G be a polyomino chain with n ≥ 17 squares, and its {L,A}-sequence

is different from Ln, L3ALn−4, L5ALn−6, L7ALn−8, L9ALn−10. Then

K(Ln) > K(L3ALn−4) > K(L5ALn−6) > K(L7ALn−8) > K(L9ALn−10) > K(G).

3.3 Ordering square-hexagonal chains by the number of Kekulé
structures

By a square-hexagonal chain with n cells (where each cell can be either a square or a

hexagon), we mean a finite graph obtained by concatenating n cells in such a way that

any two adjacent cells have exactly one edge in common, and each cell is adjacent to

exactly two other cells, except the first and last cells which are adjacent to exactly one

other cell each. It is clear that different square-hexagonal chains will result, not only

according to the manner in which the cells are concatenated, but also the cell¡¯s type.

Specially, we have hexagonal chains if all the cells are hexagons, polyomino chains if all

the cells are squares, and phenylene chains if hexagons and squares are concatenated

alternately.

As in [15], the Kekulé structure count of a square-hexagonal chain was shown to be

equal to the Hosoya index of the corresponding caterpillar tree.

For a square-hexagonal chain G with n cells c1, c2, · · · , cn, where the cells are numbered

successively. Then a cell in G with exactly two neighbours is concatenated in one of the

four modes: a, b, c, d (see [15]). A function f from the cells to the symbols L and A is

defined as follows:

f(ci) =


L, i = 1, 2;
L, if i ≥ 3 and the concatenating mode of ci−1 is ′a′ or ′d′;
A, otherwise.

Thus a unique {L,A}-sequence f(c1)f(c2) · · · f(cn) is associated with G.

The general form of the {L,A}-sequence of a square-hexagonal chain G with n cells is

Ll1Aa1Ll2Aa2 · · ·LltAat

where l1 ≥ 2, li ≥ 1 for i = 2, · · · , t; ai ≥ 1 for i = 1, · · · , t− 1, at ≥ 0 and

l1 + a1 + l2 + a2 + · · ·+ lt + at = n.

-175-



From the construction method in [15], the corresponding caterpillar tree is

Cm(k1, k2, · · · , km)

where m = l1 + · · · + lt, kl1 = a1, · · · , kl1+···+lt−1 = at−1, km = at + 1 and ki = 0 for

i 6= l1, l1 + l2, · · · , l1 + l2 + · · ·+ lt. And the result obtained in [15] is the following:

Lemma 13. [15] If G is a square-hexagonal chain whose {L,A}-sequence is

Ll1Aa1Ll2Aa2 · · ·LltAat ,

then the number K(G) of its Kekulé structures is equal to the Hosoya index of the cater-

pillar tree Cm(k1, k2, · · · , km), where m = l1 + · · · + lt, kl1 = a1, · · · , kl1+···+lt−1 = at−1,

km = at + 1 and ki = 0 for i 6= l1, l1 + l2, · · · , l1 + l2 + · · ·+ lt.

By Lemma 13, Theorems 4 and 6, we can characterize the first ten square-hexagonal

chains with the minimal numbers of Kekulé structures and the first five square-hexagonal

chains with the maximal numbers of Kekulé structures among all of hexagonal chains

with given number of hexagons, respectively.

Theorem 14. Let G be a square-hexagonal chain with n ≥ 9 hexagons, and its {L,A}-sequ-

ence is different from L2An−2, L3An−3, L2ALAn−4, L4An−4, L2A2LAn−5, L2AL2An−5,

L2A3LAn−6, L2A2L2An−6, L3ALAn−5, L5An−5. Then

K(L2An−2) < K(L3An−3) < K(L2ALAn−4) < K(L4An−4) < K(L2A2LAn−5) <

K(L2AL2An−5) < K(L2A3LAn−6) < K(L2A2L2An−6) < K(L3ALAn−5) < K(L5An−5) <

K(G).

Theorem 15. Let G be a square-hexagonal chain with n ≥ 17 hexagons, and its {L,A}-se-

quence is different from Ln, L3ALn−4, L5ALn−6, L7ALn−8, L9ALn−10. Then

K(Ln) > K(L3ALn−4) > K(L5ALn−6) > K(L7ALn−8) > K(L9ALn−10) > K(G).

3.4 Ordering pentagonal chains by the number of Kekulé struc-
tures

A pentagonal chain with n cells (regular pentagons) is a finite graph obtained by concate-

nating n cells in such a way that any two adjacent cells have exactly one edge in common,

each cell is adjacent to exactly two other cells, except the first and last cells which are

adjacent to exactly one other cell each, and each vertex is incident to at most three cells.

As in [16], the Kekulé structure count of a pentagonal chain was shown to be equal to

the Hosoya index of the corresponding caterpillar tree.
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For a pentagonal chain G2n with 2n cells c1, c2, · · · , c2n, where the cells are numbered

successively, G2n can be formed inductively. Starting from the first two cells c1c2, in each

step we attach two new cells to the previous one. More clearly, let G2i (i = 1, · · · , n) be

the part of G2n with the first 2i pentagons, then G2i is obtained from G2i−2 by attaching

to it the (2i − 1)-th pentagon c2i−1 and the 2i-th pentagon c2i. There are seven ways to

attach cells c2i−1c2i to an edge of the end pentagon in G2i−2: a, b, a, d, e, f, g (see [16]). So,

using this construction method, each pentagonal chain G2n can be obtained by attaching

n− 1 times new two cells to the previous one on the basis of c1c2.

Let ai denote the (i− 1)-th time attaching type for i ≥ 2 and a1 denote the attaching

way of the first two cells c1c2. A function f from the attaching types to the symbols L

and A is defined as follows:

f(ai) =


L, i = 1, 2;
L, if i ≥ 3 and the concatenation type of c2i−1, c2i−2, c2i−3, c2i−4

is ′a′,′ c′,′ d′ or ′f ′;
A, otherwise.

Thus a unique {L,A}-sequence f(a1)f(a2) · · · f(an) is associated with G2n.

The general form of the {L,A}-sequence of a pentagonal chain G2n with 2n cells is

Ll1Aa1Ll2Aa2 · · ·LltAat

where l1 ≥ 2, li ≥ 1 for i = 2, · · · , t; ai ≥ 1 for i = 1, · · · , t− 1, at ≥ 0 and

l1 + a1 + l2 + a2 + · · ·+ lt + at = n.

From the construction method in [16], the corresponding caterpillar tree is

Cm(k1, k2, · · · , km)

where m = l1 + · · · + lt, kl1 = a1, · · · , kl1+···+lt−1 = at−1, km = at + 1 and ki = 0 for

i 6= l1, l1 + l2, · · · , l1 + l2 + · · ·+ lt. And the result obtained in [16] is the following:

Lemma 16. [15] If G is a pentagonal chain whose {L,A}-sequence is Ll1Aa1Ll2Aa2 · · ·

LltAat, then the number K(G) of its Kekulé structures is equal to the Hosoya index of the

caterpillar tree Cm(k1, k2, · · · , km), where m = l1+· · ·+lt, kl1 = a1, · · · , kl1+···+lt−1 = at−1,

km = at + 1 and ki = 0 for i 6= l1, l1 + l2, · · · , l1 + l2 + · · ·+ lt.

By Lemma 16, Theorems 4 and 6, we can characterize the first ten pentagonal chains

with the minimal numbers of Kekulé structures and the first five pentagonal chains with

the maximal numbers of Kekulé structures among all of pentagonal chains with given

number of pentagons, respectively.
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Theorem 17. Let G be a pentagonal chain with 2n ≥ 18 hexagons, and its {L,A}-sequence

is different from L2An−2, L3An−3, L2ALAn−4, L4An−4, L2A2LAn−5, L2AL2An−5,

L2A3LAn−6, L2A2L2An−6, L3ALAn−5, L5An−5. Then

K(L2An−2) < K(L3An−3) < K(L2ALAn−4) < K(L4An−4) < K(L2A2LAn−5) <

K(L2AL2An−5) < K(L2A3LAn−6) < K(L2A2L2An−6) < K(L3ALAn−5) < K(L5An−5) <

K(G).

Theorem 18. Let G be a pentagonal chain with 2n ≥ 34 hexagons, and its {L,A}-sequence

is different from Ln, L3ALn−4, L5ALn−6, L7ALn−8, L9ALn−10. Then

K(Ln) > K(L3ALn−4) > K(L5ALn−6) > K(L7ALn−8) > K(L9ALn−10) > K(G).

The results above can summarized as the following tables.

Table 1. Extremal graphs with the first ten minimal values.

c-trees (n) h-chains (n) po-chains (n) s-h-chains (n) pe-chains (2n)
C1(n) Ln LAn−2L L2An−2 L2An−2

C2(1, n− 2) LALn−2 L2An−3L L3An−3 L3An−3

C2(2, n− 3) L2ALn−3 LALAn−4L L2ALAn−4 L2ALAn−4

C3(1, 0, n− 3) LA2Ln−3 L3An−4L L4An−4 L4An−4

C2(3, n− 4) L3ALn−4 LA2LAn−5L L2A2LAn−5 L2A2LAn−5

C3(2, 0, n− 4) L2A2Ln−4 LAL2An−5L L2AL2An−5 L2AL2An−5

C2(4, n− 5) L4ALn−5 LA3LAn−6L L2A3LAn−6 L2A3LAn−6

C3(3, 0, n− 5) L3A2Ln−5 LA2L2An−6L L2A2L2An−6 L2A2L2An−6

C3(1, 1, n− 4) LALALn−4 L2ALAn−5L L3ALAn−5 L3ALAn−5

C4(1, 0, 0, n− 4) LA3Ln−4 L4An−5L L5An−5 L5An−5

Table 2. Extremal graphs with the first five maximal values.

c-trees (n) h-chains (n) po-chains (n) s-h-chains (n) pe-chains (2n)
T1 LAn−2L Ln Ln Ln

T2 LALAn−4L L3ALn−4 L3ALn−4 L3ALn−4

T3 LA3LAn−6L L5ALn−6 L5ALn−6 L5ALn−6

T4 LA5LAn−8L L7ALn−8 L7ALn−8 L7ALn−8

T5 LA7LAn−10L L9ALn−10 L9ALn−10 L9ALn−10

where (1) c-trees (n): caterpillar trees with n edges; (2) h-chains (n): hexagonal chains
with n hexagons; (3) po-chains (n): polyomino chains with n squares; (4) s-h-chains (n):

square-hexagonal chains with n cells; (5) pe-chains (2n): pentagonal chains with 2n
pentagons. T1 = Cn+1(0, · · · , 0), T2 = Cn(0, 0, 1, 0, · · · , 0), T3 = Cn(0, 0, 0, 0, 1, 0, · · · , 0),

T4 = Cn(0, 0, 0, 0, 0, 0, 1, 0, · · · , 0) and T5 = Cn(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0).
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