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Abstract

A common problem in combinatorial and synthetic organic chemistry is the enu-
meration of the total number of molecules that can be produced in a chemical syn-
thesis due to the large amount of possible products. Here, a generalized algorithm
for the enumeration of chiral and achiral isomers of a m− polyheterosubstituted
monocycloalcane with ring size n is derived from combinatorial formulae. The for-
mulae are derived for r kind of substituents of kr carbons each. The algorithm is
applied to three test cases as a proof of concept to assess its correctness.

1 Introduction

One of the main challenges in combinatorial and syntethic organic chemistry is the analysis

of the synthetic mixture. In order to have a correct interpretation of the outcome of the

synthesis, it is required to know the total number of possible molecules that can be

produced, as well as their stereochemistry.

In the study of the enumeration of isomers of organic compounds, the contributions

made employing Pólya’s theorem are numerous.[1–3] However, the direct application of the

theorem does not account for stereochemistry which in conjuction with the unwieldiness

of the resulting expressions make its direct applications limited for real world cases. The

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 81 (2019) 771-784
                         

                                          ISSN 0340 - 6253 



enumeration of isomers of substituted cycloalkanes has been studied extensively by Nemba

et al,[4–8] including the considerations of non-isomerizable polyheterosubstituents and

homomorphic substituents, along with libraries of enumerations for specific values of ring

size and alkyl group carbons. Here, we present a generalized algorithm for the enumeration

of chiral and achiral isomers of polyheterosubstitued monocycloalcane.

2 Derivation of the Algorithm

Let us consider Gr the molecular stereograph of the polyheterosubstituted monocycloalkane

(PHMCA) with molecular formula CnH2n−m(Sk1)m1(Sk2)m2(Sk3)m3 . . . (Skr)mr , with∑r
i=1mi = m, and let the subgraphs Tki and G0 be the stereographs of the substituents

Ski = −CkiH2ki+1 and of the cyclic backbone CnH2n, respectively, as shown in Figure 1.

Thus, Gr is constructed by attaching the roots of the m rooted steric trees Tki of order

ki to the m-selected substitution sites selected in G0. There exists
(
2n
m

)
choices of substi-

tution sites as each carbon has 2 possible sites, one above and one below the ring plane.

It is important to stress that due to thermal energy effects, we consider the ring flip fast

enough to equilibrate the conformers in a planar configuration on average. Nonetheless,

this choice does not account for the stereochemistry of the skeletons or the substituents.
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Figure 1. Molecular stereographs G0, Tki , and Gr representing a monocycloalkane
CnH2n, an alkyl group −CkiH2ki+1, and a branched monocyclic cy-
cloalkane CnH2n−m(Sk1)m1(Sk2)m2(Sk3)m3 . . . (Skr)mr , respectively.

Let ski and pki be the number of total and achiral isomers of the rooted steric tree Tki

of order ki, therefore, ski − pki represents the number of chiral isomers of Tki . Values of

ski , pki , and ski − pki have been derived by Nemba and Balaban for 0 ≤ ki ≤ 18.
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Given m substitution sites, the number of possible ways to fill them with the sub-

stituents will depend on the number of different substituents and whether they are chiral

or achiral. Since there are r different substituents, let us take each kind as a colour and

assign each one to a subset of the m substitution sites, thus representing the filling. Let

C(m, r) be the number of ways we can do such an operation. Then, C(m, r) is given by

C(m, r) = S(m, r)r! (1)

where S(m, r) is the Stirling number of the second kind,[9] that represents the number

of non-empty partitions of a set of m elements into r subsets, one of each colour. Since

each colouring gives different molecules, we multiply these by the r! factor to include each

permutation of the colours.

The selection of the r colours is made from a set of
∑r

i=1 ski = S different colours,

therefore, the number of colour choices D(S, r) is given by

D(S, r) =
(
S
r

)
(2)

Now, if at least one of the colours correspond to a chiral substituent, the number of

choices is given by

D(S − P , r) =

(
S
r

)
−

(
P
r

)
(3)

Where
∑r

i=1 pki = P

D(P , r) =

(
P
r

)
(4)

As the selection of colours and the colourings are two independent operations, the

total number of substitutions for any kind, with at least one chiral substituent in the m

sites, and with only achiral substituents is given by the product rule, thus,

N (S,m, r) = C(m, r)D(S, r) = S(m, r)r!

(
S
r

)
(5)

N (S − P ,m, r) = C(m, r)D(S − P , r) = S(m, r)r!

[(
S
r

)
−

(
P
r

)]
(6)

N (P ,m, r) = C(m, r)D(P , r) = S(m, r)r!

(
P
r

)
(7)
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Once counted the number of possible ways to fill the m substitution sites, we consider

the molecular skeletons in which they are arranged.
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Figure 2. Orthogonal prism P0 representation of 2n substitution sites in the stere-
ograph G0.

Considering the ring flip fast enough to equilibrate the conformers, G0 belongs to

the symmetry point group Dnh, which includes 4n symmetry operations. Name E =

{1, 2, 3, . . . , n} and E ′ = {1′, 2′, 3′, . . . , n′} the collections of the substitution sites on

opposite sides of the plane containing G0. We take the action of Dnh over the permutations

of the vertexes of an orthogonal prism P0 shown in Figure 2, where P0 is constructed by

taking E and E ′ as the bases of the prism. Applying the algorithm proposed by Parks

and Hendrickson[10] and the considerations given by Nemba and Balaban,[4] the cycle

index contributions of each permutation resulting from the action of Dnh is summarized

in Table 1, with αj
i representing j permutation cycles of length i.

Table 1. Symmetry operations of Dnh and cycle index contributions of its action
over P0.

n odd n even
Symmetry operation Cycle index Symmetry operation Cycle index

E
∑
d|2n
d 6=2

ϕ(d)α
2n/d
d

E
∑
d|2n
d6=2

ϕ(d)α
2n/d
d

(n− 1)Cr
n (n− 2)Cr

n

(n− 1)Sr
′

n (n− 2)Sr
′

n

nC2 (n+ 1)αn
2

C2,
n
2
C

′
2
n
2
C

′′
2

(
3n
2
+ 2

)
αn
2σh

n
2
σd, σh

σv nα2
1α

n−1
2

n
2
σv

n
2
α4
1α

n−2
2
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Applying Pólya’s theorem,[11] we obtain the figure inventories YT (n±) for the total

different geometrical isomers of G0, which is given by

YT (n−) =
1

4n

 ∑
(d 6=2)|2n

ρ(d)α
2n
d
d + (n+ 1)αn

2 + nα2
1α

n−1
2

 (8)

YT (n+) =
1

4n

 ∑
(d6=2)|2n

ρ(d)2α
2n
d
d +

(
3n

2
+ 2

)
αn
2 +

n

2
α4
1α

n−2
2

 (9)

Excluding the contributions of reflections and rotoflections, we get the figure invento-

ries YE(n±) for the total different enantiomeric isomers of G0, given by

YE(n−) =
1

2n

 ∑
(d6=2)|2n

ρ′(d)α
2n
d
d + nαn

2

 (10)

YE(n−) =
1

2n

 ∑
(d 6=2)|2n

ρ′(d)α
2n
d
d + (n+ 1)αn

2

 (11)

Through this work, the nomenclature n+, n−, and n± represent integer values of n

even, n odd and n even or odd, respectively. The values of ρ(d) and ρ′(d) are obtained

from equations (12)–(15), where ϕ(d)pr and ϕ(d)ir are the Euler totient function for the

integer d in which the subindices pr and ir refer to proper and improper rotations induced

by the d−fold rotation axis.[4]

ρ(d) = ϕ(d)pr if d is odd (12)

ρ(d) = ϕ(d)pr + ϕ(d)ir + ϕ(Pi)pr if d is even and d = 2Pi; Pi odd prime integer (13)

ρ(d) = ϕ(d)pr + ϕ(d)ir if d is even and d 6= 2Pi; Pi odd prime integer (14)

ρ′(d) = ϕ(d)pr (15)

By substituting αb
a = (x0 + xa)b = (1 + xa)b as the polynomial representation of the

cycle αb
a in equations (8)–(11), we get the geometrical and enantiomerical polynomials for

G0, say PT (n±) and PE(n±)
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PT (n−) =
1

4n

 ∑
(d6=2)|2n

ρ(d)(1 + xd)
2n
d + (n+ 1)(1 + x2)n + n(1 + x)2(1 + x2)n−1

 (16)

PT (n+) =
1

4n

 ∑
(d 6=2)|n

ρ(d)(1 + xd)
2n
d +

(
3n

2
+ 2

)
(1 + x2)n +

n

2
(1 + x)4(1 + x2)n−2


(17)

PE(n−) =
1

4n

 ∑
(d6=2)|2n

ρ′(d)(1 + xd)
2n
d + n(1 + x2)n

 (18)

PE(n+) =
1

4n

 ∑
(d6=2)|2n

ρ′(d)(1 + xd)
2n
d + (n+ 1)(1 + x2)n

 (19)

By expanding PT (n±) and PE(n±), we get the generating functions, equations (20)

and (21), for the geometrical and enantiomerical isomers of G0.

PT (n±,m±) =
2n∑

m=0

AT (n±,m±)x
m (20)

PE(n±,m±) =
2n∑

m=0

AE(n±,m±)x
m (21)

The coefficients AT (n±,m±) and AE(n±,m±) satisfy the relations in equations (22)

and (23), where Ac(n±,m±) and Aac(n±,m±) represent the number of chiral and achiral

skeletons of a homopolysubstituted monocyclic alkane with formula CnH2n−mXm

AT (n±,m±) = Ac(n±,m±) + Aac(n±,m±) (22)

AE(n±,m±) = 2Ac(n±,m±) + Aac(n±,m±) (23)

The solution to the problem of finding values of Ac(n±,m±) and Aac(n±,m±) and

general recurrence formulae for them has been derived by Nemba et al.[4, 5, 7, 8] The

algorithm to determine its values is given by equations (24)–(31), where Dn± , D2n± , and

Dm± represent the sets of divisors of n±, 2n±, and m± respectively.

If (d 6= 2) ∈ D2n− ∩Dm− , then
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Ac(n−,m−) =
1

4n

[∑
d6=2

(2ρ′(d)− ρ(d))

(
2n
d
m
d

)
− 2n

(
n− 1
m−1
2

)]
(24)

Aac(n−,m−) =
1

2n

[∑
d 6=2

(ρ(d)− ρ′(d))

(
2n
d
m
d

)
+ 2n

(
n− 1
m−1
2

)]
(25)

If (d 6= 2) ∈ D2n− ∩Dm+ , then

Ac(n−,m+) =
1

4n

[∑
d6=2

(2ρ′(d)− ρ(d))

(
2n
d
m
d

)
−

(
n
m
2

)]
(26)

Aac(n−,m+) =
1

2n

[∑
d 6=2

(ρ(d)− ρ′(d))

(
2n
d
m
d

)
+ (n+ 1)

(
n
m
2

)]
(27)

If (d 6= 2) ∈ Dn+ ∩Dm− , then

Ac(n+,m−) =
1

4n

[∑
d6=2

(2ρ′(d)− ρ(d))

(
2n
d
m
d

)
− 2n

(
n− 1
m−1
2

)]
(28)

Aac(n+,m−) =
1

2n

[∑
d 6=2

(ρ(d)− ρ′(d))

(
2n
d
m
d

)
+ 2n

(
n− 1
m−1
2

)]
(29)

If (d 6= 2) ∈ Dn+ ∩Dm+ , then

Ac(n+,m+) =
1

4n

[∑
d6=2

(2ρ′(d)− ρ(d))

(
2n
d
m
d

)
− 1

n− 1

(
m2

2
− n(m+ 1) + 1

)(
n
m
2

)]
(30)

Aac(n+,m+) =
1

4n

[∑
d 6=2

(2ρ′(d)− ρ(d))

(
2n
d
m
d

)
+

1

n− 1

(
n2 − n(m+ 1)− m2

2
− 2

)(
n
m
2

)]
(31)

The chirality of a PHMCA can be derived from having at least one chiral substituent

or having a subtituent in chiral positions. As these two operations are independent, the

total number of possible arranges is given by the product rule. Thus, the number of

isomers of Gr can be classified in four groups:

Aac
ac(n±,m±): the number of isomers with achiral skeletons with only achiral substituents.

Ac
ac(n±,m±): the number of isomers with achiral skeletons with at least one chiral sub-

stituent.
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Aac
c (n±,m±): the number of isomers with chiral skeletons with only achiral substituents.

Ac
c(n±,m±): the number of isomers with chiral skeletons with at least one chiral sub-

stituent.

Hence, according to equations (5)–(7) and (24)–(31), the total number of each kind of

isomers is given by equations (32)–(35).

Aac
ac(n±,m±) = Aac(n±,m±)N (P ,m±, r) = Aac(n±,m±)S(m±, r)r!

(
P
r

)
(32)

Ac
ac(n±,m±) = Aac(n±,m±)N (S − P ,m±, r) = Aac(n±,m±)S(m±, r)r!

[(
S
r

)
−

(
P
r

)]
(33)

Aac
c (n±,m±) = Ac(n±,m±)N (P ,m±, r) = Ac(n±,m±)S(m±, r)r!

(
P
r

)
(34)

Ac
c(n±,m±) = Ac(n±,m±)N (S − P ,m±, r) = Ac(n±,m±)S(m±, r)r!

[(
S
r

)
−

(
P
r

)]
(35)

3 Proof-of-concept

3.1 One substituent case (n = 3) for C3H5(C3H7)

1. Number of permutations of the substituents

N (P ,m, r) = S(m, r)r!

(
P
r

)
= S(1, 1)1!

(
2

1

)
N (P ,m, r) = 2

N (S − P ,m, r) = S(m, r)r!

[(
S
r

)
−

(
P
r

)]
= S(1, 1)1!

[(
2

1

)
−

(
2

1

)]
N (S − P ,m, r) = 0
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2. Chiral and achiral coefficients

As n and m are both odd, we apply equations (24) and (25). Thus, D2n− =

{1, 2, 3, 6} and Dm− = {1}, which implies that D2n− ∩Dm− = {1}. Therefore,

Ac(n−,m−) =
1

4n

[∑
d6=2

[2ρ′(d)− ρ(d)]

(
2n
d
m
d

)
− 2n

(
n− 1
m−1
2

)]

=
1

4 · 3

[
[2ρ′(1)− ρ(1)]

(2·3
1
1
1

)
− 2 · 3

(
3− 1
1−1
2

)]
=

1

12

[
(2− 1)

(
6

1

)
− 6

(
2

0

)]
Ac(n−,m−) = 0

Aac(n−,m−) =
1

2n

[∑
d 6=2

[ρ(d)− ρ′(d)]

(
2n
d
m
d

)
+ 2n

(
n− 1
m−1
2

)]

=
1

2 · 3

[
[ρ(1)− ρ′(1)]

(2·3
1
1
1

)
+ 2 · 3

(
3− 1
1−1
2

)]
=

1

6

[
(1− 1)

(
6

1

)
+ 6

(
2

0

)]
Aac(n−,m−) = 1

3. Total number of isomers counted by substituent and skeleton type

Aac
ac = Aac(n,m)N (P ,m, r) = 1 · 2 = 2

Ac
ac = Aac(n,m)N (S − P ,m, r) = 1 · 0 = 0

Aac
c = Ac(n,m)N (P ,m, r) = 0 · 2 = 0

Ac
c = Ac(n,m)N (S − P ,m, r) = 0 · 0 = 0

which gives a total number of isomers of 2, depicted in Figure 3.

4. Structures

Figure 3. Stereographs of the 2 Aac
ac isomers obtained by having a single C3H7

substituent in a C3H5 ring.
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3.2 Homomorphic case (n = 3) for C3H4(C3H7)2

1. Number of permutations of the substituents

N (P ,m, r) = S(m, r)r!

(
P
r

)
= S(2, 1)1!

(
2

1

)
N (P ,m, r) = 2

N (S − P ,m, r) = S(m, r)r!

[(
S
r

)
−

(
P
r

)]
= S(2, 1)1!

[(
2

1

)
−

(
2

1

)]
N (S − P ,m, r) = 0

2. Chiral and achiral coefficients

As n is odd and m is even, we apply equations (26) and (27). Thus, D2n− =

{1, 2, 3, 6} and Dm+ = {1, 2}, which implies that D2n− ∩Dm+ = {1, 2}. Therefore,

Ac(n−,m+) =
1

4n

[∑
d6=2

[2ρ′(d)− ρ(d)]

(
2n
d
m
d

)
−

(
n
m
2

)]

=
1

4 · 3

[
[2ρ′(1)− ρ(1)]

(2·3
1
2
1

)
−

(
3
2
2

)]
=

1

12

[
(2− 1)

(
6

2

)
−

(
3

1

)]
Ac(n−,m+) = 1

Aac(n−,m+) =
1

2n

[∑
d6=2

[ρ(d)− ρ′(d)]

(
2n
d
m
d

)
+ (n+ 1)

(
n
m
2

)]

=
1

2 · 3

[
[ρ(1)− ρ′(1)]

(2·3
1
2
1

)
+ (3 + 1)

(
3
2
2

)]
=

1

6

[
(1− 1)

(
6

2

)
+ 4

(
3

1

)]
Aac(n−,m+) = 2

3. Total number of isomers counted by substituent and skeleton type

Aac
ac = Aac(n,m)N (P ,m, r) = 2 · 2 = 4

Ac
ac = Aac(n,m)N (S − P ,m, r) = 2 · 0 = 0

Aac
c = Ac(n,m)N (P ,m, r) = 1 · 2 = 2

Ac
c = Ac(n,m)N (S − P ,m, r) = 1 · 0 = 0
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which gives a total number of isomers of 6, depicted in Figure 4.

4. Structures

Figure 4. Homomorphic stereographs of the 6 isomers, 4 Aac
ac (upper row) and 2

Aac
c (lower row), obtained by having 2 C3H7 substituents in a C3H4 ring.

3.3 Heteromorphic case (n = 3) for C3H4(C3H7)2

1. Number of permutations of the substituents

N (P ,m, r) = S(m, r)r!

(
P
r

)
= S(2, 2)2!

(
2

2

)
N (P ,m, r) = 2

N (S − P ,m, r) = S(m, r)r!

[(
S
r

)
−

(
P
r

)]
= S(2, 2)2!

[(
2

2

)
−

(
2

2

)]
N (S − P ,m, r) = 0
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2. Chiral and achiral coefficients

As n is odd and m is even, we apply equations (26) and (27). Thus, D2n− =

{1, 2, 3, 6} and Dm+ = {1, 2}, which implies that D2n− ∩Dm+ = {1, 2}. Therefore,

Ac(n−,m+) =
1

4n

[∑
d6=2

[2ρ′(d)− ρ(d)]

(
2n
d
m
d

)
−

(
n
m
2

)]

=
1

4 · 3

[
[2ρ′(1)− ρ(1)]

(2·3
1
2
1

)
−

(
3
2
2

)]
=

1

12

[
(2− 1)

(
6

2

)
−

(
3

1

)]
Ac(n−,m+) = 1

Aac(n−,m+) =
1

2n

[∑
d6=2

[ρ(d)− ρ′(d)]

(
2n
d
m
d

)
+ (n+ 1)

(
n
m
2

)]

=
1

2 · 3

[
[ρ(1)− ρ′(1)]

(2·3
1
2
1

)
+ (3 + 1)

(
3
2
2

)]
=

1

6

[
(1− 1)

(
6

2

)
+ 4

(
3

1

)]
Aac(n−,m+) = 2

3. Total number of isomers counted by substituent and skeleton type

Aac
ac = Aac(n,m)N (P ,m, r) = 2 · 2 = 4

Ac
ac = Aac(n,m)N (S − P ,m, r) = 2 · 0 = 0

Aac
c = Ac(n,m)N (P ,m, r) = 1 · 2 = 2

Ac
c = Ac(n,m)N (S − P ,m, r) = 1 · 0 = 0

which gives a total number of isomers of 6, depicted in Figure 5.
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4. Structures

Figure 5. Heteromorphic stereographs of the 6 isomers, 4 Aac
ac (upper row) and 2

Aac
c (lower row), obtained by having 2 C3H7 substituents in a C3H4 ring.

4 Conclusions

We have developed a generalized algorithm for the enumeration of chiral and achiral

isomers of polyheterosubstituted monocycloalkanes. As a proof-of-concept, the algo-

rithm has been employed for three test cases, namely, a one substituent case (n = 3)

for C3H5(C3H7), a homomorphic case (n = 3) for C3H4(C3H7)2, and a heteromorphic case

(n = 3) for C3H4(C3H7)2.
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