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Abstract

In this paper, we give a computational solution for the reachability problem
of subconservative discrete chemical reaction networks (d-CRNs), namely whether
there exists a valid state transition (reaction) sequence between a given initial and
a target state. Using subconservativity, we characterize the reachable set of the
d-CRN with well-defined simplexes. Moreover, upper bounds are derived for the
possible length of cycle-free state transition sequences. We show that the reachabil-
ity and the related coverability problem in the case of subconservative d-CRNs can
be decided in polynomial time by tracing them back to fixed dimensional integer
programming (IP) feasibility problems over a bounded integer lattice. The proposed
computation model is also employed for determining feasible series of reactions be-
tween given (sets of) states. We also show that if the rank of the stoichiometric
matrix is less than or equal to 2, then the reachability problem is equivalent to the
existence of a non-negative integer solution of the corresponding state equation.

1 Introduction

Chemical Reaction Network theory (CRNT) studies both the dynamical behavior and
structural properties of chemical reaction networks (CRNs). In the case of large molecule
numbers and appropriate physico–chemical conditions, it is commonly assumed that CRNs
obey the law of mass action. Consequently, the systems can be characterized by a sub-
class of non-negative polynomial systems known as kinetic systems [1–5]. For this system
class, the dynamical behavior including special dynamical patterns, such as oscillations,
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multiplicity, bifurcation, structural properties and the relationship between them have
been extensively studied [6–9]. Effective polynomial time algorithms have also been
designed to identify network structures that are capable of exhibiting these dynamical
behaviors [10–15].

However, if the molecular counts of a CRN are low (typically smaller than approx-
imately 40-60 molecules per species according to the literature), then the deterministic
differential equation description of kinetic systems often does not give us satisfactory re-
sults [16, 18]. This holds for example in the case of genetic circuits [20]. Therefore, it
becomes important to choose another mathematical model tracking the molecular counts
for each species. One can use discrete CRN (d-CRN) models for which the state variables
are the integer molecular counts and the state space of the system is a subset of the in-
teger lattice of the non-negative orthant. In this approach both the reaction vectors and
state variables are modeled as vectors with integer entries (which will be simply referred
to as integer vectors in the paper). Given the instantaneous molecular counts, a d-CRN
can evolve along any of its reactions if the minimal amount of molecular counts for each
required species are given for firing. If a particular reaction occurs, then the states must
be updated according to the net gain and loss of the reaction. The only assumption
of d-CRN models about the dynamical behavior of the system is that at a certain time
instant at most one reaction can occur. Although there are no additional assumptions
pertaining to the dynamical behavior of the underlying reaction network , d-CRNs com-
bined with continuous time Markov chain models are commonly used to simulate the
trajectories [18,19]. In such a way we arrive to continuous time, discrete state stochastic
models.

The dynamical properties of d-CRNs have been extensively studied in the litera-
ture [21, 33, 35, 36]. Kurtz has shown that the infinite volume limit of the Markov
chain-based model is the deterministic solution on finite time intervals, but it is not nec-
essarily the case for infinite ones [16, 17, 21]. It is known, that the long-term qualitative
dynamical behavior predicted by the deterministic continuous state and stochastic dis-
crete state models may be significantly different [21,22]. Hence, it is important to examine
the qualitative dynamical behavior of the stochastic systems modeled by discrete state
continuous time Markov chains. An important part of this qualitative analysis is the so-
called reachability and coverability analysis of states which are far from the solution of the
deterministic continuous state model. A question related to reachability is the existence
of extinction events [21]. A sufficient condition of extinction events has recently been
identified for subconservative CRNs [22], and a MILP-based computational approach has
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also been published in an accompanying paper [23].
In this paper we study the reachability problem of (sub)conservative d-CRNs by means

of their structural properties. An important consequence of subconservativity is the
boundedness of the state space, which is extensively used. We reformulate the problem of
reachability as an IP feasibility problem using the discrete state equation and additional
constraints to form a bounded convex set. It is known from the literature that checking
whether a bounded convex set contains integer points can be performed in polynomial
time in fixed dimension [24, 26]. Moreover, all the integer points can also be enumerated
in polynomial time, assuming fixed number of dimensions [27, 28]. Hence, the proposed
IP feasibility-based computational approach decides a given reachability problem in poly-
nomial time, since the dimension of the problem is determined by the initial and target
states and the structure of the examined CRN, which are fixed. This computational
approach can be easily extended to coverability analysis, where the task is to find at least
one feasible state which is coordinate-wise larger than a prescribed one. The main result
of this paper related to the reachability analysis is Proposition 4 in Section 3. Beyond
the feasibility analysis, the system of equations and inequalities can be extended by a
linear cost function and additional constraints so that an appropriate sequence of state
transitions is determined if it exists. For example, a state transition sequence can be
determined between a prescribed initial and a target state for which the length of the
path or the agglomeration of toxic secondary products is minimal.

2 Notations and mathematical background

In this section we summarize the notations, definitions and mathematical background
of discrete state Chemical Reaction Networks. The general notations used in this paper
are the following:

R the set of real numbers
Z the set of integer numbers
Z≥0 the set of non-negative integer numbers
Tn the set of n-dimensional vectors over the set T
{0, 1}l the set of l-dimensional binary vectors (all the entries are equal to 0 or 1)
[A]ij the entry of matrix A with row index i and column index j
Q(O) the number of points with non-negative integer coordinates in a bounded

set O ⊂ Rn

a ≺ b for a, b ∈ Rn, ai < bi for i = 1, . . . , n
a � b for a, b ∈ Rn, ai ≤ bi for i = 1, . . . , n
0n×m a zero matrix of dimension n×m

Table 1. Notations
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2.1 Chemical Reaction Networks with discrete state space

A discrete state Chemical Reaction Network (d-CRN) can be described by a triple
(S, C,R) such that:

S = {si | i ∈ {1, . . . , n}}

C = {yj =
n∑

i=1
αjisi | αji ∈ Z≥0, j ∈ {1, . . . , m}, i ∈ {1, . . . , n}}

R = {(yi, yj) ⊂ C × C | i 6= j}

where si is the i’th species, yj is the j’th complex and the ordered pair (yi, yj) represents
the reaction yi → yj of the system. If a reaction (yi, yj) ∈ R exists, then yi and yj are
called source and product complexes, respectively.

For each complex yj ∈ C, j ∈ {1, . . . , n}, the stoichiometric coefficients of the species
can be represented as a vector:

yj = [αj1 αj2 . . . αjn]>

For the reaction (yi, yj) ∈ R the reaction vector rij = yj − yi ∈ Zn tracks the net gain
and loss of the species. In the sequel we will assume that for the reaction vectors a given
order is defined: r1, r2 . . . , rl, where |R| = l. The associated stoichiometric matrix Γ of
the system is composed of the reaction vectors:

Γ = [r1 r2 . . . rl]

For the sake of simplicity, we will use the notation ri for both the reactions of the system
and the associated reaction vectors. Furthermore, the notation yi will represent the
complexes of the system and the vectors containing the stoichiometric coefficients, as
well. The molecular count of each species of the system at time t is given by a state
vector X(t) ∈ Zn

≥0. The state evolution of the system is given by the following discrete
state equation:

X(t) = X(0) + ΓN(t) (1)

where X(0) is the initial state vector and N(t) = [N1(t) N2(t) . . . Nl(t)]> ∈ Zl
≥0 such

that Nk(t) ∈ Z≥0 keeps track of the number of times the k’th reaction has occurred until
time t.

Note that the above model has no assumptions about the probability of the state
transitions.
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Example 2.1. Let us consider the CRN depicted in Figure 1. This CRN is characterized
by the following triple (S, C,R):

S = {A, B, E}

C = {A + E, B + E, E}

R = {A + E → B + E, B + E → A + E, A + E → E, B + E → E}

Figure 1. Introductory example of CRN’s.

The associated stoichiometric matrix composed of the reaction vectors of the system is
the following:

Γ =

−1 1 −1 0
1 −1 0 −1
0 0 0 0


In the sequel we do not write out the triple (S, C,R) if it is clear from the figure. In

these cases the fixed order of species, complexes and reactions will be considered as given
by the stoichiometric matrix Γ.

The definitions of the remaining part of this section are adopted from [22].

Definition 1. Let us consider a d-CRN. We say that:

1. A complex y ∈ C is charged at state X ∈ Zn
≥0 if Xi ≥ yi for all i ∈ {1, 2 ... n}.

2. A reaction r ∈ R is charged if its respective source complex is charged.

3. A state X ∈ Zn
≥0 reacts to a state X

′ ∈ Zn
≥0 (denoted by X → X

′) if there exists
a reaction r ∈ R such that r is charged at state X and X + r = X

′ .

4. A path σ is a finite sequence of non-negative ordered states X1, X2, . . . , Xp for
which X1 → X2 → . . . → Xp−1 → Xp.

5. A state X
′ ∈ Zn

≥0 is reachable from a state X ∈ Zn
≥0 (denoted by X  X

′ ) if there
exists a path in the state space so that X = Xν(1) → Xν(2) → ...→ Xν(l) = X

′ .
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6. A set of states T ⊂ Zn
≥0 is said to be coverable from a state X ∈ Zn

≥0 if there
exists a state X

′ ∈ Zn
≥0 for which X  X

′ and X
′ ≥ X

′′ for all X
′′ ∈ T .

Since the set of reachable states depend on the initial state, we introduce the definition
of the reachable state space as follows:

Definition 2. Let us consider an arbitrary d-CRN with a given initial state X0. The
reachable state space ZX0 of the system corresponding to X0 is the set of non-negative
discrete states reachable from X0.

From now on, we will call ZX0 the state space of the system. Note that in order to fire
a reaction r ∈ R at state X ∈ Zn

≥0, the source complex of r is required to be charged. The
definition of a charged complex is related to the concept of coverability: given the initial
state X0 ∈ Zn

≥0 and a complex y ∈ C, if there exists a state X
′ ∈ Zn

≥0 where the complex
y is charged and for which X0  X

′ , then the set of states {X | X ∈ Zn
≥0, X ≤ y} is

coverable from X0.
In the context of complexes and reactions the so-called recurrency and transiency are

also defined [22]:

Definition 3. Let us consider a d-CRN. We say that:

1. A complex y ∈ C is strongly recurrent from a state X ∈ Zn
≥0, if X  Y implies

that there exists a state Z ∈ Zn
≥0 such that Y  Z and y is charged at Z, otherwise

y is called weakly transient from X.

2. A complex y ∈ C is weakly recurrent from X ∈ Zn
≥0 if there exists a state

Y ∈ Zn
≥0 such that X  Y and y is strongly recurrent from Y , otherwise y is

strongly transient from X.

We also introduce the so-called extinction events, which are related to transiency and
the reaction network structure [22].

Definition 4. Let us consider a discrete state CRN. We say that the CRN exhibits an
extinction event on C ′ ⊆ C from X0 ∈ Zm

≥0, if every complex y ∈ C ′ is strongly transient
from X0.

In the sequel we will extensively use the following definitions in the analysis of d-CRNs:

Definition 5. Let us consider an arbitrary CRN (S, C,R) where R = {r1, . . . , rl}. The
stoichiometric subspace S of this system is the space spanned by the reaction vectors:

S = span(r1, . . . , rl)
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Definition 6. Let us consider an arbitrary CRN (S, C,R) and a non-negative initial state
X0 ∈ Zn

≥0. The non-negative stoichiometric compatibility class associated to X0

is:
CX0 = (X0 + S) ∩ Rn

≥0

where S is the stoichiometric subspace of the system.

Note that the above definitions of the stoichiometric subspace and the non-negative
stoichiometric compatibility classes are not restricted to the case of discrete state CRNs.

Clearly, we can write for the state space of a d-CRN that

ZX0 ⊆ CX0 ∩ Zn
≥0

2.2 Mathematical optimization background

In this section we review some important aspects of mathematical programming which
are extensively used in our study. An Integer Program (IP) can be defined as follows:

IP



min
x
{c>x}

s.t.

Ax ≤ b

x ≥ 0n×1

x ∈ Zn

(2)

If the solution itself is not important only its existence, then we get a so-called feasibility
problem (FP): given the polytope P ⊂ Rn defined by the inequalities Ax ≤ b, x ≥ 0n×1

and the lattice Λ ⊆ Zn of integer vectors. We have to decide whether P ∩ Λ = ∅ holds.
If the intersection is not empty then we say that the problem is feasible. Formally the
feasibility problem can be expressed as follows:

FP


P ⊂ Rn

Λ ⊆ Zn

P ∩ Λ ?= ∅

(3)

While an IP is generally NP-hard [30], the associated FP in fixed dimension n can be
computed in polynomial time using Lenstra’s algorithm [24]. It is also possible to al-
gorithmically determine the number of feasible points by the so-called Barvinok’s algo-
rithm [27] for which there exists an implementation in the software package LatteE [28].
These algorithms are based on the LenstraLenstraLovász basis reduction method [25].
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3 Computational solution for reachability analysis
3.1 Problem statement

We are interested in the following problems related to reachability and coverability:
1. Given: an initial state X0 ∈ Zn

≥0 and a target state X
′ ∈ Zn

≥0. Can we find a path
ensuring X0  X

′?

2. Given: an initial state X0 ∈ Zn
≥0 and a set of target states T ⊂ Zn

≥0. Can we find a
state X ′ ∈ Zn

≥0 for which X0  X
′ and X

′ � T hold for all T ∈ T ?

The above problems can be important both in the analysis and synthesis of chemical
reaction networks. It can be crucial to analyze the existence of states of interest which
are reachable from the initial state of a CRN. For example an undesired state can express
the agglomeration of toxic species and/or the fact that a reaction producing toxic species
is able to fire (i.e. the source complex is charged). Note that we consider paths between
X0 and X

′ without directed cycles, since the existence of those does not affect reachability.
We note that the time instant when the target state is reached is not important in

this study, but only the reachability itself, hence in the notation of the target state X
′

the time variable does not appear.

3.2 Constraint formulation

Consider a discrete state CRN with stoichiometric matrix Γ. Let us denote the initial
state by X0. If a given state X

′ is reachable from the initial state X0, then there exists a
– not necessarily unique – vector c ∈ Zm

≥0 satisfying the Diophantine equation below:

X0 + Γc = X
′ (4)

This can also be used to check whether from the initial state we can reach a target state
where a complex y ∈ C is charged:

X0 + Γc ≥ y (5)

If the state space of a CRN is bounded, the following inequalities also hold:

X0 + Γc ≤ Xmax (6)

where [Xmax]i ≥ [X]i for all i ∈ {1, . . . , n} and X ∈ ZX0 .
The inequalities described above do not guarantee that there exists a path X0 =

Xν(1) → Xν(2) → . . . → Xν(l) = X
′ represented by c which is valid in a (bio)chemical
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sense. It is possible that there exists a state transition along the sequence of reactions
where the source complex of the firing reaction is not charged at the actual state Xk,
therefore, for the succeeding state [Xk+1]i < 0 for some i ∈ {1, . . . , n}. This problem can
be solved by using further constraints.

First we introduce the notation cmax for the upper bound of c (i.e. c ≤ cmax). By
summing up the entries of cmax, the overall number of reactions is given:

K =
l∑

i=1
[cmax]i

While the entries of cmax correspond to upper bounds for the maximal number of occur-
rences of each reaction firing along a directed cycle-free path from X0 to X

′ , K is equal to
the associated upper bound for the number of reactions along a directed cycle-free path.
Using the above notations we introduce the following decomposition:

c =
K∑

j=1
vj (7)

vj ∈ {0, 1}l j = 1, . . . , K (8)
l∑

i=1
[vj]i ≤ 1 j = 1, . . . , K (9)

where the binary vector vj, j ∈ {1, . . . , K} represents the reaction occurring in the network
in the j-th time step, and [vj]i denotes the i-th coordinate of vj. Therefore, [vj]i = 1 means
that the reaction ri is firing in the j-th time step. It can be seen from Eqs. (7)-(9) that
’empty’ reactions with vj = 0l×1 are technically allowed in the computations. Note that to
apply the above decomposition in practice, we need to find an appropriate upper bound
cmax ∈ Zl for c such that [cmax]i < ∞ for i ∈ {1, . . . , l}. Based on the decomposition in
Eq. (7), the k’th state can be expressed as follows:

Xk = X0 + Γ
k∑

i=1
vi

The requirement for the state variable Xk is that the source complex of the forthcoming
reaction – represented by vk+1 – is charged, which can be expressed by the following
inequality:

X0 + Γ
k∑

i=0
vi ≥ ΓSvk+1 k = 0, . . . , K − 1 (10)

where v0 = 0l×1 and the columns of ΓS ∈ Zn×l
≥0 contain the stoichiometric coefficients of

the source complexes of each reaction, ordered in the same way as the columns of Γ. This
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means that [ΓS]ij is the stoichiometric coefficient of the i-th species in the source complex
of the j-th reaction for i ∈ {1, . . . , n} and j ∈ {1, . . . , l}.

The reachability and coverability problems of d-CRNs can be expressed by Eqs. (4),
(6)-(10), and Eqs. (5)-(10), respectively. It can be seen that Eqs. (4)-(10) contain
linear equalities and inequalities with integer unknowns in terms of vj, j = 1, . . . , K.
Therefore, the computational tasks of reachability and coverability can be written as
integer programming (IP) feasibility problems of fixed dimensions and can be solved in
polynomial time [24,27].

3.3 Bounds for the length of reaction sequences
The number of possible reaction steps is an important factor that affects the practical
computability of the reachability problem. Therefore, this subsection is devoted to com-
puting upper bounds for the length of reaction sequences in the subconservative and
conservative cases.

3.3.1 Subconservative case

Definition 7. Consider a CRN having stoichiometric matrix Γ. The system is called
conservative (subconservative) if there exists a vector z ∈ Rn

>0 for which z>Γ = 01×m

(z>Γ ≤ 01×m). z is called the conservation vector.
One can see, that in Example 2.1.1 the CRN is conservative with conservation vector

z = [1 1 1]>. Note that if a CRN is (sub)conservative then the conservation vector is not
unique, since it can be scaled by an arbitrary positive constant.

We note that the conservativity of d-CRNs is related to P-invariance (also called
S-invariance) of Petri nets and this structural (network structure-related) property was
previously considered in the context of CRN theory [22, 35, 36]. In this section, it is
assumed that all the examined CRNs are subconservative and there exists at least one
reaction producing at least one molecule of at least one species. It is known that a
(sub)conservative CRN has a finite state space [1, 34]. Based on the proof of finiteness
of subconservative CRNs’ state space, it is possible to compute an upper bound for the
coordinates of the reachable states [1].

Lemma 1. Let us consider a subconservative d-CRN with initial state X0 ∈ Zn
≥0 and

conservation vector z ∈ Rn
>0. Then for all X

′ ∈ ZX0 states the following general upper
bound holds:

[X ′ ]j ≤
z>X0

ζ
j ∈ {1, . . . , n}
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where ζ = min
j∈{1,...,n}

{zj}.

Proof.
According to the subconservativity:

∃z ∈ Rn
>0 : z>Γ ≤ 01×m

Let us take an arbitrary X
′ ∈ ZX0. Since X

′ is reachable from X0, there exists a non-
negative finite linear combination of the reaction vectors r1, . . . rm for which:

X
′ = X0 + a1r1 + . . . + amrm

Let us take the following dot product:

z>(X ′ −X0) = z>(a1r1 + . . . + amrm) =

a1z
>r1 + . . . + amz>rm ≤ 0

Note that the dot product of the conservation vector z and an arbitrary reaction vector
will be non-positive. From the above inequality:

z>X
′ ≤ z>X0 =⇒ 0 ≤

n∑
i=1

zjX
′

j ≤ z>X0 = M

Let us define
ζ = min

j∈{1, ... n}
zj > 0

Then
0 ≤ ζ

n∑
i=1

X
′

i ≤
n∑

i=1
ziX

′

i ≤ z>X0 = M

From the above inequality we can derive the following upper bound for X
′
j:

0 ≤ X
′

j ≤
M

ζ

The above general bound can be tightened to an element-wise upper bound along each
dimension (see, [34]). For convenience, we give our own proof for this bound in the next
proposition.

Proposition 1. Let us consider a subconservative d-CRN having initial state X0 ∈ Zn
≥0

and conservation vector z ∈ Rn
>0. Then for all X

′ ∈ ZX0 , the following element-wise
upper bound holds:

[X ′ ]j ≤
z>X0

zj

j ∈ {1, . . . , n} (11)
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Proof. (Indirect)
Let us assume that there exists a state X

′ which is reachable from X0 and for some
j ∈ {1 . . . , n}:

[X ′ ]j >
z>X0

zj

Since X
′ is reachable from X0 according to Lemma 1 we have that

z>X
′

ζ
≤ z>X0

ζ

otherwise the maximal coordinate value of the states reachable from X
′ would be higher

than z>X0
ζ

, but this would also mean that the maximal coordinate value of the states reach-
able from X0 is strictly higher than xmax = z>X0

ζ
. From the above inequality and the

indirect assumption we get:

z>X0 ≥
n∑

i=1
zi[X

′ ]i =
n∑

i=1
i 6=j

zi[X
′ ]i + zj[X

′ ]j >
n∑

i=1
i 6=j

zi[X
′ ]i + z>X0

from which it follows that
n∑

i=1
i 6=j

zi[X
′ ]i < 0

Since zj > 0 for all j ∈ {1, . . . , n}, this implies that [X ′ ]j < 0 for some j, which is a
contradiction. Therefore, the bound (11) holds.

For determining the above upper bound, we have to compute a conservation vector z.
This can be done, e.g. by solving the following LP minimization:

min
n∑

j=1
zj

s.t.

z>Γ ≤ 01×m

z � 0m×1 + εm×1, ε � 0m×1

Given the initial state X0 ∈ Zn
≥0, one can derive an n-dimensional hyperrectangle HX0

containing all the states X ∈ ZX0 . One corner point of HX0 is 0n×1 and the farthest point
from 0n×1 is Xmax which is defined as

[Xmax]j = z>X0

zj

, j ∈ {1, . . . , n} (12)

By means of the non-negative integer points of HX0 , a conservative upper bound can
be derived for the maximal length of directed cycle-free paths (i.e. the number of firing
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reactions) from X0 to X
′ of a subconservative d-CRN:

l∑
i=1

[cmax]i ≤
n∏

i=1
([Xmax]i + 1) (13)

The above inequality can be used to complete the feasibility problem of reachability and
coverability defined by Eqs. ((4), (6)-(10)) and Eqs. ((5) - (10)).

It is also possible to improve the upper bound given in Eq. (13) by making use of
subconservativity of a CRN.

Proposition 2. Let us consider a subconservative d-CRN having a conservation vector
z ∈ Rn

>0 and initial state X0 ∈ Zn
≥0. Introduce the notation Xmax ∈ Zn

≥0 according to
Eq. (12) for the vector containing the maximal coordinate values of the reachable states
along each dimension. Then any state X

′ reachable from X0 is an element of the simplex
ΣXmax defined by Xmax:

ΣXmax =
{

x ∈ Rn
≥0 |

n∑
i=1

xi

[Xmax]i
≤ 1

}
(14)

Proof. Let us substitute X0 into the equation of the above defined simplex (14)
n∑

i=1

[X0]i
[Xmax]i

=
n∑

i=1

[X0]izi

z>X0
= 1

z>X0

n∑
i=1

[X0]izi = 1

Let us assume that there exists a state X
′ such that X0  X

′ and ∑n
i=1

[X′ ]i
[Xmax]i > 1 (i.e.

X
′ is out of ΣXmax and reachable from X0). Then the following holds:

z>X
′

zi

≤ z>X0

zi

from which we get
n∑

i=1

[X ′ ]i
[Xmax]i

≤
n∑

i=1

[X0]i
[Xmax]i

= 1

This is a contradiction.

It can be seen that Eq. (14) explicitly contains the non-zero extreme points of the
simplex as the entries of Xmax. We note that ΣXmax can equivalently be defined using the
initial state X0 and the conservation vector z as

ΣXmax =
{

x ∈ Rn
≥0

∣∣∣∣ z>x ≤ z>X0

}
(15)

Due to the subconservativity, instead of the hyperrectangle HX0 , ΣXmax can be used to
construct a sharper upper bound for the number of transitions along a directed cycle-free
path.
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The number of non-negative integer pointsQ(Σ) of an n-dimensional simplex Σ defined
by the points [a1 0 . . . 0]>, [0 a2 . . . 0]>, . . . , [0 0 . . . an]>, [0 0 . . . 0]> can be bounded
by the following expression [32]:

Q(Σ) ≤ 1
n! (a1(1 + a)− 1)(a2(1 + a)− 1) . . . (an(1 + a)− 1) (16)

where a = 1
a1

+ 1
a2

+ . . . + 1
an

, ai ≥ 1 i ∈ {1, . . . , n} and n ≥ 3. Thus, if n ≥ 3, the number
of non-negative integer points in ΣXmax is bounded as follows:

Q(ΣXmax) ≤ 1
n!

n∏
i=1

[ 1
zi

(z>X0 +
n∑

j=1
zj)− 1

]
(17)

Furthermore, if zi = zj i, j ∈ {1, . . . , n}, then Eq. (17) is simplified as follows:

Q(ΣXmax) ≤ 1
n!

(
z>X0 − ζ

ζ
+ n

)n

(18)

Using the above inequalities, the new upper bound for the number of reactions along a
directed cycle-free path is as follows:

m∑
i=1

[cmax]i ≤ Q(ΣXmax) (19)

The result of Proposition 2 can be extended as follows.

Proposition 3. Let us consider a subconservative d-CRN with conservation vector z ∈
Rm

>0 and non-zero initial state X0 ∈ Zn
≥0. Let us define the maximal coordinate values

along each dimension by the vector Xmax according to (12). Consider an arbitrary non-
negative state X ∈ ΣXmax and X∗ 6∈ ΣXmax . Then X∗ is not reachable from X.

Proof. (Indirect)
Let us assume that there exists a state X∗ ∈ Zn

≥0 such that X∗ 6∈ ΣXmax and X  X∗

where X ∈ ΣXmax. Then
n∑

i=1

[X∗]i
[Xmax]i

=
n∑

i=1

[X∗]izi

z>X0
> 1

from which we get
z>X∗ > z>X0

Since X∗ is reachable from X: ∃c ∈ Zl
≥0 for which

X∗ = X + Γc

Let us multiply both sides by z>:

z>(X∗ −X) = z>Γc

Since X ∈ ΣXmax, the inequality z>X ≤ z>X0 holds which implies that z>(X∗ −X) > 0
while z>Γc < 0 which is a contradiction.
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Given the target state X
′ ∈ Zn

≥0 to be reached from a predefined non-zero initial state
X0 ∈ Zn

≥0, consider the non-zero state X
′′ = X

′ − v where all the entries of v are equal
to 0 except for some j ∈ {1, . . . , n} for which vj = 1. By means of X

′′ we define the
following simplex:

ΣX′′
max

=
{

x ∈ Rn
≥0 |

n∑
i=1

xi

[X ′′
max]i

≤ 1
}

(20)

where [X ′′
max]i = z>X

′′

zi
for i ∈ {1, . . . , n}. According to Proposition 4, all the reachable

states are out of the simplex ΣX′′
max

, thus one can reduce the bound of the maximal length
along directed cycle-free paths from X0 to X

′ by the number of non-zero integer points
of ΣX′′

max
:

m∑
i=1

[cmax]i ≤ Ksub = Q(ΣXmax)−Q(ΣX′′
max

) (21)

As a special case, let us consider a subconservative d-CRN (S, C,R) for which ri ∈ Zn
≤0

for all i ∈ {1, . . . , m}. In this case the farthest point of the hyperrectangle HX0 from 0n×1

is determined by X0, i.e. Xmax = X0. Since there is no reaction producing new molecules,
for all X

′ ∈ Rn
>0, [X ′ ]i > [X0]i for some i ∈ {1, . . . , n}, X

′ is not reachable from X0.
Hence the maximal length of directed cycle-free paths can be bounded by the following
term:

m∑
i=1

[cmax]i ≤ Q(HX0)−
(
Q(HX′ )− 1

)
(22)

3.3.2 Conservative case

In this section we consider conservative systems, i.e CRNs for which ∃z ∈ Rn
>0 such

that z>Γ = 0. Note that the conservativity of an n-dimensional CRN can be checked in
polynomial time through the following LP problem:

min
n∑

j=1
zj

s.t.

z>Γ = 01×l

z � εl×1, ε � 0l×1

Due to the scalability of z, the choice of ε is arbitrary.
From the definition of conservativity it follows that CX0 is a closed bounded hyper-

surface, hence it can be projected to a simplex of dimension g = rank(Γ).
Let us consider the projection P : Rn → Rg for which the transformation matrix is

denoted by T ∈ Zn×g. All the integer points of CX0 – including all possible states reachable
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from X0 (i.e. ∀ X ∈ ZX0) – will also be integer ones after applying the transformation,
i.e.:

X ∈ Zn
≥0 and X ∈ CX0 ⇒ P(X) = TX ∈ Zg

≥0

Hence we can consider the integer point enumeration problem in the projected space,
instead of that of CX0 . It is known that P(CX0) is an g-dimensional simplex of some points
[p1 0 . . . 0]>, [0 p2 . . . 0]>, . . . , [0 0 . . . pg]>, [0 0 . . . 0]>, where p1, p2, . . . , pg ∈ R≥0. To
bound the integer points – by means of Eq. (16) – the exact values of pi, i ∈ {1, 2, . . . , g}
are needed which can be easily bounded from above by Xmax. In this way, an upper bound
for the length of directed cycle-free paths for conservative d-CRNs can be given as:

m∑
i=1

[cmax]i ≤ Kcon = 1
g!

g∏
i=1

[ 1
zi

(z>X0 +
g∑

j=1
zj)− 1

]
(23)

3.4 Computational solution of the reachability problem

Proposition 4. Consider a subconservative discrete state CRN (S, C,R) of dimension
n ≥ 3. Let us denote the initial state of the system by X0 ∈ Zn

≥0. Then the following
problems can be decided in polynomial time:

(P1) Let X
′ ∈ Zn

≥0 be an arbitrary target state. Is X
′ reachable from X0?

(P2) Let y ∈ C be an arbitrary complex. Is it possible to reach a state X
′ ∈ Zn

≥0 from
X0 in such a way that y is charged at X

′?

Proof. (Constructive)
The above questions can be answered by the following IP feasibility problems:

(P1) Consider the following feasibility problem:

X0 + Γc = X
′

vj ∈ {0, 1}l j = 1, . . . , K
l∑

i=1
[vj]i ≤ 1 j = 1, . . . , K

X0 + Γ
k∑

i=1
vi ≥ ΓSvk+1 k = 1, . . . , K − 1

l∑
i=1

[vj]i ≤
l∑

i=1
[vj+1]i j = 1, . . . , K − 1

(24)
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(P2) Consider the feasibility problem defined by the inequalities and equalities below:

X0 + Γc ≥ y

vj ∈ {0, 1}l j = 1, . . . , K
l∑

i=1
[vj]i ≤ 1 j = 1, . . . , K

X0 + Γ
k∑

i=1
vi ≥ ΓSvk+1 k = 1, . . . , K − 1

l∑
i=1

[vj]i ≤
l∑

i=1
[vj+1]i j = 1, . . . , K − 1

(25)

where K is given as Ksub in (21) for subconservative and as Kcon in (23) for conservative
CRNs. The lattice of feasible solutions in both cases is represented by the vectors vj,
j = 1, . . . , K. The number of decision variables equals to K · l. To check the feasibility of
the above problems one has to find an integer lattice point in the feasibility regions defined
by the inequalities and equalities. This can be determined in polynomial time using the
Lenstra’s algorithm, given the fixed dimension K · l of the problems.

It is important to note that, according to Eqs. (21) and (23), K is not polynomial in
n, but n is known to be constant for a given CRN. Furthermore K can be greater than
the minimally required number of steps for reaching a prescribed target state which may
imply the appearance of zero vectors vj in the solution for some j ∈ {1, . . . , K}. The
position of zero vectors among the non-zero ones does not affect the solution but makes
redundancy, hence the following ordering constraints are introduced to exclude additional
feasible permutations of the same set of reactions:

l∑
i=1

[vj]i ≤
l∑

i=1
[vj+1]i j = 1, . . . , K − 1 (26)

Once the feasibility problems (24) and (25) are equipped with the above inequality con-
straints, then each feasible solution represents a distinct path between the initial and
target states, hence Barvinok’s algorithm can be used to count them. Moreover, the
feasibility problems can be easily extended with further linear constraints on the decision
variables to decide the feasibility in constrained convex sets while maintaining polynomial
time complexity.

We emphasize that the above feasibility problems can be easily equipped with an
appropriate linear objective function to form an integer program. For example:

min


K∑

j=1

l∑
i=1

[vj]i
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can be applied to find a path with minimum length from the initial state to target states
if at least one exists.

3.5 Reachability in low dimensions

In this section we consider subconservative d-CRNs for which the non-negative stoichio-
metric compatibility class can be mapped into an at most 2-dimensional simplex. We
introduce a distinguished state Xm for which:

[Xm]i =

[M ]i + max
{∣∣∣∣[rj]i

∣∣∣∣ : j = 1, . . . , l
}

, if ∃j [rj]i < 0

[M ]i , otherwise
i = 1, . . . , n (27)

where M ∈ Zn
≥0 is defined as

[M ]i = max
{

[ΓS]ij : j = 1, . . . , l
}

i = 1, . . . , n (28)

and ΓS ∈ Zn×l
≥0 is defined in Eq. (10).

Proposition 5. Let us consider a 2-dimensional subconservative d-CRN with stoichio-
metric matrix Γ and conservation vector z ∈ Rn

>0. We consider an initial state X0 ∈ Zn
≥0

and a target state X
′ ∈ Zn

≥0 such that X
′ � Xm and X0 � Xm hold where Xm is char-

acterized by Eq. (27). Then the state X
′ ∈ Zn

≥0 is reachable from X0 if and only if the
equation

Γc = X
′ −X0 (29)

has a non-negative integer solution c.

Proof.
1. X0  X

′ =⇒ ∃c ∈ Zl
≥0 : Γc = X

′ −X0

From the definition of reachability the existence of a nonnegative solution c follows.

2. X0  X
′ ⇐= ∃c ∈ Zl

≥0 : Γc = X
′ −X0 We can rewrite Eq. (29) as

X0 −M + Γc = X
′ −M (30)

where M is defined according to Eq. (28) and we have that X0−M � 0 and X
′−M �

0. Clearly, the solution c determines the number of occurrences for each reaction.
Let us consider any sequence of k reactions determined by c: σr = rν(1), . . . , rν(k),
where k = ∑m

i=1 [c]i. If we do not take into account the chargedness of the source
complexes (i.e., considering the reaction vectors as simple transition rules without
any constraints on their executability) it is possible to reorder the elements of σr so
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that all the transition states along the path from X1 = X0 −M to Xk+1 = X
′ −M

are non-negative. The following algorithm returns such a valid permutation of σr

having non-negative transition states:

Algorithm 1
1: procedure Reorder(X0, [rν(1), rν(2), . . . , rν(k)], M)
2: Xcurrent ← X0 −M
3: for i = 1 to k do
4: if [Xcurrent + rν(i)]1 < 0 or [Xcurrent + rν(i)]2 < 0 then
5: Choose a reaction vector rν(j), i < j ≤ k for which

Xcurrent + rν(j) � 02×1

6: r
′ ← rν(i)

7: rν(i) ← rν(j)
8: rν(j) ← r

′

9: end if
10: Xcurrent ← Xcurrent + rν(i)
11: end for
12: return [rν(1), rν(2), . . . , rν(k)]
13: end procedure

The correctness of Algorithm 1 can be proved as follows:
Let us consider the operation of Algorithm 1 with input reaction ordering σr. Let us
denote the reordered reaction sequence after iteration i of the loop in lines 3–11 of the
pseudocode of Algorithm 1 by σi

r. Let us denote the jth transition state corresponding
to σi

r by X i
j, for i = 1, . . . , k and j = 2, . . . , k. Furthermore, let the ordered set of

states corresponding to σi
r be denoted by σi

X for i = 1, . . . , k. Clearly, σi
r and σj

r for
i, j ∈ {1, . . . , k}, i 6= j are not necessarily different. Let us assume that there exists
a nonnegative intermediate state Xj−1

j for some j ∈ {2, . . . , k − 1} along the state
transition sequence σj−1

X for which the forthcoming state has a negative coordinate,
i.e. [Xj−1

j+1 ]d < 0 for some d ∈ {1, 2}. Since the target state to be reached is a
non-negative one, it follows that there exists a reaction in the set {rν(j+1), . . . , rν(k)}
increasing the state variable along coordinate d. Let us assume that all the reactions
increasing the state variable along coordinate d decrease the other coordinate d

′ of
the state to a negative value, i.e. bypassing a state with a negative coordinate is not
possible. By the construction of Xm in Eq. (27), this assumption implies that the
current state Xj−1

j is an interior point of the polyhedron H which is defined as

H = { x ∈ Rn
≥0 | x ≺ Xm −M}. (31)
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However, the polyhedron H is contained in the simplex ΣXm defined as

ΣXm =
{
x ∈ Rn

≥0 | z>x ≤ z>(Xm −M)
}

. (32)

In this case, according to Proposition 2 which holds due to the subconservativity of
the network, it is not possible to reach a state X for which z>(Xm−M) ≤ z>X. But
this is a contradiction, since arbitrary permutation of the input ordering σr results
in the same non-negative target state Xk+1, given the initial state X1. Then the
correctness of Algorithm 1 follows.

The reaction vector sequence σk
r = rν(1), rν(2), . . . , rν(k) returned by Algorithm 1

uniquely determines a non-negative state transition sequence:

σk
X = X1, Xk

2 , . . . , Xk
k , Xk+1. (33)

By adding M to each state, σk
X can be shifted back to

σ
′

X = X0, Xk
2 + M, . . . , Xk

k + M, X
′
. (34)

For the state transition sequence σ
′
X all the states are non-negative, and furthermore,

all reactions are charged at each state. Hence σ
′
X represents a valid executable state

transition sequence from X0 to X
′, i.e. X0  X

′ holds.

Corollary 1. Let us consider a conservative d-CRN (S, C,R) of arbitrary dimension with
stoichiometric matrix Γ and assume that rank(Γ) ≤ 2. Consider an initial state X0 ∈ Zn

≥0

and a target state X
′ ∈ Zn

≥0 for which we assume that X
′ � Xm and X0 � Xm where

Xm is defined according to (27). Then

X0  X
′ ⇐⇒ ∃c ∈ Zl

≥0 : Γc = X
′ −X0

Proof.
Assume that rank(Γ) ≤ 2. The state space of a conservative d-CRN for which rank(Γ) ≤ 2
can be mapped into the state space of an at most 2-dimensional subconservative one,
because the set of reachable states of an n-dimensional conservative d-CRN resides in a
rank(Γ)-dimensional linear manifold. Then for the projected simplex Proposition 5 holds.
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Note that both Proposition 5 and Corollary 1 work for arbitrary choice of the conser-
vation vector z.

The results stated in Proposition 5 and Corollary 1 substantially mitigate the com-
putational complexity of the optimization frameworks (24) and (25), since in these cases
the decomposition of c into sum of distinct vectors vj, j = 1, . . . , K and determining the
upper bound K are not needed. Hence the respective feasibility problem to be analyzed
is simplified as follows: Γc = X

′ −X0

c ∈ Zl
≥0

(35)

where the decision variable is the vector c which can be involved into an objective function
if needed, e.g. for finding shortest path from X0 to X

′ we have

min
l∑

j=1
cj

4 Examples

In this section we illustrate our methods on two examples. Beyond the IP feasibility
approach, we equipped Eqs. (24) and Eqs. (25) with a linear objective function of the form∑m

j=1 cj. The resulting integer programs are capable of finding state transition sequences
from the initial state X0 to a prescribed target state X

′ (or a set of well-defined target
states X ′). We also implemented the next reaction method [29] – as it was presented
in [18] – to simulate the stochastic behavior of the studied CRNs. We note again that it
is also possible to count the number of feasible solutions using Barvinok’s algorithm for
which an effective implementation exists [28].

The algorithms were implemented in Python 2.7 and the applied mathematical opti-
mization solver was Gurobi [31]. All the computations were performed on a Lenovo P51s
workstation having two 2.70GHz i7-7500U CPUs and 32GB RAM (DDR4 2133 MHz).

4.1 Example 1: A conservative CRN showing extinction events

Let us consider the CRN taken from [22] and shown in Fig. 2.
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Figure 2. Reaction network structure of Example 1

The associated stoichiometric matrix is

Γ =


−1 1 1 −1
1 −1 0 0
0 0 −1 1
0 0 0 0


Based on Γ, it is easy to see that the above CRN is conservative with a possible conser-
vation vector z = [1, 1, 1, 1]>. Assuming deterministic mass action kinetics, one can
describe this CRN with the following system of differential equations:

dx1(t)
dt

= −k1x1(t) + k2x2(t)x3(t) + k3x3(t)x4(t)− k4x1(t)x4(t)

dx2(t)
dt

= k1x1(t)− k2x2(t)x3(t)

dx3(t)
dt

= −k3x3(t)x4(t) + k4x1(t)x4(t)

dx4(t)
dt

= 0

where xi(t), i ∈ {1, 2, 3, 4} denotes the concentration of the ith species at time t and
ki, i ∈ {1, 2, 3, 4} is the reaction rate constant associated to reaction ri.

The time evolution of the molecular counts in the case of the stochastic d-CRN is
given by the following state equations:

X1(t) = X1(0)− Y1(k1

∫ t

0
X1(τ)dτ) + Y2(k2

∫ t

0
X2(τ)X3(τ)dτ)− Y3(k3

∫ t

0
X3(τ)X4(τ)dτ)

X2(t) = X2(0) + Y1(k1

∫ t

0
X1(τ)dτ)− Y2(k2

∫ τ

0
X2(τ)X3(τ)dτ)

X3(t) = X3(0)− Y3(k3

∫ t

0
X3(τ)X4(τ)dτ) + Y4(k4

∫ t

0
X1(τ)X4(τ)dτ)

X4(t) = X4(0)
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where Xi(t), i ∈ {1, . . . , 4} denotes the molecular count for the ith species, and Yj for
j ∈ {1, . . . , 4} are independent unit rate (unit intensity) homogenous Poisson processes.

For a general initial state X0 = [K L M N ]> ∈ Z4
≥0, the target state X

′ = [0 (K +
L + M) 0 N ]> is reachable which gives an extinction event, since X2 depletes both X1

and X3 which are necessary for firing all of the reactions. In the sequel we justify this
reachability argument by employing the proposed IP framework.

We consider this d-CRN with the following particular parametrization: k1 = 4.7,
k2 = 2.4, k3 = 4.9, k4 = 0.3. The initial state is X0 = [X1(0) X2(0) X3(0) X4(0)]> =
[15 10 20 20]>. Assuming deterministic mass action kinetics, our parametrization from X0

results in equilibrium with x1 ≈ 12.27, x2 ≈ 31.98, x3 ≈ 0.75 and x4 = 20. Considering
the discrete state system one can see that in the absence of X1 and X3 this CRN has no
reaction which is able to fire. Employing the feasibility framework (24) one can check the
reachability of such a target state, namely X

′ = [0, 45, 0, 20]. We solved the IP problem
(24) equipped with the objective function ∑l

j=1 cj. From the minimization we get that
copt = [35 0 20 0]>, i.e. through the first and third reactions one can reach X

′ during 55
occurrences of these reactions. The determined discrete state transition sequence of the
shortest path is depicted in Figure 5.

After running the next reaction method several times from the prescribed initial state
X0, we obtained a representative sample path reaching the critical state X

′ . This is
shown in Figure 3. Note that the depicted state transition sequence is not the shortest
path that we determined by the IP.

The feasibility approach has the advantage that it can be easily generalized to check
the reachability of a set of states having prescribed properties. It is known that considering
deterministic mass action kinetics, the system reaches a positive equilibrium point, for
which x2(t) � x1(t). Modifying the framework (24) one can check the reachability of states
significantly differing from the deterministic equilibrium point. Instead of Γc = X

′ −X0

in (24), we employ the following inequalities for feasibility analysis:

[X0 + Γc]1 ≥ Xdet
2

[X0 + Γc]2 ≤ Xdet
1

[X0 + Γc]3 ≤ Xmax

(36)

where Xdet
1 = 20, Xdet

2 = 32 are upper estimates for the deterministic case equilibrium
values of x1 and x2, respectively, if the initial state is X0 = [13 32 8]>. Based on the IP
(24) equipped with the objective ∑l

j=1 cj to be minimized, we proved that there exists
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Figure 3. A sample trajectory of Example 1 for which the finial state is equal to
X

′ = [0, 45, 0, 20]>. For each species the continuous deterministic
trajectory (smooth curve) and the stochastic discrete state counterpart
are depicted with the same line type. Note that the target state can
also be reached by fewer occurrences of the reactions.

a reachable state for which the above conditions hold. The state transition sequence
corresponding to the shortest path computed by Algorithm 1 is depicted in Figure 5.

The existence of such a reachable state is also confirmed through simulation based on
the next reaction method. A simulated sample path is depicted in Figure 4 and states of
interest are denoted by an arrow: while the deterministic system approaches equilibrium,
the stochastic counterpart satisfies the constraint set (36).

Figure 4. A sample trajectory of Example 1 for which a subset of the states signif-
icantly differ from the equilibrium point of the deterministic mass action
system. The arrow is pointing to the states where the conditions (36)
hold, though the deterministic counterpart approaches positive equilib-
rium. The continuous deterministic (smooth) and the stochastic dis-
crete state trajectories of the same species are depicted using the same
line type.
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Figure 5. Minimal-length state transition sequences of Example 1 proving the
reachability cases [13 32 8]>  [45 0 8]> and [15 10 20]>  [0 45 20]>,
respectively. The conservativity surfaces (positive stoichiometric com-
patibility classes) associated to the initial states are denoted in gray
color.

4.2 Example 2: A subconservative CRN

In the second example we consider a SIRS epidemiological model having three species
and four reactions. The reaction network structure is depicted in Figure 6. The model
describes the time evolution of the susceptible, infected and recovered species of a closed
system. Susceptible species become infected with intensity proportional to β, while in-
fected species get recovered with intensity proportional to γ. The death-rate of infected
species is proportional to parameter µ. Recovered species get susceptible with intensity
proportional to w.Assuming large population number, such a system can be characterized by the follow-
ing deterministic differential equation system:

ds(t)
dt

= wr(t)− βs(t)i(t)

di(t)
dt

= βs(t)i(t)− γi(t)− µi(t)

dr(t)
dt

= γ(t)i(t)− wr(t)

where s, i, and r denote the continuous number of susceptible, infected, and recovered
individuals, respectively.
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Figure 6. Reaction network structure of the epidemiological model in Example 2.
Note that 0 denotes the zero-complex.

For the case of small population numbers, we consider the following state equations:

S(t) = S(0) + Y1(w
∫ t

0
R(τ)dτ)− Y2(β

∫ t

0
S(τ)I(τ)dτ)

I(t) = S(0) + Y2(β
∫ t

0
S(τ)I(τ)dτ)− Y3(γ

∫ t

0
I(τ)dτ)− Y4(µ

∫ t

0
I(τ)dτ)

R(t) = R(0) + Y3(γ
∫ t

0
I(τ)dτ)− Y1(w

∫ t

0
R(τ)dτ)

where S, I, and R are the integer numbers of susceptible, infected, and recovered indi-
viduals, respectively. Moreover, Yi for i ∈ {1, . . . , 4} are independent unit-rate Poisson
processes.

The stoichiometric matrix associated to the system is the following:

Γ =

−1 0 0 1
1 −1 −1 0
0 1 0 −1


Based on Γ, it can be easily seen that the above system is a subconservative one for which
a subconservativity vector is z = [1 1 1]>.

In our simulation setting the parameters had the following values: β = 0.18, γ = 0.9,
µ = 0.05 and w = 0.39, respectively. Firstly, we consider the reachability of the target
state X

′ = [0 52 0]> where all the individuals are infected. As initial states we choose
X1

0 = [50 2 0]> and X2
0 = [10 26 10]>.

Employing the IP (24) equipped with ∑l
j=1 cj we found that there exist paths from

the above initial state to X
′ . The determined shortest paths are depicted in Figure

7 with black color. Note that these are partially overlapping reaction sequences. The
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subconservativity surface which is the same for the two initial states is shown in gray. All
the states reachable from X1

0 and X2
0 are located on the surface or below that.

Figure 7. The bounded state space of Example 2. The conservativity hypersurface
is denoted by gray color. Shortest state transition sequences starting
from [50 2 0]> and [10 26 10]>, respectively, and reaching [0 52 0]>
(where all the individuals are infected) are depicted in black color.

By means of the presented IP framework equipped with cost function ∑m
i=1 ci we

algorithmically determined a finite reaction sequence starting from X0 = [50 2 0]> for
which the final infected count is equal to zero meaning the complete regression of the
disease. This can be achieved by introducing the following linear equality constraint:

X
′(2) = 0 (37)

Such a sample path simulated by the next reaction method is depicted in Figure 8 along
the respective deterministic dynamical behavior. In Figure 9a one can see a shortest state
transition sequence determined by the IP, while in Figure 9b the state transition sequence
associated to the stochastic sample path in Figure 8 is shown.
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Figure 8. A sample path of Example 2 for which the dynamical behavior signifi-
cantly differs from that of the deterministic model. We use the same line
type to denote the continuous deterministic (smooth) and the stochastic
discrete state trajectories of the same species.

Figure 9. State transition sequences reaching the same target state [32 0 0]> where
the disease vanishes. The conservativity surface is denoted by gray color.
a) the shortest path determined by IP, b) a path simulated by the next
reaction method.
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5 Conclusion

In this paper the reachability problem of (sub)conservative d-CRNs was studied. We
characterized a bounded set containing all the reachable states along a valid state tran-
sition sequence, given the initial and target states. Upper bounds were also derived for
the possible length of cycle-free state transition sequences. A computational method
was proposed for reachability and coverability analysis of subconservative d-CRNs. The
mathematical constraints associated to reachability and coverability can be reformulated
as integer programming feasibility problems. This way the problems are reduced to find-
ing integer lattice points in a convex polytope that is solvable by Lenstra’s algorithm
in polynomial time if the number of dimensions is fixed [24]. Since their state space is
bounded, the subconservativity of the d-CRNs is exploited in the formulation of the fea-
sibility problems. This approach can also be used to determine the number of acyclic
paths between predefined initial and target states using Barvinok’s lattice point counting
algorithm [27]. Beyond the decidability, it is also possible to extend the computational
model with appropriate linear objective functions and constraints to obtain integer pro-
grams so that one can determine the shortest path between two states satisfying a finite
set of predefined constraints. Furthermore, it was shown that in the case of d-CRNs
having a stoichiometric matrix with rank lower than equal to 2, the reachability problem
is equivalent to the non-negative integer solution of the respective d-CRN state equation
under some additional conditions. The corresponding proof relies on an algorithm capa-
ble of reordering any non-negative integer solution of the state equation in order to get a
non-negative state transition sequence from the prescribed initial state to the target one.
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