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Abstract

A high algebraic order P–stable symmetric multistage two–step scheme with eliminated
phase–lag and its derivatives up to order five is obtained, for the first time in the literature, in
this paper. In order to develop the new multistage scheme we follow the next steps:

• Gratification of the necessary and sufficient junctures for P–stability.

• Gratification of the juncture of the eliminating of the phase–lag.

• Gratification of the junctures of the eliminating of the derivatives of the phase–lag up to
order five.

The above methodology, guides to the development of the coefficients of the new multistage
scheme.

The achievement of the above developments is the construction, for the first time in the liter-
ature, of a multistage P–stable tenth algebraic order symmetric two–step scheme with eliminated
phase–lag and its first, second, third, fourth and fifth derivatives.
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The new multistage scheme is analyzed numerically and theoretically, based on the following
points:

• the construction of the new multistage scheme ,

• the calculation and the frmulation of its local truncation error (LTE),

• the determination of the asymptotic form of the LTE of the new multistage scheme,

• the stability and interval of periodicity analysis of the new multistage scheme,

• the determination of an embedded multistage scheme and the denotation of the variable
step procedure for the changing of the step lengths,

• the testing of the computational effectiveness of the new multistage scheme with applica-
tion on:

– the resonance problem of the radial Schrödinger equation and on
– the system of the coupled differential equations of the Schrödinger type.

The above analysis leads to the conclusion that the new multistage scheme is more efficient
schem than the existed ones.

1 Introduction

A new multistage P–stable scheme with vanished phase–lag and its derivatives up to order

five is obtained, for the first time in the literature, in this paper.

The construction of the new proposed scheme is based on the following stages:

• Satisfaction of the property of the P–stability.

• Satisfaction of the property for the vanishing of the phase–lag.

• Satisfaction of the properties for the vanishing of the derivatives of the phase–lag

up to order five.

We will test the efficiency of the new proposed multistage scheme by applying it to:

• the radial time independent Schrödinger equation and

• Systems of coupled differential equations of the Schrödinger type.

The effective computational solution of the above mentioned problems is very im-

portant in Computational Chemistry (see [9] and references therein) since an important

part of the quantum chemical computations contains the Schrödinger equation (see [9]

and references therein). We mention here that in problems with more than one particle
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the computational solution of the Schrödinger equation is necessary. The effective com-

putational solution of the Schrödinger’s equation (via numerical schemes) gives us the

following important information:

• numerical calculations of molecular properties (vibrational energy levels and wave

functions of systems) and

• numerical presentment of the electronic structure of the molecule (see for more

details in [10–13]).

Based on the new constructed multistage scheme, we will also construct an embedded

computational scheme which is based on an local truncation error control technique and

a variable–step method.

The problems studied in this paper belong to the following category of special prob-

lems:

ζ ′′(x) = f(x, ζ), ζ(x0) = ζ0 and ζ ′(x0) = ζ ′0. (1)

which have periodical and/or oscillating solutions.

In the following we present the main classes of numerical schemes and their bibliog-

raphy which is based on the large research which has been taken place the last decades:

• Exponentially, trigonometrically and phase fitted Runge–Kutta and Runge–Kutta

Nyström schemes: [47], [50], [59], [62] – [67], [56] [78]. In this class of methods,

Runge–Kutta and Runge–Kutta Nyström schemes are developed. This class can be

divided into two subcategories:

– Numerical schemes which have the property of accurate integration of sets of

functions of the form:

xi cos (ω x) , i = 0, 1, 2, . . . or xi sin (ω x) , i = 0, 1, 2, . . .

or xi exp (ω x) , i = 0, 1, 2, . . . (2)

or sets of functions which are combination of the above functions.

– Numerical schemes which have the property of vanishing (or elimination) of

the phase–lag.

Remark 1. The frequency of the problem in (2) is denoted by the quantity ω .
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• Multistep exponentially, trigonometrically and phase fitted methods and multistep

algorithms with minimal phase–lag: [1]– [7], [18]– [21], [25]– [28], [34], [38], [40],

[44], [48]– [49], [53], [58], [60]– [61], [71]– [73], [79]– [82]. In this class of methods,

multistep schemes are developed. This class can be divided into two subcategories:

– Multistep schemes which have the property of accurate integration of sets of

functions of the form (2) or sets of functions which are combination of the

functions mentioned in (2).

– Multistep schemes which have the property of vanishing (or elimination) of the

phase–lag.

• Symplectic integrators: [42]– [43], [51], [54], [57], [67]– [70], [76]. In this class of

numerical schemes, methods for which the Hamiltonian energy of the system remains

almost constant during the integration procedure, are obtained.

• Nonlinear methods: [52]. In this category of numerical schemes, the algorithms have

nonlinear form (i.e. the relation between several approximations of the function on

several points of the integration domain (i.e. yn+j, j = 0, 1, 2, . . .) is nonlinear).

• General methods: [14]– [17], [22]– [24], [35]– [37], [41]. In the category of numerical

schemes, numerical methods with constant coefficients are constructed.

2 Theory for the development of symmetric multi-
step schemes

The theory for the construction of the symmetric multistep schemes is described in this

section.

The technique used for the numerical solution of the problems of the form (1) is the

use of the discretization of the integration domain. In our case, the integration domain

[a, b] is discretized by using the 2m-step scheme the formula of which is described below

by the relation (3). For these type of algorithms their parameter m denotes the number

of the discretization points.

The following symbols are used:

• h denotes the step length of the integration which is the same with the stepsize

of the discretization. Is determined using the following relation: h = |xi+1 − xi|,
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i = 1 −m(1)m − 1 (i.e. the parameter i is moved between 1 −m and m − 1 with

step 1) where

• xn determines the n-th point on the discretized domain.

• ζn determines the approximation of the function ζ(x) at the point xn. It is noted

the in order to achieve the approximation ζn we use a numerical scheme and in our

study we use the 2m-step method (3) described below

We consider the family of 2m-step schemes:

∆(m) :
m∑

i=−m

αi ζn+i = h2
m∑

i=−m

βi f(xn+i, ζn+i) (3)

The above family of algorithms us used for the approximate solution of the initial

value problem (1) on the integration domain [a, b], where αi and βi i = −m(1)m are the

coefficients of the 2m-step scheme.

Definition 1.

∆(m) →
{
βm 6= 0 implicit;
βm = 0 explicit. (4)

Definition 2.

∆(m) with αi−m = αm−i, βi−m = βm−i, i = 0(1)m→ symmetric (5)

Remark 2. The scheme ∆(m) is related with the following linear operator

L(x) =
m∑

i=−m

αi ζ(x+ i h)− h2
m∑

i=−m

βi ζ
′′(x+ ih) (6)

where ζ ∈ C2 (i.e. C2 ≡ CxC).

Definition 3. [14] We call that the multistep scheme (3) has an algebraic order τ , if the

linear operator L (6) is eliminated for any linear combination of the linearly independent

functions 1, x, x2, . . . , xτ+1.

Application of the symmetric 2m-step scheme ∆(m) to the test equation

ζ ′′ = −φ2 ζ (7)
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leads to the difference equation:

Υm(v) ζn+m + ...+Υ1(v) ζn+1 +Υ0(v) ζn

+Υ1(v) ζn−1 + ...+Υm(v) ζn−m = 0 (8)

and its associated characteristic equation:

Υm(v)λ
m + ...+Υ1(v)λ+Υ0(v)

+Υ1(v)λ
−1 + ...+Υm(v)λ

−m = 0. (9)

where

• v = φh,

• h is the step length or stepsize of the integration and

• Υj(v), j = 0(1)m are the stability polynomials.

Definition 4. [15] A symmetric 2m-step scheme is called that has an non zero interval

of periodicity (0, v20), if its characteristic equation (9)has the following roots :

λ1 = eiψ(v), λ2 = e−iψ(v), and |λi| ≤ 1, i = 3(1)2m (10)

for all v ∈ (0, v20), where ψ(v) is a real function of v.

Definition 5. (see [15]) A symmetric multistep scheme is called P-stable it its interval

of periodicity is equal to (0,∞).

Remark 3. A symmetric multistep scheme is called P-stable if the following necessary

and sufficient conditions are hold:

|λ1| = |λ2| = 1 (11)

|λj| ≤ 1, j = 3(1)2m, ∀v. (12)

Definition 6. A symmetric multistep scheme is called singularly P-stable if its interval

of periodicity is equal to (0,∞)\S, where S is a finite set of points.
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Definition 7. [16], [17] A symmetric multistep scheme with associated characteristic

equation given by (9), has phase-lag which is defined by the leading term in the expansion

of

t = v − ψ(v). (13)

If t = O(vγ+1) as v → ∞ then the phase-lag order is called as equal to γ.

Definition 8. [18] A symmetric multistep scheme is called as phase-fitted if its phase-

lag is equal to zero.

Theorem 1. [16] For a symmetric 2m-step scheme, with characteristic equation given

by (9), a direct formula for the computation of the phase-lag order υ and the phase-lag

constant $ is given by

−$vυ+2 +O(vυ+4) =
2Υm(v) cos(mv) + ...+ 2Υj(v) cos(j v) + ...+Υ0(v)

2m2Υm(v) + ...+ 2 j2Υj(v) + ...+ 2Υ1(v)
(14)

Remark 4. For the symmetric two–step methods the phase-lag order υ and the phase-lag

constant $ can be directly computed using the formula:

−$vυ+2 +O(vυ+4) =
2Υ1(v) cos(v) + Υ0(v)

2Υ1(v)
(15)

where Υj(v) j = 0, 1 are the stability polynomials.

3 A new multistage P–stable symmetric scheme with
eliminated phase–lag and its first, second, third,
fourth and fifth derivatives

The following family of multistage schemes is considered:

ζ̂n+1 = ζn+1 − h2
(
c1 fn+1 − c0 fn + c1 fn−1

)
ζ̃n+1 = ζn+1 − h2

(
c3 f̂n+1 − c2 fn + c3 fn−1

)
ζn+1 + a1 ζn + ζn−1 = h2

[
b1

(
f̃n+1 + fn−1

)
+ b0 fn

]
(16)

where fn+i = ζ ′′ (xn+i, ζn+i) , i = −1(1)1, f̂n+1 = ζ ′′ (xn+1, q̂n+1), f̃n+1 = ζ ′′
(
xn+1, ζ̃n+1

)
and a1, bi, i = 0, 1 and cj, i = 0 (1) 3 are parameters.

Remark 5. The new multistage scheme is nonlinear. All the approximations are based

on the point xn+1.
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The following specific case is considered:

b1 =
1

12
. (17)

Remark 6. The above set of parameters ensures that the new multistage scheme (16)

will have the maximum possible algebraic order.

If we apply the new proposed multistage pair (16) with the constant coefficient given

by (17) to the scalar model (7), we obtain the difference equation (8) with m = 1 and the

corresponding characteristic equation (9) with m = 1 with:

Φ1 (v) = 1 +
1

12
v2
(
1 + v2 c3 + v4 c1 c3

)
Φ0 (v) = a1 +

1

12
v2
(
12 b0 − v2 c2 − v4 c0 c3

)
(18)

The stages for the construction of the new proposed multistage scheme are presented

in the flowchart of Figure 1 (for developing flowcharts in LaTeX one can see [90]):

Construction of the
New Multistage Scheme

Stage 1: Gratification of
the P–stability Properties

Stage 2: Gratification of
the Elimination of the

Phase–Lag and its Deriva-
tives up to Order Five

Stage 3: Solution of the Produced
System of Nonlinear Equations

Stage 4: Determination of the Lo-
cal Truncation Error (LTE) of the

New Constructed Multistage Scheme

Figure 1. Flowchart for the stages requested for the development of the new pro-
posed multistage scheme
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3.1 Gratification of the property of the P–stability
We use the methodology first introduced by Lambert and Watson [15] and Wang [83] in

order to determine the conditions of the P–stability for the new multistage scheme:

• Request of gratification of the characteristic equation given by (9) with m = 1 for

λ = eI v, where I =
√
−1, leads to the following equation:(
eI v
)2

Φ0 (v) + eI v Φ1 (v) + Φ0 (v) = 0 (19)

• Request of gratification of the characteristic equation given by (9) with m = 1 for

λ = e−I v, where I =
√
−1, leads to the following equation:

(
e−I v

)2
Φ0 (v) + e−I v Φ1 (v) + Φ0 (v) = 0 (20)

Remark 7. We obtain the above mentioned conditions for P–stability based on

• the Definition 4

• the characteristic equation given by (9) with m = 1, where Φj, j = 0, 1 given by

(18).

3.2 Gratification of the elimination of the phase–lag and its
derivatives up to order five

The request of gratification of the elimination of the phase–lag and its derivatives up to

order five for the new multistage scheme (16) with the coefficients given by (17), gives us

the following system of equations:

Phase− Lag(PL) =
1

2

Υ0 (v)

v6c1c3 + v4c3 + v2 + 12
= 0 (21)

FirstDerivative of thePhase− Lag =
Υ1 (v)

(v6c1c3 + v4c3 + v2 + 12)2
= 0 (22)

SecondDerivative of thePhase− Lag =
Υ2 (v)

(v6c1c3 + v4c3 + v2 + 12)3
= 0 (23)

ThirdDerivative of thePhase− Lag =
Υ3 (v)

(v6c1c3 + v4c3 + v2 + 12)4
= 0 (24)

FourthDerivative of thePhase− Lag =
Υ4 (v)

(v6c1c3 + v4c3 + v2 + 12)5
= 0 (25)
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FifthDerivative of thePhase− Lag =
Υ5 (v)

(v6c1c3 + v4c3 + v2 + 12)6
= 0 (26)

where Υj (v) , j = 0(1)5 are given in the Appendix A.

3.3 Solution of the system of nonlinear equations determined
by (19) - (26)

Solving the nonlinear system of equations (19), (20), (21)–(26), we obtain the coefficients

of the new multistage scheme:

a1 = − 1

36

Υ6 (v)

Υ7 (v)
, c0 = −1

6

Υ8 (v)

Υ9 (v)

c1 = −1

2

Υ10 (v)

Υ9 (v)
, c2 = − Υ11 (v)

v4Υ7 (v)

c3 = −2
Υ12 (v)

v4Υ7 (v)
, b0 = − 1

12

Υ13 (v)

vΥ7 (v)
(27)

where Υj (v) , j = 6(1)13 are given in the Appendix B.

The probability of cancellations or the probability of impossibility of computation of

the coefficients (27), during the integration procedure (Example of cancellation: |Υj (v)| ⇒

0, j = 7, 9 for some values of |v|), leads us to give the truncated Taylor series expansions

of the coefficients developed in (27) in the Appendix C.

The behavior of new obtained coefficients is presented in Figure 1.

Based on the Figure 1, the last stage of the construction of the new multistage scheme

is the denotation of its local truncation error (LTE):

LTENM3SPS5DV = − 1

23950080
h12

(
ζ(12)n + 6φ2 ζ(10)n + 15φ4 ζ(8)n

+20φ6 ζ(6)n + 15φ8 ζ(4)n + 6φ10 ζ(2)n + φ12 ζn

)
+O

(
h14
)
. (28)

The new developed multistage scheme is defined as NM3SPS5DV . The explanation of

the abbreviationNM3SPS5DV is: New Method of Three–Stages P–Stable with Vanished

Phase–Lag and its Derivatives up to Order Five.

Remark 8. The LTE formula (28) is useful for

• the denotation of the algebraic order of the new multistage scheme
• for the development of the asymptotic form of the local error which is important for

the evaluation of the efficiency of the new scheme.
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Figure 2. Presentation of the behavior of the coefficients of the new multistage
scheme (16) given by (27) for several values of v = φh.
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4 Local truncation error and stability analysis of the
new multistage scheme

4.1 Comparative local truncation error analysis

In this chapter the local truncation error of some multistage schemes of similar form are

evaluated. The model on which is based the above mentioned evaluation is given by:

ζ ′′(x) = (V (x)− Vc + Γ) ζ(x) (29)

where

• V (x) denotes the potential function,

• Vc denotes a constant approximation of the potential on the specific point x,

• Γ = Vc − E

• Ξ(x) = V (x)− Vc and

• E denotes the energy.

Remark 9. It is easy to see studying the equation (29) that the above mentioned model

problem is the radial Schrödinger equation with potential V (x).

The following multistage schemes are evaluated:

4.1.1 Classical method (i.e., method (16) with constant coefficients)

LTECL = − 1

23950080
h12 ζ(12)n +O

(
h14
)
. (30)

4.1.2 P–stable linear six–step method of wang [83]

LTEWANGPSL6S = − 81

44800
h10

(
ζ(10)n + 10φ10 ζn

)
+O

(
h12
)
. (31)

4.1.3 P–stable method with vanished phase–lag and its first and second
derivatives developed in [6]

LTENM3SPS2DV = − 1

47900160
h12

(
2 ζ(12)n − 9φ4 ζ(8)n

−8φ6 ζ(6)n − φ12 ζn

)
+O

(
h14
)
. (32)
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4.1.4 P–stable scheme with vanished phase–lag and its first, second and third
derivatives developed in [7]

LTENM3SPS3DV = − 1

23950080
h12

(
ζ(12)n − 9φ4 ζ(8)n

−16φ6 ζ(6)n − 9φ8 ζ(4)n + φ12 ζn

)
+O

(
h14
)
. (33)

4.1.5 P–stable scheme with vanished phase–lag and its first, second, third
and fourth derivatives developed in [8]

LTENM3SPS4DV = − 1

119750400
h12

(
5 ζ(12)n + 24φ2 ζ(10)n + 45φ4 ζ(8)n

+40φ6 ζ(6)n + 15φ8 ζ(4)n − φ12 ζn

)
+O

(
h14
)
. (34)

4.1.6 P–stable scheme with vanished phase–lag and its first, second, third,
fourth and fifth derivatives developed in Section 3

The formula of the Local Truncation Error for this multistage scheme is given by (28)

The methodology for the comparative local truncation error analysis is the following:

• Step 1: Application of the LTE formulae given by (30), (31), (32), (33), (34) and

(28) to the scalar problem (29).

• Step 2: Step 1 leads to the new formulae of LTE.

Remark 10. The derivation of the new expressions of LTE is based on the sub-

stitution of the derivatives of the function ζ (which are determined using the scalar

problem (29)) in the formulae given by (30), (31), (32), (33), (34) and (28). We

give some formulae of the derivatives of the function ζ in the Appendix D.

• Step 3: Step 2 leads to the new formulae of LTE for the multistage schemes which

are under evaluation.

Remark 11. Observing the new formulae of LTE it is easy to see that the charac-

teristic of these formulae is the inclusion of the parameter Γ and the energy E.

The general form of the new formulae of LTE can be written as:
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LTE = hp
k∑
j=0

Ψj Γ
j (35)

with Ψj:

1. real numbers (frequency independent cases i.e. the classical case) or

2. formulae of v and Γ (frequency dependent schemes),

p is the algebraic order of the multistage scheme and k is the maximum possible

power of Γ in the formulae of LTE.

• Step 4: We investigate two set of values for the parameter Γ:

1. The Potential is Closed to the Energy.

Consequences:

Γ ≈ 0 ⇒ Γi ≈ 0, i = 1, 2, . . . . (36)

which leads to:

LTEΓ=0 = hk Λ0 (37)

Remark 12. The quantity Λ0 is the same for all the multistage schemes

of the same family, i.e. LTECL = LTENM3SPS2DV = LTENM3SPS3DV =

LTENM3SPS4DV = LTENM3SPS5DV = h12 Λ0. Λ0 is given in the Appendix E.

Theorem 2. Based on the formula (36) we conclude that for Γ = Vc −E ≈ 0

the local truncation error of the classical method (constant coefficients - (30)),

the local truncation error of the scheme with vanished phase–lag and its first

and second derivatives developed in [6] (with LTE given by (32), the local

truncation error for the algorithm with vanished phase–lag and its first, second

and third derivatives developed in [7] (with LTE given by (33), the local trun-

cation error for the algorithm with vanished phase–lag and its first, second,

third and fourth derivatives developed in [8] (with LTE given by (34)) and the

local truncation error for the numerical pair with vanished phase–lag and its

first, second, third, fourth and fifth derivatives developed in Section 3 (with
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LTE given by (28), are the same and equal to h12 Λ0, where Λ0 is given in the

Appendix E.

2. The Energy and the Potential are far from each other. Therefore,

Γ >> 0 ∨ Γ << 0 ⇒ |Γ| >> 0.

Consequences:

The most accurate multistage scheme is the one with formula of its asymptotic

form of LTE, given by (35), which contains the minimum power of Γ (i.e.

minimum values for k) and the maximum value of p.

• Based on the above we obtain the following asymptotic forms of the LTE formulae

for the multistage schemes which are under evaluation.

4.1.7 Classical method

The Classical Method is the method (16) with constant coefficients.

LTECL = − 1

23950080
h12

(
ζ (x) Γ6 + · · ·

)
+O

(
h14
)
. (38)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 5.

4.1.8 4.1.7. P–stable linear six–step method of Wang [83]

This is the method presented in Linear Six–step Method presented in [83] (see in [83]

equations (23)-(27). We note also here that there is a missprint in the paper [83]. In

formula (25) 2C3,0 y
′′
k+2 must be replaced by the correct: 2C3,0 y

′′
k+3.

LTEWANGPSL6S = − 81

8960
h10

(
Ξ (x) ζ (x) Γ4 + · · ·

)
+O

(
h12
)
. (39)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 3.

4.1.9 P–stable method with vanished phase–lag and its first and second
derivatives developed in [6].

This is the P–stable method which we developed in [6].
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LTENM3SPS2DV = − 1

997920
h12

(
d4

dx4
Ξ (x) ζ (x) Γ4

+ · · ·

)
+O

(
h14
)
. (40)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 3.

4.1.10 P–stable scheme with vanished phase–lag and its first, second and
third derivatives developed in [7]

This is the P–stable method which we developed in [7].

LTENM3SPS3DV = − 1

997920
h12

[[
4Ξ (x) ζ (x)

d2

dx2
Ξ (x) + 7 ζ (x)

d4

dx4
Ξ (x)

+2
d3

dx3
Ξ (x)

d

dx
ζ (x) + 3 ζ (x)

(
d

dx
Ξ (x)

)2
]
Γ3 + · · ·

]
+O

(
h14
)
. (41)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 2.

4.1.11 P–stable scheme with vanished phase–lag and its first, second, third
and fourth derivatives developed in [8]

This is the P–stable method which we developed in [8].

LTENM3SPS4DV = − 1

1247400
h12

[[
ζ (x)

d4

dx4
Ξ (x)

]
Γ3

+ · · ·

]
+O

(
h14
)
. (42)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 2.

4.1.12 P–stable scheme with vanished phase–lag and its first, second, third,
fourth and fifth derivatives developed in Section 3

LTENM3SPS5DV = − 1

1496880
h12

[[
6Ξ (x) ζ (x)

d4

dx4
Ξ (x)
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+15

(
d

dx
Ξ (x)

)
ζ (x)

d3

dx3
Ξ (x) + 2

d5

dx5
Ξ (x)

d

dx
ζ (x)

+10 ζ (x)

(
d2

dx2
Ξ (x)

)2

+ 5 ζ (x)
d6

dx6
Ξ (x)

]
Γ2 + · · ·

]
+O

(
h14
)
. (43)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0, 1.

The above analysis leads to the following theorem:

Theorem 3.

• Classical Method (i.e., the method (16) with constant coefficients): For this method

the error increases as the sixth power of Γ.

• P–stable Linear Six–step Method of Wang [83]: For this method the error increases

as the fourth power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First and

Second Derivatives Developed in [6]: For this method the error increases as the

fourth power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in [7]: For this method the error increases

as the third power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First,

Second, Third and Fourth Derivatives Developed in [8]: For this method the error

increases as the third power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First,

Second, Third, Fourth and Fifth Derivatives Developed in Section 3: For this method

the error increases as the second power of Γ.

Consequently, for the numerical solution of the time independent radial Schrödinger equa-

tion, which is the scalar model for the local truncation error analysis, the new multistage

scheme with vanished phase–lag and its derivatives up to order five is the most accurate

one.
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4.2 Stability analysis

We will use for our analysis the following test equation:

ζ ′′ = −ω2 ζ. (44)

Remark 13. Observing (7) and (44) we conclude that ω 6= φ, where φ is the frequency of

the test problem (7) (phase–lag analysis) and ω is the frequency of the test problem (44)

(stability analysis).

If we apply the new multistage scheme (16) to the test equation (44) we obtain the

difference equation:

Ω1 (s, v) (ζn+1 + ζn−1) + Ω0 (s, v) ζn = 0 (45)

and the corresponding characteristic equation:

Ω1 (s, v)
(
λ2 + 1

)
+ Ω0 (s, v) λ = 0 (46)

where the stability polynomials Ωj (s, v) , j = 0, 1 are given by:

Ω1 (s, v) = 1 + b1 s
2 + c3 b1 s

4 + c1 c3 b1 s
6

Ω0 (s, v) = a1 + b0 s
2 − c2 b1 s

4 − c0 c3 b1 s
6 (47)

where s = ω h and v = φh.

Remark 14. Observation of the expression (47), we conclude that the formulae (47) are

dependent on s and v, while the formulae (18) are dependent only on v.

Substitution of the coefficients b1 given by (17) and the coefficients a1, ci i = 0(1)3, b0

given by (27) into the stability polynomials (47), leads to the following formulae for the

stability polynomials Ωj (s, v) , j = 0, 1:

Ω1 (s, v) =
1

12

Υ14 (s, v)

v6Υ15 (s, v)

Ω0 (s, v) = − 1

18

Υ16 (s, v)

v6Υ15 (s, v)
(48)

where Υj (s, v) , j = 14(1)16 are given in the Appendix F.
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Remark 15. It is noted that the conditions and definitions of P–stability and singularly

almost P–stability, which are given in Section 2, are referred to problems which have

frequency with satisfaction of the condition ω = φ.

The multistage scheme (16) satisfies the condition of a non zero interval of periodicity

if for the roots of its characteristic equation (46) the following condition is hold:

|λ1,2| ≤ 1 (49)

4.2.1 Procedure for the development of the s− v domain for the new multi-
stage scheme

The development of the s − v domain for the new scheme is based on the flowchart of

Figure 3.

Development of the s−v Domain
for the New Multistage Scheme

Step 1: Formation of the
characteristic equation (46)

Step 2: Solution of the
equation of the Step 1 for
several values of s and v

Step 3: Examination of the obtained
solution from the Step 2 - Investigation
of the satisfaction of the condition (49)

Step 4.1 For the cases of the solutions of
the equation of the Step 2 which satisfy

the condition (49), we obtain a point
of the (s, v) domain, which is plotted

Step 4.2 For the cases of the solutions of
the equation of the Step 2 which do not

satisfy the condition (49), the correspond-
ing point (s, v) is rejected and a selection

for evaluation of another point (s, v) is hold

Figure 3. Flowchart for the development of the s−v domain for the new multistage
scheme
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The procedure presented in the flowchart of Figure 3 leads to the construction of the

s− v domain which is builded in Figure 4.

Figure 4. The plot of s−v domain of the new obtained multistage P–stable scheme
with vanished phase–lag and its derivatives up to order five.

Remark 16. The examination of the produced in Figure 4 s− v domain leads us to the

following remarks:

1. The new obtained multistage P–stable scheme is stable within the shadowed area of

the domain.

2. The new obtained multistage P–stable scheme is unstable within the white area of

the domain.

Remark 17. Each of the above mentioned areas for the s− v domain new obtained mul-

tistage P–stable scheme corresponds to the possibility of the efficient solution of problem

which are categorized as follows:

1. Problems for which ω 6= φ. For these kind of problems, the most efficient methods

are those with s − v domain within the shadowed area of the Figure 4 excluding

the area around the first diagonal.
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2. Problems for which ω = φ (see the Schrödinger equation and related problems).

For these kind of problems the most efficient methods are those with s − v domain

equal with the area around the first diagonal of the Figure 4.

The procedure for the denotation of the interval of periodicity of the new obtained

multistage P–stable scheme is as follows:

1. We substitute s = v in the stability polynomials Ωi, i = 0, 1 given by (48).

2. We evaluate the area around the first diagonal of the s−v domain defined in Figure

4.

The above presented procedure leads us to the conclusion that the interval of period-

icity of the new obtained multistage P–stable scheme is equal to (0,∞).

The above achievements lead to the following theorem:

Theorem 4. The multistage scheme developed in Section 3:

• is of three stages

• is of tenth algebraic order,

• has vanished the phase–lag and its derivatives up to order five and

• is P–stable i.e. has an interval of periodicity equals to: (0,∞).

5 Numerical results

We will evaluate the effectiveness of the new developed multistage scheme applying it to

the numerical solution of:

1. The radial time–independent Schrödinger equation and

2. The systems of coupled differential equations arising from the Schrödinger equation.

5.1 Radial time–independent Schrödinger equation

The radial time–independent Schrödinger equation is given by:

ζ ′′(r) = [l(l + 1)/r2 + V (r)− k2] ζ(r), (50)

where
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1. The function Θ(r) = l(l+1)/r2 + V (r) denotes the effective potential satisfying the

following relation: Θ(r) → 0 as r → ∞.

2. k2 ∈ R denotes the energy.

3. l ∈ Z denotes the angular momentum.

4. The function V denotes the potential.

Since the the problem (50) is a boundary value one, the boundary conditions are given

by:

ζ(0) = 0

and another the integration’s end point condition which is denoted for large values of r

from the physical characteristics and properties of the specific problem.

The new obtained multistage scheme has some of its coefficients are dependent from

the quantity v = φh, where φ is the frequency of the specific problem. Therefore in order

the coefficients of the new multistage scheme to be possible to be computed during the

integration procedure, it is necessary the denotation of their frequency φ. In our numerical

tests and for (50) and l = 0 we have:

φ =
√

|V (r)− k2| =
√

|V (r)− E|

where V (r) denotes the potential and E = k2 denotes the energy.

5.1.1 Woods–Saxon potential

Observing the model of (50) it is easy to see that it consists the potential V (r). Con-

sequently, in order to be possible to computer the values of the potential V (r), it is

necessary to denote the the function of the potential V (r). In our numerical experiments

we will use the Wood–Saxon potential which is given by:

V (r) =
Ψ0

1 + ξ
− Ψ0 ξ

a (1 + ξ)2
(51)

with ξ = exp
[
r−X0

a

]
, Ψ0 = −50, a = 0.6, and X0 = 7.0.

In Figure 5 we present the form of the Wood–Saxon potential for several values of r.
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Figure 5. Form of the Woods–Saxon potential for several values of r.

In the following we give the values of the frequency φ (see for details [20] and [21]):

φ =



√
−50 + E for r ∈ [0, 6.5− 2h]

√
−37.5 + E for r = 6.5− h

√
−25 + E for r = 6.5

√
−12.5 + E for r = 6.5 + h

√
E for r ∈ [6.5 + 2h, 15].

For the denotation of the above values of the frequency φ, the technique introduced by

Ixaru et al. ( [19] and [21]) is used. This technique approximates the continuous function

V (r) by discrete constant values on some specific points within the integration domain.

Below we give some examples of this technique:

1. On r = 6.5− h, the value of φ is approximated by the value:
√
−37.5 + E. Conse-

quently, v = φh =
√
−37.5 + E h.

2. On r = 6.5− 3h, the value of φ is approximated by the value:
√
−50 + E. Conse-

quently, v = φh =
√
−50 + E h.

The potential V (r) is a user defined function. There are a lot of potentials which

are of great interest in several disciplines of Chemistry. For the most of them, their

their eigenenergies are unknown. We selected the Woods–Saxon potential since for this

potential the eigenenergies are known.

5.1.2 The resonance problem of the radial Schrödinger equation

In this section we will present the numerical solution of the problem (50):
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• with l = 0 and

• using the Woods-Saxon potential (51)

Theoretically the interval of integration for the problem presented above is equal to

(0,∞). In order the above problem to be solved numerically, it is necessary the infinite

interval of integration (0,∞) to be approximated by a finite one. We approximate the

above infinite interval by r ∈ [0, 15] for the needs of our numerical experiments. We note

also that the numerical schemes which will be evaluated will be applied on a wide range

of energies: E ∈ [1, 1000].

Since for positive energies the potential V (r) vanished faster than the term l(l+1)
r2

, the

equation (50) can be written as:

ζ ′′ (r) +

(
k2 − l(l + 1)

r2

)
ζ (r) = 0 (52)

when r → ∞. It is noted that in (52) the solutions of the above model are given by

k r jl (k r ) and k r nl (k r), which are linearly independent, with jl (k r) and nl (k r) to be

the spherical Bessel and Neumann functions respectively (see [84]).

Consequently, the asymptotic form of the solution of equation (50) (i.e. in the case

where r → ∞) is given by:

ζ (r) ≈ Akrjl (kr)−B krnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan δl cos

(
kr − lπ

2

)]
where δl is the phase shift and A, B, AC ∈ R. The computation of the phase shift is

given by the following direct formula:

tan δl =
ζ (r2)S (r1)− ζ (r1)S (r2)

ζ (r1)C (r1)− ζ (r2)C (r2)

where r1 and r2 are distinct points in the asymptotic region (we chosen r1 = 15 and

r2 = r1 − h) with S (r) = k r jl (k r) and C (r) = −k r nl (k r). The problem described

above is an initial–value one. Consequently, it is necessary to compute the values of

ζj, j = 0, 1 before starting the application of a two–step finite difference pair. The value

ζ0 is determined by the initial condition of the problem. The value ζ1 is computed using

the high order Runge–Kutta–Nyström methods (see [22] and [23]). Using the computation
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of the values ζi, i = 0, 1 , we compute the phase shift δl at the point r2 of the asymptotic

region. We note that ζj is the approximation of the function ζ at the point xj.

We solve numerically the above described problem for positive energies. Consequently,

two are the possible results of the solution:

• the phase-shift δl or

• The energies E, for E ∈ [1, 1000], for which δl =
π
2
.

For our numerical experiments the second problem is solved, which is known as the

resonance problem.

The boundary conditions are:

ζ(0) = 0 , ζ(r) = cos
(√

Er
)

for large r.

The following schemes are used for the computation of the the positive eigenenergies

of the resonance problem presented above:

• Method QT8: the eighth order multi–step method developed by Quinlan and

Tremaine [24];

• Method QT10: the tenth order multi–step method developed by Quinlan and

Tremaine [24];

• Method QT12: the twelfth order multi–step method developed by Quinlan and

Tremaine [24];

• Method MCR4: the fourth algebraic order method of Chawla and Rao with

minimal phase–lag [25];

• Method RA: the exponentially–fitted method of Raptis and Allison [26];

• Method MCR6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase–lag [27];

• Method NMPF1: the Phase-Fitted Method (Case 1) developed in [14];

• Method NMPF2: the Phase-Fitted Method (Case 2) developed in [14];

• Method NMC2: the Method developed in [28] (Case 2);
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• Method NMC1: the method developed in [28] (Case 1);

• Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];

• Method WPS2S: the Two–Step P–stable Method developed in [83];

• Method WPS4S: the Four–Step P–stable Method developed in [83];

• Method WPS6S: the Six–Step P–stable Method developed in [83];

• Method NM3SPS2DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first and second derivatives

developed in [6];

• Method NM3SPS3DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first, second and third

derivatives developed in [7].

• Method NM3SPS4DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first, second, third and

fourth derivatives developed in [7].

• Method NM3SPS5DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first, second, third, fourth

and fifth derivatives developed in Section 3.

Figure 6. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E2 = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.
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Figure 7. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

The maximum absolute errors Errmax, which are determined by:

Errmax = max| log10 (Err) | where

Err = |Ecalculated − Eaccurate|

are presented in Figures 6 and 7.

The determination of the absolute error Err is achieved using two values of the specific

eigenenergy:

1. The computed eigenenergies. The computed eigenenergies are denoted as Ecalculated
and are computed using each of the 18 numerical methods mentioned above.

2. The accurate eigenenergies (or as also called reference values for the eigenener-

gies). The accurate eigenenergies are denoted as Eaccurate and are computed using

the well known two-step method of Chawla and Rao [27].

In Figures 6 and 7 we present the following:
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• the maximum absolute errors Errmax for the eigenenergies E2 = 341.495874 and

E3 = 989.701916, respectively, and for the 18 numerical methods mentioned above

for several values of CPU time (in seconds).

• the needed CPU time (in seconds) (as mentioned above).

The symbols E2 and E3 for the eigenenergies in our numerical tests are used since it is

known that the Woods–Saxon potential has also the eigenenergies E0 and E1. We chose

the eigenenergies E2 and E3 because for these eigenenergies the solution has stiffer behav-

ior and consequently the newly developed scheme can show efficiently its effectiveness.

5.1.3 Conclusions on the achieved numerical results for the radial Schrödinger
equation

The results presented in Figures 6 and 7 lead to the following conclusions:

• Method QT10 is more efficient than Method MCR4 and Method QT8.

• Method QT10 is more efficient than Method MCR6 for large CPU time and

less efficient than Method MCR6 for small CPU time.

• Method QT12 is more efficient than Method QT10

• Method NMPF1 is more efficient than Method RA, Method NMPF2 and

Method WPS2S

• Method WPS4S is more efficient than Method MCR4, Method NMPF1 and

Method NMC2.

• Method WPS6S is more efficient than Method WPS4S.

• Method NMC1, is more efficient than all the other methods mentioned above.

• Method NM2SH2DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS2DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS3DV, is more efficient than all the other methods mentioned

above.
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• Method NM3SPS4DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS5DV, is the most efficient one.

5.2 Error estimation

In our numerical tests we will use also the numerical solution of systems of coupled

differential equations of the Schrödinger type.

The above problem will be solved using the so called variable–step schemes.

Definition 9. We determine a numerical scheme as a variable–step method if the step

length of used by the numerical scheme is changed during the integration procedure.

Definition 10. A technique is called as Local truncation error estimation technique

(LTEETQ), if it uses a variable–step scheme in order to change the step length during

the integration.

During the last decades much research has been done on the development of numerical

methods of constant or variable step length for the approximate solution of problems of

the form of the Schrödinger equation (see for example [14]– [83]).

The categories of the LTEETQ procedures are shown in Figure 8.

Viariable–Step Schemes

- Embedded Schemes

LTEETQ Procedure Based

on the Algebraic Order

LTEETQ Procedure

Based on the the Order

of Derivatives of the Phase–Lag

Figure 8. Categories of LTEETQ Procedures used for the Development of Em-
bedded Schemes for the Problems with Oscillatory and/or Periodical
Solutions

For the change of the step length we use the following relation for the estimation of

the local truncation error (LTE) in the lower order solution ζLn+1:

LTE =| ζHn+1 − ζLn+1 | (53)

where ζLn+1 and ζHn+1 are
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• LTEETQ Technique which is based on the algebraic order of the numer-

ical schemes. For this procedure, ζLn+1 denotes the numerical scheme with the

lower algebraic order solution and ζHn+1 denotes the numerical scheme pair with the

higher algebraic order solution.

• LTEETQ Technique which is based on the order of the derivatives of

the phase–lag. Let us consider that the higher order of the derivatives of the

phase–lag which are eliminated for the numerical schemes which participate in this

technique are p and s respectively, where p < s. For this procedure ζLn+1 denotes the

numerical scheme with eliminated higher order derivative of the phase–lag equal to

p and ζHn+1 denotes the numerical scheme with eliminated higher order derivative of

the phase–lag equal to s .

For our numerical tests we use the first LTEETQ technique for the estimation of the

local truncation error. Consequently, we use:

As ζLn+1 we use the eighth algebraic order method developed in [82] and as ζHn+1 we

use the tenth algebraic order method developed in Section 3.

In Figure 9 we present the variable–step process used in our numerical tests. This

process uses the Local Truncation Error Control Technique LTEETQ. We note that:

• hn is determined as the stepsize which is used during the nth step of the integration

procedure and

• acc is determined as the accuracy of the local truncation error LTE which is defined

by the user.

Remark 18. For our numerical tests we use the well known methodology called as local

extrapolation. Using this methodology, the approximation of the solution at each point

of the integration domain is done via the higher order solution ζHn+1 although the local

truncation error estimation is based on the lower order solution ζLn+1.

5.3 The system of coupled differential equations of the
Schrödinger type

We can find systems of coupled differential equations arising from the Schrödinger equa-

tion in many scientific areas like: quantum chemistry, material science, theoretical physics,

quantum physics, atomic physics, physical chemistry, chemical physics, quantum chem-

istry, electronics, etc.
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Error Control
Technique
LTEETQ

LTEETQ < acchn+1 = 2hn

acc ≤ LTEETQ ≤
100 acc

hn+1 = hn

hn+1 = 1
2
hn and

the step is repeated

yes

no

yes

no

Figure 9. Flowchart for the Local Truncation Error Control Technique LTEETQ.
The parameter acc is defined by the user

The model of the systems of the close-coupling Schrödinger equations is given by:[
d2

dx2
+ k2i −

li(li + 1)

x2
− Vii

]
ζij =

N∑
m=1

Vim ζmj

for 1 ≤ i ≤ N and m 6= i.

Since the above problem is a boundary value one, the boundary conditions, which
must be determined, are given by (see for details [29]):

ζij = 0 at x = 0

ζij ∼ ki xjli (kix)δij +

(
ki
kj

)1/2

Kij ki xnli (kix) (54)

Remark 19. The multistage schem obtained in this paper and the produced embedded
finite difference method, which is based on the multistage scheme, can be applied efficiently

to both open and close channels problem.
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Following the analysis fully presented in [29] we produce the new formulae of the

asymptotic condition (54):

ζ ∼ M+NK′.

where the matrix K′ and diagonal matrices M, N are give by :

K ′
ij =

(
ki
kj

)1/2

Kij

Mij = kixjli(kix)δij

Nij = kixnli(kix)δij

The rotational excitation of a diatomic molecule by neutral particle impact is studied

in our paper. In many scientific areas like quantum chemistry, theoretical chemistry,

theoretical physics, quantum physics, material science, atomic physics, molecular physics,

in technical applications in the analysis of gas dynamics and stratification of chemically

reacting flows, dispersed flows, including with nano-sized particles etc, we can find the

above mentioned problem. The model of the above problem contains the close–coupling

Schrödinger equations (see [9], [10–13], [85] - [89]). Using the denotations:

• quantum numbers (j, l) which determine the entrance channel (see for details in

[29]),

• quantum numbers (j′, l′) which determine the exit channels and

• J = j + l = j′ + l′ which determine the total angular momentum.

we obtain:[
d2

dx2
+ k2j′j −

l′(l′ + 1)

x2

]
ζJjlj′l′ (x) =

2µ

~2
∑
j′′

∑
l′′

< j′l′; J | V | j′′l′′; J > ζJjlj′′l′′(x)

where

kj′j =
2µ

~2

[
E +

~2

2I
{j(j + 1)− j′(j′ + 1)}

]
.

and E denotes the kinetic energy of the incident particle in the center-of-mass system, I

denotes the moment of inertia of the rotator, µ denotes the reduced mass of the system,

Jjl is angular momentum of the quantum numbers (j, l) and j′′ and l′′ are quantum

numbers.
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For our numerical tests, we use the following potential V (see [29]):

V (x, k̂j′jk̂jj) = V0(x)P0(k̂j′jk̂jj) + V2(x)P2(k̂j′jk̂jj)

and therefore, the coupling matrix has elements of the form:

< j′l′; J | V | j′′l′′; J >= δj′j′′δl′l′′V0(x) + f2(j
′l′, j′′l′′; J)V2(x)

where f2 coefficients are denoted from formulae described by Bernstein et al. [30] and k̂j′j

is a unit vector parallel to the wave vector kj′j and Pi, i = 0, 2 are Legendre polynomials

(see for details [31]). We note also that V0(x) and V2(x) denote potential functions defined

by the user. Based on the above achievements, we obtain the following new formulae of

the boundary conditions:

ζJjlj′l′ (x) = 0 at x = 0 (55)

ζJjlj′l′ (x) ∼ δjj′δll′ exp[−i(kjjx− 1/2lπ)]−
(
ki
kj

)1/2

SJ(jl; j′l′) exp[i(kj′jx− 1/2l′π)]

where S matrix. For K matrix of (54) we use the following formula:

S = (I+ iK)(I− iK)−1.

The procedure fully presented in [29] is used in order to approximate the solution of

the above mentioned problem. The procedure contains the multistage scheme developed

in this paper in order to obtain the integration from the initial point to the matching

points.

For our numerical experiments the following parameters for the S matrix are used:

2µ

~2
= 1000.0 ;

µ

I
= 2.351 ; E = 1.1

V0(x) =
1

x12
− 2

1

x6
; V2(x) = 0.2283V0(x).

For our experiments we use (see in [29]) J = 6 and for the excitation of the rotator

the value j = 0 state to levels up to j′ = 2, 4 and 6. These values produce systems of

four, nine and sixteen coupled differential equations of the Schrödinger type,

respectively. We follow the theory fully presented in [31] and [29] and consequently the

potential is considered infinite for x less than x0. Therefore, the boundary condition (55)

can be written now as

ζJjlj′l′ (x0) = 0.

For the numerical solution of the above described problem, the following schemes are

used:
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• the Iterative Numerov method of Allison [29] which is indicated as Method I2,

• the variable–step method of Raptis and Cash [32] which is indicated as Method

II,

• the embedded Runge–Kutta Dormand and Prince method 5(4) (5(4) means: Runge–

Kutta method of variable step which uses the fourth algebraic order part in order

to control the error of the the fifth algebraic order part) which is developed in [23]

which is indicated as Method III,

• the embedded Runge–Kutta method ERK4(2) developed in Simos [33] which is

indicated as Method IV,

• the embedded two–step method developed in [1] which is indicated as Method V,

• the embedded two–step method developed in [2] which is indicated as Method VI.

• the embedded two–step method developed in [3] which is indicated as Method

VII.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in [6] which is indicated as Method VIII.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in [7] which is indicated as Method IX.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in [8] which is indicated as Method X.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in this paper which is indicated as Method

X.

In Table 2 we present:

• the real time of computation requested by the schemes I-XI introduced above in

order to calculate the square of the modulus of the S matrix for the sets of 4, 9 and

16 of systems of coupled differential equations respectively,
2We note here that Iterative Numerov method developed by Allison [29] is one of the most well-known

methods for the numerical solution of the coupled differential equations arising from the Schrödinger
equation
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• the maximum error in the computation of the square of the modulus of the S matrix.

All computations were carried out on a x86-64 compatible PC using double-precision

arithmetic data type (64 bits) according to IEEE c© Standard 754 for double precision.

Table 1. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|2 for
the variable–step methods Method I - Method VIII. acc=10−6. Note that
hmax is the maximum stepsize. N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr
Method I 4 0.014 3.25 1.2× 10−3

9 0.014 23.51 5.7× 10−2

16 0.014 99.15 6.8× 10−1

Method II 4 0.056 1.55 8.9× 10−4

9 0.056 8.43 7.4× 10−3

16 0.056 43.32 8.6× 10−2

Method III 4 0.007 45.15 9.0× 100

9
16

Method IV 4 0.112 0.39 1.1× 10−5

9 0.112 3.48 2.8× 10−4

16 0.112 19.31 1.3× 10−3

Method V 4 0.448 0.20 1.1× 10−6

9 0.448 2.07 5.7× 10−6

16 0.448 11.18 8.7× 10−6

Method VI 4 0.448 0.15 3.2× 10−7

9 0.448 1.40 4.3× 10−7

16 0.448 10.13 5.6× 10−7

Method VII 4 0.448 0.10 2.5× 10−7

9 0.448 1.10 3.9× 10−7

16 0.448 9.43 4.2× 10−7

Method VIII 4 0.896 0.04 3.8× 10−8

9 0.896 0.55 5.6× 10−8

16 0.896 8.45 6.5× 10−8

Method IX 4 0.896 0.03 3.2× 10−8

9 0.896 0.50 4.1× 10−8

16 0.896 8.35 5.0× 10−8

Method X 4 0.896 0.02 2.7× 10−8

9 0.896 0.44 3.3× 10−8

16 0.896 8.01 4.2× 10−8

Method XI 4 0.896 0.01 1.9× 10−8

9 0.896 0.39 2.7× 10−8

16 0.896 7.12 3.6× 10−8
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6 Conclusions

A new P–stable multistage scheme with vanished phase–lag and its derivatives up to order

five was developed in this paper.

The development was based on the following stages:

1. Satisfaction of the P–stability properties introduced by Lambert and Watson [15]

and Wang [83].

2. Satisfaction of the property of the vanishing of the phase–lag.

3. Satisfaction of the properties of the vanishing of the derivatives of the phase–lag up

to order five.

The above technique for the construction of P–stable numerical schemes was first

introduced by Medvedev and Simos [6].

We analyzed the new proposed multistage scheme as follows:

• Computation of the local truncation error (LTE).

• Computation of the asymptotic form of the LTE

• Comparison of the asymptotic form of the LTE of new multistage method with the

asymptotic forms of the LTE of similar methods.

• Study of the stability and the interval of periodicity properties of the new multistage

scheme.

• Study of the computational efficiency of the new multistage scheme.

Based on the above analysis we arrived to the conclusion that the theoretical, compu-

tational and numerical results developed in this paper, proved the efficiency of the new

multistage scheme compared with other well known and recently obtained methods of the

literature for the numerical solution of the Schrödinger equation.
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Appendix A: Formulae for the Υi (v) , i = 0(1)5

Υ0 (v) = 2 cos (v) v6c1c3 − v6c0c3

+ 2 cos (v) v4c3 − v4c2

+ 2 cos (v) v2 + 12 v2b0

+ 24 cos (v) + 12 a1

Υ1 (v) = − sin (v) v12c1
2c3

2

− 2 sin (v) v10c1c3
2 − v9c0c3

2

+ v9c1c2c3 − 2 sin (v) v8c1c3

− sin (v) v8c3
2 − 24 v7b0c1c3

− 24 sin (v) v6c1c3 − 2 v7c0c3

− 2 sin (v) v6c3 − 36 v5a1c1c3

− 12 v5b0c3 − 36 v5c0c3

− 24 sin (v) v4c3 − v5c2

− sin (v) v4 − 24 v3a1c3

− 24 v3c2 − 24 sin (v) v2

− 12 va1 + 144 vb0 − 144 sin (v)

Υ2 (v) = −2160 v4c0c3 − 204 v6c0c3

− 432 cos (v) v4c3 − 1728 v4b0c3

+ 120 v6c2c3 − 12 v6b0c3

+ 108 v4a1c3 − 864 v2a1c3

− 3 cos (v) v8c3 − 36 cos (v) v8c3
2

− cos (v) v12c3
3 − 3 cos (v) v10c3

2

− v12c0c3
3 − 72 cos (v) v6c3

− 3 v10c0c3
2 + 36 v8b0c3

2

− 6 v8c0c3 + 3 v8c2c3

+ 120 v6a1c3
2 − 3 cos (v) v10c1c3

− 72 cos (v) v8c1c3 − 72 cos (v) v10c1c3
2

− 6 cos (v) v12c1c3
2
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− 36 cos (v) v12c1
2c3

2 − 3 cos (v) v14c1c3
3

− 3 cos (v) v14c1
2c3

2 − 2160 v4a1c1c3

− 3 cos (v) v16c1
2c3

3 − cos (v) v18c1
3c3

3

− 1728 cos (v)− 3600 v6b0c1c3

+ 96 v6a1c1c3 + 324 v8c1c2c3

− 72 v8b0c1c3 + 12 v10c1c2c3

+ 324 v8a1c1c3
2 + v12c1c2c3

2

+ 252 v10c0c1c3
2 + 108 v10b0c1c3

2

+ 252 v10a1c1
2c3

2 + 10 v12c0c1c3
2

− 3 v14c1
2c2c3

2 − 144 a1

+ 120 v12b0c1
2c3

2 + 3 v14c0c1c3
3

+ 1728 b0 − 864 v2c2 − 36 v4c2

− 432 v2b0 − cos (v) v6 − 432 cos (v) v2

− v6c2 + 36 v2a1

− 432 cos (v) v6c1c3 − 36 cos (v) v4

Υ3 (v) = −103680 v3a1c1c3 + 58752 v9b0c1c3
2

− 1440 v9a1c1c3
2 + 60480 v9a1c1

2c3
2

+ 60 v11c1c2c3 − 2592 v11c1c2c3
2

+ 60480 v9c0c1c3
2 − 144 v9b0c1c3

+ 864 sin (v) v4 + 4896 v11c0c1c3
2

+ 6912 sin (v) v6c1c3 + 2592 v9c1c2c3

+ 864 sin (v) v12c1
2c3

2 + 1728 sin (v) v10c1c3
2

+ 1728 sin (v) v8c1c3 + 13824 v5a1c1c3

+ 62208 v7a1c1c3
2 + 6912 sin (v) v2

− 10368 v5c0c3 + 6912 sin (v) v4c3

+ 1728 sin (v) v6c3 − 103680 v3b0c3

− 103680 v3c0c3 + 864 v9c0c3
2

− 576 v7c0c3 + 6912 v5b0c3

+ 10368 v3a1c3 + 864 sin (v) v8c3
2
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− 576 v7a1c1c3 + 1728 v3c2 − 20736 vb0

+ 864 v11b0c1c3
2 + 60480 v11b0c1

2c3
2

− 144 v11a1c1
2c3

2 − 48 v13c1c2c3
2

+ 120 v13c0c1c3
2 − 3744 v13c1

2c2c3
2

− 576 v13b0c1c3
3 + 1440 v13b0c1

2c3
2

− 3744 v13a1c1
2c3

3 − 2736 v11a1c1c3
3

− 120 v15c1
2c2c3

2 + 48 v15c0c1c3
3

− 864 v15b0c1
2c3

3 − 2016 v15a1c1
3c3

3

− 12 v17c1
2c2c3

3 + 12 v17c0c1c3
4

− 60 v17c0c1
2c3

3 − 2016 v15c0c1
2c3

3

− 720 v17b0c1
3c3

3 + 12 v19c1
3c2c3

3

− 12 v19c0c1
2c3

4 + 144 sin (v) v10c1c3

+ 288 sin (v) v12c1c3
2 + 12 sin (v) v14c1c3

2

+ 144 sin (v) v14c1c3
3 + 4 sin (v) v12c1c3

+ 144 sin (v) v14c1
2c3

2 + 12 sin (v) v16c1c3
3

+ 144 sin (v) v16c1
2c3

3 + 4 sin (v) v18c1c3
4

+ 12 sin (v) v18c1
2c3

3 + 6 sin (v) v16c1
2c3

2

+ 48 sin (v) v18c1
3c3

3 + 6 sin (v) v20c1
2c3

4

+ 4 sin (v) v22c1
3c3

4 + sin (v) v24c1
4c3

4

+ 44928 v7c1c2c3 + 4 sin (v) v20c1
3c3

3

− 290304 v5b0c1c3 − 20736 va1c3

+ 4 sin (v) v10c3 + 144 sin (v) v10c3
2

+ 17280 v5c2c3 + 48 sin (v) v12c3
3

+ sin (v) v16c3
4 + 6 sin (v) v12c3

2

+ 4 sin (v) v14c3
3 − 20736 vc2

+ 1728 va1 − 144 v3a1 + 1728 v3b0

+ sin (v) v8 + 48 sin (v) v6

+ 17280 v5a1c3
2 + 144 sin (v) v8c3

− 576 v5a1c3 + 17280 v7c0c3
2
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+ 576 v7c2c3 + 12 v9c2c3

− 864 v7a1c3
2 − 12 v9c0c3

+ 17280 v7b0c3
2 − 144 v11c0c3

3

− 144 v11b0c3
3 + 144 v9b0c3

2

+ 12 v11c0c3
2 − 720 v9a1c3

3

− 12 v11c2c3
2 − 720 v9c2c3

2

+ 20736 sin (v)

Υ4 (v) = −60 v14c0c3
3 + 60 v14c2c3

3

+ 5040 v12a1c3
4 − 1440 v12b0c3

3

+ 5040 v12c2c3
3 + 120 v12c0c3

2

− 120 v12c2c3
2 + cos (v) v10

+ 20 cos (v) v16c1c3
2 − 174528 v10c0c3

3

− 7488 v10c2c3
2 + 720 cos (v) v16c1c3

3

+ 7056 v10a1c3
3 − 174528 v10b0c3

3

− 12 v10c0c3 + 12 v10c2c3

− 267840 v8a1c3
3 + 144 v10b0c3

2

+ 7200 v8a1c3
2 + 240 cos (v) v12c1c3

+ 540 v18c1
2c2c3

3 + 60 v18c0c1c3
4

+ 30 cos (v) v18c1c3
3 + 360 cos (v) v16c1

2c3
2

+ 10 cos (v) v18c1
2c3

2 + 240 cos (v) v18c1c3
4

+ 20 cos (v) v20c1c3
4 + 30 cos (v) v20c1

2c3
3

+ 720 cos (v) v14c1c3
2 + 720 cos (v) v18c1

2c3
3

+ 1440 cos (v) v12c3
3 − 248832 c2 + 20736 a1

− 248832 b0 − 259200 v6a1c3
2

+ 248832 cos (v) + 360 cos (v) v20c1
2c3

4

+ 5 cos (v) v22c1c3
5 + 30 cos (v) v22c1

2c3
4

+ 10 cos (v) v22c1
3c3

3 + 240 cos (v) v20c1
3c3

3

+ 240 cos (v) v22c1
3c3

4 + 10 cos (v) v24c1
2c3

5

+ 103680 cos (v) v6c1c3 + 5 cos (v) v14c1c3
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− 6480 v12c0c3
3 + 518400 v2a1c3

+ 4320 cos (v) v10c3
2 + 17280 cos (v) v8c3

2

+ 4320 cos (v) v8c3 + 1244160 v4b0c3

+ 7632 v10c0c3
2 + 720 v8c2c3

− 103680 v4c0c3 − 17280 v6c0c3

− 267840 v8c2c3
2 − 3732480 v2b0c3

− 3732480 v2c0c3 + 103680 cos (v) v4c3

+ 2799360 v6b0c3
2 + 2799360 v6c0c3

2

− 112320 v4a1c3 + 190080 v8c0c3
2

+ 3600 v6a1c3 + 1347840 v4a1c3
2

+ 5 cos (v) v18c3
4 + 60 cos (v) v16c3

4

+ 10 cos (v) v16c3
3 + 10 cos (v) v14c3

2

+ 240 cos (v) v14c3
3 + 5 cos (v) v12c3

+ 360 cos (v) v12c3
2 + 720 v14b0c3

4

+ 240 cos (v) v10c3 + 720 v14c0c3
4

+ 34560 cos (v) v6c3 + 207360 v2c2

− 8640 v4c2 + 207360 v2b0 + 1440 cos (v) v6

+ 103680 cos (v) v2 + 17280 cos (v) v4

+ 720 v4a1 + 1347840 v4c2c3 − 720 v8c0c3

− 25920 v6c2c3 + cos (v) v20c3
5

− 43200 v6b0c3 − 77760 v8b0c3
2

+ 4320 cos (v) v10c1c3 + 34560 cos (v) v10c1c3
2

+ 8640 cos (v) v12c1c3
2 + 34560 cos (v) v8c1c3

+ 17280 cos (v) v12c1
2c3

2 + 4320 cos (v) v14c1c3
3

+ 4320 cos (v) v14c1
2c3

2 + 4320 cos (v) v16c1
2c3

3

+ 1440 cos (v) v18c1
3c3

3 + 1347840 v4a1c1c3

+ 1347840 v6b0c1c3 − 129600 v6a1c1c3

− 51840 v8b0c1c3 − 587520 v8a1c1c3
2

+ 10512 v10c1c2c3 + 198720 v8c1c2c3
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+ 903744 v10c0c1c3
2 + 41472 v10b0c1c3

2

− 221184 v10a1c1
2c3

2 − 43200 v12c1c2c3
2

+ 43200 v12c0c1c3
2 + 406080 v12b0c1

2c3
2

− 79200 v14c1
2c2c3

2 − 28800 v14c0c1c3
3

− 17280 v2a1 − 3732480 v2a1c1c3

− 1860 v18c0c1
2c3

3 + 43920 v18c1
3c2c3

3

− 720 v18c0c1
2c3

4 + 60 cos (v) v8

− 248832 a1c3 − 8640 v4b0

+ 7200 v18b0c1
2c3

4 − 22320 v18b0c1
3c3

3

+ 43200 v18a1c1
3c3

4 − 12 v20c1
2c2c3

4

+ 1212 v20c1
3c2c3

3 + 12 v20c0c1c3
5

− 624 v20c0c1
2c3

4 − 17418240 v4b0c1c3

+ 18144 v20c0c1
3c3

4 + 7056 v20b0c1
3c3

4

+ 18144 v20a1c1
4c3

4 + 120 v22c1
3c2c3

4

− 120 v22c0c1
2c3

5 + 420 v22c0c1
3c3

4

− 60 v24c1
4c2c3

4 + 60 v24c0c1
3c3

5

+ 20 cos (v) v24c1
3c3

4 + 5040 v22b0c1
4c3

4

+ 60 cos (v) v24c1
4c3

4 + 10 cos (v) v26c1
3c3

5

+ 5 cos (v) v28c1
4c3

5 + cos (v) v30c1
5c3

5

+ 4250880 v6c1c2c3 + 5 cos (v) v26c1
4c3

4

+ 7050240 v6a1c1c3
2 + 3600 v8a1c1c3

+ 11715840 v8b0c1c3
2 + 8709120 v8a1c1

2c3
2

− 144 v10b0c1c3 − 1074816 v10c1c2c3
2

+ 14688 v10a1c1c3
2 + 13499136 v10b0c1

2c3
2

− 1249344 v10a1c1c3
3 + 180 v12c1c2c3

+ 3600 v12b0c1c3
2 − 1347840 v12c1

2c2c3
2

− 717120 v12c0c1c3
3 − 794880 v12b0c1c3

3

+ 16560 v12a1c1c3
3 + 9360 v12a1c1

2c3
2

− 2064960 v12a1c1
2c3

3 − 720 v14c1c2c3
2
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+ 780 v14c0c1c3
2 + 23760 v14c1c2c3

3

− 9360 v14b0c1c3
3 + 8709120 v8c0c1c3

2

+ 9360 v14b0c1
2c3

2 − 1270080 v14c0c1
2c3

3

− 1339200 v14b0c1
2c3

3 + 24480 v14a1c1c3
4

+ 3600 v14a1c1
2c3

3 − 1270080 v14a1c1
3c3

3

+ 300 v16c1c2c3
3 − 1620 v16c1

2c2c3
2

− 180 v16c0c1c3
3 + 42480 v16c1

2c2c3
3

+ 4320 v16c0c1c3
4 − 90000 v16c0c1

2c3
3

+ 3600 v16b0c1c3
4 − 21600 v16b0c1

2c3
3

− 933120 v16b0c1
3c3

3 + 46800 v16a1c1
2c3

4

− 12240 v16a1c1
3c3

3

Υ5 (v) = −8640 sin (v) v10c3 − 360 sin (v) v14c1c3

+ 328320 v23b0c1
4c3

4 − 4560 v15c1c2c3
2

+ 336960 v19a1c1
3c3

4 + 34800 v21c1
3c2c3

3

− 404974080 v13c0c1
2c3

3 − 617725440 v13b0c1
2c3

3

+ 22498560 v13a1c1c3
4 − 1866240 v13b0c1c3

3

− 103680 sin (v) v10c1c3 − 4320 v13b0c3
3

+ 3360 v15c0c1c3
2 − 69120 v15b0c1c3

3

+ 648000 v15c1c2c3
3 − 404974080 v13a1c1

3c3
3

+ 665280 v19c0c1
2c3

4 − 60480 v13a1c3
4

− 15 sin (v) v28c1
2c3

6 − 60 sin (v) v28c1
3c3

5

+ 777600 v9c0c3
2 − 622080 v5c0c3

− 47278080 v7a1c3
3 − 1492992 sin (v) v4c3 − 15 sin (v) v28c1

4c3
4

+ 1200 v15c2c3
3 + 103680 v17b0c1c3

4 + 4458240 v11a1c1
2c3

2

− 2985984 sin (v) + 1866240 v13b0c3
4

− 4320 v17c0c3
5 + 360 v17c0c3

4

+ 15655680 v11a1c1c3
3 + 14394240 v21b0c1

4c3
4

+ 725760 v11b0c3
3 + 95040 v13c2c3

3

+ 1909440 v19c1
3c2c3

3 − 72 sin (v) v20c3
5

-681-



− 40320 v15a1c3
5 − 103680 sin (v) v10c3

2

− 9953280 v3a1c3 + 54120960 v17a1c1
3c3

4

− 1440 sin (v) v16c1c3
2 − 6 sin (v) v16c1c3

− 30 sin (v) v18c1c3
2 + 3939840 v11c2c3

3

− 34560 sin (v) v6 − 2160 sin (v) v18c1c3
3

− 120683520 v7a1c1c3
2 + 94556160 v3a1c1c3

+ 14400 v15b0c3
4 − 99360 v13c0c3

3

+ 7464960 vc2 − 25920 sin (v) v14c1c3
2

− 20 sin (v) v30c1
3c3

6 − 360 sin (v) v22c1c3
5

+ 233280 v13c0c1c3
2 + 94556160 v3b0c3

− 2073600 v3c2 + 209018880 v5b0c1c3

− 720 sin (v) v14c3
2 − 13582080 v15b0c1

2c3
3

− 328320 v13c1c2c3
2 − 47278080 v7c2c3

2

− 622080 va1 − 354240 v15a1c1
2c3

3

+ 268738560 v5c0c3
2 + 1624320 v17c1

2c2c3
3

− 4320 v17b0c3
5 + 26853120 v19b0c1

3c3
4

− 360 v29c0c1
4c3

6 − 60 sin (v) v20c1c3
3

− 720 sin (v) v18c1
2c3

2 + 69672960 v3a1c3
2

− 1440 sin (v) v20c1c3
4 − 15 sin (v) v20c1

2c3
2

− 60 sin (v) v22c1c3
4 − 2160 sin (v) v20c1

2c3
3

− 18040320 v5a1c1c3 − 60 sin (v) v22c1
2c3

3

− 311040 sin (v) v12c1
2c3

2 − 622080 sin (v) v10c1c3
2

− 622080 sin (v) v8c1c3 − 1492992 sin (v) v6c1c3

− 16174080 v7b0c1c3 + 14929920 va1c3

− 311040 sin (v) v8c3
2 + 1088640 v9c1c2c3

− 622080 sin (v) v6c3 − 1719360 v17c0c1
2c3

3

− 60134400 v9b0c3
3 − 836075520 v3b0c1c3

− 1200 v27c1
4c2c3

5 − 578880 v19a1c1
2c3

5

− 103680 sin (v) v14c1
2c3

2 − 449141760 v15b0c1
3c3

3
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− 8640 sin (v) v12c1c3 − 838080 v15c1
2c2c3

2

− 360 sin (v) v18c3
4 − 30 sin (v) v30c1

4c3
5

+ 2177280 v11b0c1c3
2 − 720 sin (v) v16c3

3

− 12960 sin (v) v12c3
2 − 72 sin (v) v30c1

5c3
5

− 360 sin (v) v28c1
4c3

5 − 3214080 v11c0c3
3

− 14307840 v5b0c3 − 250560 v17b0c1
2c3

3

− 64800 v21b0c1
2c3

5 + 26127360 v11b0c1
2c3

2

− 79004160 v9a1c1
2c3

2 + 7672320 v9a1c1c3
2

+ 417600 v21b0c1
3c3

4 − 3006720 v15a1c1
3c3

3

− 518400 v23a1c1
4c3

5 + 352800 v21a1c1
4c3

4

− 25920 v7a1c3 + 3525120 v13b0c1
2c3

2

− 15 sin (v) v20c3
4 − 40320 v15c2c3

4

− 1200 v15c0c3
3 − 1492992 sin (v) v2

+ 1347840 v7a1c1c3 − 544320 v23c1
4c2c3

4

+ 268738560 v5b0c3
2 − 20 sin (v) v18c3

3

+ 24675840 v19a1c1
4c3

4 − 103680 sin (v) v8c3

− 311040 sin (v) v4 − 69672960 v9b0c1c3
2

+ 6635520 v11c0c1c3
2 − 360 v17c2c3

4

+ 360 v25c1
3c2c3

5 + 1552320 v21c0c1
3c3

4

− 103680 sin (v) v14c1c3
3 + 777600 v9b0c3

2

− 20373120 v13c1
2c2c3

2 + 313528320 v5c1c2c3

− 60134400 v9c0c3
3 + 11612160 v13a1c1

2c3
3

− 181440 v25a1c1
5c3

5 − 3732480 v7c1c2c3

+ 311040 v9b0c1c3 − 175680 v15a1c1c3
4

− 6 sin (v) v34c1
5c3

6 − 15 sin (v) v32c1
4c3

6

− 38568960 v7b0c3
2 + 8709120 v7c0c3

2

− 36080640 v5a1c3
2 − 5400 v21c1

2c2c3
4

− 40435200 v15c0c1
2c3

3 − 90720 v21c0c1
2c3

5

+ 7920 v25c0c1
3c3

5 − 360 v25c0c1
2c3

6
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− 12960 v25c1
4c2c3

4 − 6 sin (v) v32c1
5c3

5

− 650880 v21c1
3c2c3

4 + 1866240 v13c0c3
4

+ 25920 v11c1c2c3 − 648000 v15c0c1c3
3

− 7983360 v11c1c2c3
2 + 69672960 v3c2c3

− 17729280 v17b0c1
3c3

3 + 3525120 v7a1c3
2

− 741600 v21a1c1
3c3

5 + 54720 v15c0c3
4

− 207360 sin (v) v12c1c3
2 + 24883200 v3c0c3

+ 328320 v17c0c1c3
4 + 5011200 v9a1c3

3

− 25920 v11c2c3
2 − 12960 sin (v) v16c1

2c3
2

− 4320 v5a1 − 25920 sin (v) v16c1c3
3

− sin (v) v12 − 72 sin (v) v10 − 2160 sin (v) v8

− 15 sin (v) v16c3
2 − 103680 sin (v) v16c1

2c3
3

− 8640 sin (v) v18c1c3
4 − 25920 sin (v) v18c1

2c3
3

+ 25920 v11c0c3
2 − 34560 sin (v) v18c1

3c3
3

− 2160 v19c1c2c3
4 − 8640 sin (v) v20c1

3c3
3

− 8640 sin (v) v22c1
3c3

4 − 2160 sin (v) v24c1
4c3

4

− 6 sin (v) v26c1c3
6 − 60 sin (v) v26c1

2c3
5

− 60 sin (v) v26c1
3c3

4 − 12960 sin (v) v20c1
2c3

4

− 720 sin (v) v26c1
3c3

5 − 360 sin (v) v26c1
4c3

4

+ 20632320 v13c1c2c3
3 − 19491840 v13c0c1c3

3

− 6 sin (v) v22c3
5 − sin (v) v24c3

6

+ 22320 v19c1
2c2c3

3 + 8640 v13b0c1c3
2

+ 2160 v19c0c1c3
4 − 90 sin (v) v24c1

2c3
4

− 720 sin (v) v24c1
2c3

5 − 1440 sin (v) v24c1
3c3

4

− 8640 sin (v) v14c3
3 − 2160 sin (v) v16c3

4

− 552960 v19c1
2c2c3

4 − 20 sin (v) v24c1
3c3

3

− 86400 v11a1c3
3 + 3939840 v11a1c3

4

+ 360 v13c0c3
2 − 272160 v13a1c1c3

3

− 60480 v13a1c1
2c3

2 − 360 v13c2c3
2
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+ 311040 v7b0c3 − 25920 v19c0c1c3
5

+ 50492160 v15a1c1
2c3

4 − 60480 v25b0c1
4c3

5

+ 940584960 v7c0c1c3
2 + 1507921920 v7b0c1c3

2

+ 940584960 v7a1c1
2c3

2 − 25920 v9a1c1c3

− 223534080 v9c1c2c3
2 + 2072770560 v9b0c1

2c3
2

− 283668480 v9a1c1c3
3 − 129600 v11a1c1c3

2

− 296110080 v11c1
2c2c3

2 − 274959360 v11c0c1c3
3

− 322237440 v11b0c1c3
3 + 293760 v19b0c1

2c3
4

− 328320 v19b0c1
3c3

3 + 360 v13c1c2c3

− 181440 v25c0c1
4c3

5 − 27360 v19c0c1
2c3

3

− 89579520 vc0c3 + 40320 v15b0c1
2c3

2

+ 40435200 v15c1
2c2c3

3 − 25920 v19b0c1c3
5

+ 10056960 v15c0c1c3
4 + 172800 v3a1

− 360 sin (v) v12c3 + 24675840 v19c0c1
3c3

4

+ 93726720 v9c0c1c3
2 − 34560 sin (v) v12c3

3

+ 10540800 v15b0c1c3
4 − 13685760 v5c2c3

− 2073600 v3b0 + 33747840 v17c1
3c2c3

3

+ 20373120 v17c0c1
2c3

4 + 1244160 v5a1c3

+ 23898240 v17b0c1
2c3

4 − 237600 v17a1c1c3
5

+ 1200 v27c0c1
3c3

6 + 8280 v17c1c2c3
3

− 89579520 vb0c3 − 38880 v17a1c1
2c3

4

+ 51840 v5c2 − 6 sin (v) v14c3

+ 311040 v7c2c3 − 3360 v27c0c1
4c3

5

− 12960 v17c1
2c2c3

2 − 7920 v17c0c1c3
3

− 233280 v17c1c2c3
4 − 40320 v27b0c1

5c3
5

− 64800 v9a1c3
2 − 571069440 v11a1c1

2c3
3

+ 25920 v23c0c1
3c3

5 − 86400 v23b0c1
3c3

5

− 5040 v23c1
3c2c3

4 + 7464960 vb0

+ 51840 v5b0 − 2160 v23c0c1
2c3

5
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− sin (v) v36c1
6c3

6 − 89579520 va1c1c3

+ 582266880 v5a1c1c3
2 − 241920 v17a1c1

3c3
3

+ 27360 v23c0c1
3c3

4 + 360 v29c1
5c2c3

5

− 2160 sin (v) v22c1
2c3

4 − 720 sin (v) v22c1
3c3

3

− 30 sin (v) v24c1c3
5.

Appendix B: Formulae for the Υj (v) , j = 6(1)13

Υ6 (v) = (cos (v))2 sin (v) v9 + 54 (cos (v))2 sin (v) v7

+ 216 (cos (v))3 v6 + 783 (cos (v))2 sin (v) v5

− 1026 sin (v) v7 + 6480 (cos (v))3 v4

− 2286 cos (v) v6 + 4995 (cos (v))2 sin (v) v3

+ 14310 sin (v) v5 + 87480 (cos (v))3 v2

− 46440 cos (v) v4 + 4860 (cos (v))2 sin (v) v

+ 117585 sin (v) v3 + 113400 (cos (v))3

+ 110160 cos (v) v2 − 89100 sin (v) v

− 113400 cos (v)− 28 sin (v) v9

Υ7 (v) = (cos (v))2 v6 + 24 cos (v) sin (v) v5

+ 4 v6 − 210 (cos (v))2 v4 − 750 cos (v) sin (v) v3

+ 420 v4 + 765 (cos (v))2 v2

− 1170 cos (v) sin (v) v + 1980 v2

+ 1575 (cos (v))2 − 1575

Υ8 (v) = − (cos (v))2 sin (v) v9 + 18 (cos (v))3 v8

+ 28 sin (v) v9 + 60 (cos (v))3 v6 − 168 cos (v) v8

+ 945 (cos (v))2 sin (v) v5 + 90 (cos (v))2 sin (v) v7

+ 1290 sin (v) v7 + 2970 (cos (v))3 v4

− 6630 cos (v) v6 + 10125 (cos (v))2 sin (v) v3

− 2430 sin (v) v5 + 20250 (cos (v))3 v2

+ 57780 cos (v) v4 + 72900 (cos (v))2 sin (v) v
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+ 54675 sin (v) v3 − 32400 (cos (v))3

+ 12150 cos (v) v2 − 137700 sin (v) v + 32400 cos (v)

Υ9 (v) = v2
(
(cos (v))2 v8 + 16 cos (v) sin (v) v7

− 48 (cos (v))2 v6 + 4 v8 + 174 cos (v) sin (v) v5

+ 105 (cos (v))2 v4 + 168 v6

+ 1890 cos (v) sin (v) v3 + 8505 (cos (v))2 v2

− 5460 v4 − 3780 cos (v) sin (v) v

+ 28350 (cos (v))2 + 23625 v2 − 28350
)

Υ10 (v) = (cos (v))2 v8 + 8 cos (v) sin (v) v7

+ 4 v8 + 90 cos (v) sin (v) v5 + 765 (cos (v))2 v4

+ 188 v6 − 1890 cos (v) sin (v) v3

+ 1215 (cos (v))2 v2 − 3060 v4

− 10800 cos (v) sin (v) v − 5400 (cos (v))2 + 4185 v2

+ 5400 + 22 (cos (v))2 v6

Υ11 (v) = − (cos (v))2 sin (v) v9 + 12 (cos (v))3 v8

+ 28 sin (v) v9 + 432 (cos (v))3 v6 − 112 cos (v) v8

+ 81 (cos (v))2 sin (v) v5 − 6 (cos (v))2 sin (v) v7

+ 1522 sin (v) v7 + 7980 (cos (v))3 v4

− 4362 cos (v) v6 − 2835 (cos (v))2 sin (v) v3

+ 8490 sin (v) v5 + 49140 (cos (v))3 v2

+ 38640 cos (v) v4 + 3780 (cos (v))2 sin (v) v

− 23625 sin (v) v3 + 113400 (cos (v))3

+ 79380 cos (v) v2 − 18900 sin (v) v − 113400 cos (v)

Υ12 (v) = (cos (v))2 v8 + 16 cos (v) sin (v) v7

− 48 (cos (v))2 v6 + 4 v8

+ 174 cos (v) sin (v) v5 + 105 (cos (v))2 v4

+ 168 v6 + 1890 cos (v) sin (v) v3 + 8505 (cos (v))2 v2

− 5460 v4 − 3780 cos (v) sin (v) v

+ 28350 (cos (v))2 + 23625 v2 − 28350
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Υ13 (v) = − sin (v) v8 (cos (v))2 + 6 (cos (v))3 v7

+ 28 sin (v) v8 + 180 (cos (v))3 v5

− 56 v7 cos (v)− 1935 (cos (v))2 sin (v) v4

+ 1434 sin (v) v6 + 2430 (cos (v))3 v3

− 750 v5 cos (v)− 39555 (cos (v))2 sin (v) v2

+ 4530 sin (v) v4 + 3150 (cos (v))3 v

+ 64620 cos (v) v3 − 56700 (cos (v))2 sin (v)

− 81045 sin (v) v2 − 3150 cos (v) v

+ 56700 sin (v)− 54 sin (v) v6 (cos (v))2 .

Appendix C: Truncated Taylor Series Expansion Formulae for the

coefficients of the new proposed multistage scheme given by (27)

a1 = −2− v12

23950080
− 4457 v14

1307674368000
− 2767 v16

10984464691200

− 106679737 v18

8627198568468480000
+ · · ·

c0 =
15

28
− 575 v2

19404
+

4887391 v4

1864646784
+

15077 v6

134604189720

+
84186356129 v8

26061476937560064
+

154226125707413 v10

857878667092133406720

+
308011383051942849031 v12

22258451266079126000084582400

+
2810908593553627741 v14

2602076033635768272277094400

+
9287240278093570364153717761 v16

107328852393617934516964971014258688000

+
1302156515867258642643820022837 v18

185947236771943071550641812282203176960000
+ · · ·

c1 =
1

56
+

5 v2

3528
+

206263 v4

1695133440
+

2022851 v6

195787912320
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+
61297160059 v8

71076755284254720
+

3468098943931 v10

48743106084780307200

+
23599723244906153507 v12

4046991139287113818197196800

+
25604260087606317767231 v14

53754159807581089290204266496000

+
1263359942925797796682921363 v16

32523894664732707429383324549775360000

+
53509704866239989836252923301 v18

16904294251994824686421982934745743360000
+ · · ·

c2 =
1

15
+

v2

693
− 11267 v4

151351200
− 10391 v6

635675040

+
972045013 v8

166419725472000
+

46267062131 v10

79681764555993600

+
1230391596534229 v12

26103746068543503360000

+
83598456817075157 v14

30819822858260362967040000

+
1875377637772463417 v16

23299786080844834403082240000

− 3187864392178965497 v18

611619384622176903080908800000
+ · · ·

c3 =
1

30
+

v2

1386
− 11267 v4

302702400
− 10391 v6

1271350080

− 278704487 v8

332839450944000
− 49075415171 v10

796817645559936000

− 165555536796521 v12

52207492137087006720000

− 387466496860559 v14

6848849524057858437120000

+
510183980580548867 v16

46599572161689668806164480000
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+
50607729096627067 v18

28952396905191806063001600000
+ · · ·

b0 =
5

6
+

v10

3991680
+

11353 v12

523069747200

+
178109 v14

109844646912000
+

141929317 v16

1725439713693696000

+
18408898661 v18

13769008915275694080000
+ · · ·

Appendix D: Expressions for the Derivatives of ζn

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:

ζ(2) = (V (x)− Vc + Γ) ζ(x) = (Ξ (x) + Γ) ζ(x)

ζ(3) =

(
d

dx
Ξ (x)

)
ζ (x) + (Ξ (x) + Γ)

d

dx
ζ (x)

ζ(4) =

(
d2

dx2
Ξ (x)

)
ζ (x) + 2

(
d

dx
Ξ (x)

)
d

dx
ζ (x) + (Ξ (x) + Γ)2 ζ (x)

ζ(5) =

(
d3

dx3
Ξ (x)

)
ζ (x) + 3

(
d2

dx2
Ξ (x)

)
d

dx
ζ (x)

+ 4 (Ξ (x) + Γ) ζ (x)
d

dx
Ξ (x) + (Ξ (x) + Γ)2

d

dx
ζ (x)

ζ(6) =

(
d4

dx4
Ξ (x)

)
ζ (x) + 4

(
d3

dx3
Ξ (x)

)
d

dx
ζ (x)

+ 7 (Ξ (x) + Γ) ζ (x)
d2

dx2
Ξ (x) + 4

(
d

dx
Ξ (x)

)2

ζ (x)

+ 6 (Ξ (x) + Γ)

(
d

dx
ζ (x)

)
d

dx
Ξ (x) + (Ξ (x) + Γ)3 ζ (x)

ζ(7) =

(
d5

dx5
Ξ (x)

)
ζ (x) + 5

(
d4

dx4
Ξ (x)

)
d

dx
ζ (x)

+ 11 (Ξ (x) + Γ) ζ (x)
d3

dx3
Ξ (x) + 15

(
d

dx
Ξ (x)

)
ζ (x)
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+
d2

dx2
Ξ (x) + 13 (Ξ (x) + Γ)

(
d

dx
ζ (x)

)
d2

dx2
Ξ (x)

+ 10

(
d

dx
Ξ (x)

)2
d

dx
ζ (x) + 9 (Ξ (x) + Γ)2 ζ (x)

+
d

dx
Ξ (x) + (Ξ (x) + Γ)3

d

dx
ζ (x)

ζ(8) =

(
d6

dx6
Ξ (x)

)
ζ (x) + 6

(
d5

dx5
Ξ (x)

)
d

dx
ζ (x)

+ 16 (Ξ (x) + Γ) ζ (x)
d4

dx4
Ξ (x) + 26

(
d

dx
Ξ (x)

)
ζ (x)

+
d3

dx3
Ξ (x) + 24 (Ξ (x) + Γ)

(
d

dx
ζ (x)

)
d3

dx3
Ξ (x)

+ 15

(
d2

dx2
Ξ (x)

)2

ζ (x) + 48

(
d

dx
Ξ (x)

)

+

(
d

dx
ζ (x)

)
d2

dx2
Ξ (x) + 22 (Ξ (x) + Γ)2 ζ (x)

+
d2

dx2
Ξ (x) + 28 (Ξ (x) + Γ) ζ (x)

(
d

dx
Ξ (x)

)2

+ 12 (Ξ (x) + Γ)2
(
d

dx
ζ (x)

)
d

dx
Ξ (x) + (Ξ (x) + Γ)4 ζ (x)

· · ·

We compute the j-th derivative of the function ζ at the point xn, i.e. ζ(j)n , substituting

in the above formulae x with xn.

Appendix E: Formula for the quantity Λ0

Λ0 = −
239 (Ξ (x))2 ζ (x) d6

dx6
g (x)

23950080
−

19 (Ξ (x))4 ζ (x) d2

dx2
g (x)

4790016

−
1201 (Ξ (x))2 ζ (x)

(
d2

dx2
Ξ (x)

)2
23950080

−
109

(
d
dx
Ξ (x)

)2 ( d
dx
ζ (x)

)
d3

dx3
g (x)

1197504
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− (Ξ (x))6 ζ (x)

23950080
−

31
(

d
dx
Ξ (x)

) (
d
dx
ζ (x)

) (
d2

dx2
Ξ (x)

)2
266112

−
(

d
dx
Ξ (x)

)4
ζ (x)

85536
−
g (x)

(
d
dx
ζ (x)

)
d7

dx7
g (x)

187110
−

13 (Ξ (x))3 ζ (x)
(

d
dx
Ξ (x)

)2
1197504

−
5 g (x)

(
d
dx
ζ (x)

) (
d
dx
Ξ (x)

)3
199584

−
(Ξ (x))4

(
d
dx
ζ (x)

)
d
dx
g (x)

798336

−

(
d3

dx3
Ξ (x)

) (
d
dx
ζ (x)

)
d4

dx4
g (x)

16632
−

5 (Ξ (x))3
(

d
dx
ζ (x)

)
d3

dx3
g (x)

598752

−

(
d10

dx10
Ξ (x)

)
ζ (x)

23950080
−

(
d9

dx9
Ξ (x)

)
d
dx
ζ (x)

2395008
−

17
(

d2

dx2
Ξ (x)

)
ζ (x) d6

dx6
g (x)

1596672

−
23 g (x)

(
d
dx
ζ (x)

) (
d4

dx4
Ξ (x)

)
d
dx
g (x)

299376
−

43 g (x) ζ (x)
(

d3

dx3
Ξ (x)

)2
748440

−
37 (Ξ (x))3 ζ (x) d4

dx4
g (x)

2993760
−
(

d
dx
Ξ (x)

)2
ζ (x) d4

dx4
g (x)

19008

−
353

(
d
dx
Ξ (x)

)
ζ (x)

(
d3

dx3
Ξ (x)

)
d2

dx2
g (x)

2395008
−

743 g (x) ζ (x)
(

d
dx
Ξ (x)

)2 d2

dx2
g (x)

5987520

−
13 g (x) ζ (x)

(
d4

dx4
Ξ (x)

)
d2

dx2
g (x)

136080
−

157 (Ξ (x))2
(

d
dx
ζ (x)

)
d5

dx5
g (x)

11975040

−
23 g (x) ζ (x) d8

dx8
g (x)

11975040
−

5
(

d2

dx2
Ξ (x)

)3
ζ (x)

177408
−

(
d4

dx4
Ξ (x)

)2
ζ (x)

114048

−
31
(

d3

dx3
Ξ (x)

)
ζ (x) d5

dx5
g (x)

1995840
−

73 g (x)
(

d
dx
ζ (x)

) (
d3

dx3
Ξ (x)

)
d2

dx2
g (x)

598752

−
323 g (x) ζ (x)

(
d5

dx5
Ξ (x)

)
d
dx
g (x)

5987520
−

7
(

d
dx
Ξ (x)

) (
d
dx
ζ (x)

)
d6

dx6
g (x)

342144

−
5 (Ξ (x))2

(
d
dx
ζ (x)

) (
d
dx
Ξ (x)

)
d2

dx2
g (x)

99792
−

313 (Ξ (x))2 ζ (x)
(

d
dx
Ξ (x)

)
d3

dx3
g (x)

3991680

−
13
(

d
dx
Ξ (x)

)
ζ (x) d7

dx7
g (x)

2395008
−

19
(

d2

dx2
Ξ (x)

) (
d
dx
ζ (x)

)
d5

dx5
g (x)

443520

at every point x = xn.

Appendix F: Formulae for the Υj (v) , j = 14(1)16

Υ14 (s, v) = 8 sin (v) cos (v) s6v7 − 32 sin (v) cos (v) s4v9

+ 90 sin (v) cos (v) s6v5 − 348 sin (v) cos (v) s4v7

− 750 sin (v) cos (v) s2v9 − 1890 sin (v) cos (v) s6v3

− 3780 sin (v) cos (v) s4v5 − 1170 sin (v) cos (v) s2v7
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− 10800 sin (v) cos (v) s6v + 7560 sin (v) cos (v) s4v3

+ 765 (cos (v))2 s2v8 − 56700 (cos (v))2 s4v2

− 2 (cos (v))2 s4v10 + 24 sin (v) cos (v) s2v11

+ (cos (v))2 s2v12 − 17010 (cos (v))2 s4v4

− 210 (cos (v))2 s4v6 + 5040 v10

− 9000 sin (v) cos (v) v9 + 1215 (cos (v))2 s6v2

+ (cos (v))2 s6v8 + 22 (cos (v))2 s6v6

+ 288 sin (v) cos (v) v11 + 1575 (cos (v))2 s2v6

− 210 (cos (v))2 s2v10 + 96 (cos (v))2 s4v8

+ 23760 v8 + 1980 s2v8 + 765 (cos (v))2 s6v4

− 1575 s2v6 − 336 s4v8 + 420 s2v10

+ 10920 s4v6 − 47250 s4v4 + 56700 s4v2

+ 4 s6v8 − 8 s4v10 + 4 s2v12 + 188 s6v6

− 3060 s6v4 + 4185 s6v2 + 12 (cos (v))2 v12

− 2520 (cos (v))2 v10 − 5400 (cos (v))2 s6

+ 18900 (cos (v))2 v6 − 14040 sin (v) cos (v) v7

− 18900 v6 + 48 v12 + 5400 s6 + 9180 (cos (v))2 v8

Υ15 (s, v) = v6
(
(cos (v))2 v6 + 24 sin (v) cos (v) v5

+ 4 v6 − 210 (cos (v))2 v4 − 750 sin (v) v3 cos (v)

+ 420 v4 + 765 (cos (v))2 v2

− 1170 sin (v) cos (v) v + 1980 v2

+ 1575 (cos (v))2 − 1575
)

Υ16 (s, v) = 2970 (cos (v))3 s6v4 + 9450 (cos (v))3 s2v6

+ 783 sin (v) (cos (v))2 v11 + 84 sin (v) s2v13

+ 13086 cos (v) s4v8 − 36 (cos (v))3 s4v10

− 168 cos (v) s2v12 − 115920 cos (v) s4v6

+ 193860 cos (v) s2v8 + 54675 sin (v) s6v3

+ 70875 sin (v) s4v5 − 243135 sin (v) s2v7

− 340200 (cos (v))3 s4v2 + 12150 cos (v) s6v2
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− 238140 cos (v) s4v4 − 9450 cos (v) s2v6

− 137700 sin (v) s6v + 18 (cos (v))3 s6v8

+ 28 sin (v) s6v9 + 4860 sin (v) (cos (v))2 v7

+ 20250 (cos (v))3 s6v2 − 23940 (cos (v))3 s4v6

+ 60 (cos (v))3 s6v6 + 4302 sin (v) s2v11

− 2430 sin (v) s6v5 − 84 sin (v) s4v11

− 6630 cos (v) s6v6 + 18 (cos (v))3 s2v12

− 1296 (cos (v))3 s4v8 − 25470 sin (v) s4v7

+ 336 cos (v) s4v10 + 117585 sin (v) v9

+ 113400 (cos (v))3 v6 − 89100 sin (v) v7

− 113400 cos (v) v6 + 87480 (cos (v))3 v8

+ 110160 cos (v) v8 − 28 sin (v) v15

+ 216 (cos (v))3 v12 − 1026 sin (v) v13

+ 6480 (cos (v))3 v10 + 4995 sin (v) (cos (v))2 v9

− 2286 cos (v) v12 + 14310 sin (v) v11

− 46440 cos (v) v10 − 32400 (cos (v))3 s6

+ 32400 cos (v) s6 + 56700 sin (v) s4v3

+ 170100 sin (v) s2v5 + 340200 cos (v) s4v2

− sin (v) (cos (v))2 s6v9 + 3 sin (v) (cos (v))2 s4v11

+ 7290 (cos (v))3 s2v8 + 13590 sin (v) s2v9

+ 54 sin (v) (cos (v))2 v13 − 3 sin (v) (cos (v))2 s2v13

+ 57780 cos (v) s6v4 + sin (v) (cos (v))2 v15

+ 540 (cos (v))3 s2v10 − 2250 cos (v) s2v10

− 4566 sin (v) s4v9 − 168 cos (v) s6v8

− 147420 (cos (v))3 s4v4 + 1290 sin (v) s6v7

+ 90 sin (v) (cos (v))2 s6v7

+ 18 sin (v) (cos (v))2 s4v9 − 162 sin (v) (cos (v))2 s2v11

+ 945 sin (v) (cos (v))2 s6v5 − 243 sin (v) (cos (v))2 s4v7

+ 10125 sin (v) (cos (v))2 s6v3 + 8505 sin (v) (cos (v))2 s4v5
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− 118665 sin (v) (cos (v))2 s2v7 − 5805 sin (v) (cos (v))2 s2v9

+ 72900 sin (v) (cos (v))2 s6v − 11340 sin (v) (cos (v))2 s4v3

− 170100 sin (v) (cos (v))2 s2v5.
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