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Abstract

We give examples of 2-parameter bounded quadratic dynamical systems with 3
finite singularities, which have at least 4 limit cycles around a singularity (in the
(4,0)-configuration) - the first example of this type - and in a (3,1)-configuration.
The paper mentions the Nanobiotechnological origins of these experimentally dis-
covered systems with interesting properties.

1 Introduction. Chemical Reaction Networks. Top-
ics approached using CRN’s and dynamical sys-
tems

We consider the following Chemical Reaction Network (CRN) with 4 species, A, B, C

and 0, given by the reversible reactions (MAK): A+B → C, B +C → A , C +A → B

A + A → 0 , B + B → 0, C + C → 0. Some kinetic rates could be zero. A particular

case of this CRN is given by A+B → C, B+C → A , C +A → B. In [1], it was studied

as a programming problem of 1-dimensional staged assembly, and also as an optimization

problem solved in Copasi software: find the initial concentrations of A, B and C and the
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distribution of time and concentrations required by 5 stages of this CRN, to get maximum
yield of A.

Suggested by nano-biotechnological applications, in [2] Demaine et al. introduced an
enhanced version of the abstract TAM of Wang tiles. and later, using 1-dim-HAM , the

above Chemical Reaction Network (CRN) was programmed in RuleBender software by an

INCDSB team [3], [4]. A possible rule – based modeling of this CRN is the following: A:=

the set of 1-dimensional oriented linear strings made on the alphabet {a, b, c}, which ends

and begin with b and c (or vice-versa). Analogous definitions for B and C. The strings

can glue themselves or be broken with probabilities based on the number of elementary

letters, the length of the linear assembly, the glue function between 2 letters. We are

interested in the concentration of length n strings in time.

Our simulations [3] show an oscillatory behavior of string concentrations for some

special values of n; the rest of the other length values being of very small concentrations.

These results are contrary to some intuition for the following reasons. Given a stable

molecular concentration of A in the CRN above, any tile-molecule of A is a result of a

specific staged assembly using a binary tree of directional chemical reactions; simulations

show that some paths are more probable than the other. Also, a deep theorem of [5]

reformulates the Four Color Theorem (for which there is no computer-independent proof)

in terms of non-associative calculus in the quaternionic algebra (vector-cross product of

i, j, k) and a model is the initial chemical reaction above: we also have 0 as a 4th species.

Copasi and BioNetgen simulations are not chemically relevant for negative concentra-

tions, so the choice was a Mathematica environment. Stochastic (NFSim), deterministic

and rule-based modeling oscillatory behaviors are different, as mentioned in [6]. A classical

CRN approach: stoichiometry, persistence, thermodynamic rules and Lyapunov functions,

Deficiency Zero/One Theorems – does not explain this oscillatory behavior.

In a canonical way we can associate to any CRN a dynamical system of species

concentrations. In our case, if we impose that the concentrations of A, B and C are

equal, we get a 2-dimensional polynomial dynamical system of type: dx
dt

= qy2 − rx,
dy
dt

= py2+sx−mxy+ny. The backward road is not always possible: to find a CRN with

a given dynamics. The following chemical reaction network: Y () → Y () + Y () (kinetic

rate k1 = 0.2) ;X() + Y () → X() + P () (k2 = 2
3
); Y () + Y () → X() + Y () (k3 = 6

10
);

S()+X() → Y ()+Y () (k4 = 1
3000000

); X() → P () (k5 = 2
3
) has the associated dynamical
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system:
dx
dt

= −x + 0.6y2; dy
dt

= −0.6y2 + 2
3
x− 2

3
xy + 0.2y; x and y are the concentrations of

X and Y from the CRN above. The concentrations of S and P are constant and high.

This system is linearly equivalent to the dynamical system (3) for p = 0 and B = 0.6.

To study the experimentally observed limit cycles of this dynamical system, we have

to insert it into a family of planar quadratic systems. Few examples of stability analysis

of this type of dynamical systems were performed by Perko, Roussarie, Rousseau, Llibre

and Zhang [7] [8] [9] [10]. Our mathematical results are important for the Hilbert’s 16th

problem.

2 The Hilbert’s 16th problem. Planar bounded
quadratic dynamical systems

The maximum number and the position of the limit cycles for a planar quadratic system

ẋ = a1 + b1x+ c1y + d1x
2 + e1xy + f1y

2

ẏ = a2 + b2x+ c2y + d2x
2 + e2xy + f2y

2 (1)

(The Hilbert’s 16th problem (1900, Paris) in dimension 2) is still open [11]. If for every ini-

tial condition (x0, y0), the set {(x ((x0, y0) , t) , y ((x0, y0) , t)) | t ≥ 0, (x(t), y(t)) solution

for(1)} is bounded in the plane, then using affine transformations and time parametriza-

tions, the system (1) can be brought to the form [12]:{
ẋ = −x+ βy + y2

ẏ = αx− (αβ + γ2) y − xy + c (−x+ βy + y2) ,
(2)

c ∈ (−2, 2), α > β + 2γ and γ > 0

These systems were studied by Perko, Dumortier, Roussarie [12], Llibre [8], Koditsc-

hek, Narendra and Dickson [13]. Perko conjectured in [12] that any bounded quadratic

system has at most 2 limit cycles. For the full Hilbert’s problem it is conjectured that

the systems (1) have at most 4 limit cycles. Bounded quadratic dynamical systems are

ubiquitous in Biology and Chemistry [14], [15].

Examples of quadratic systems with 4 limit cycles are given by Shi [16], Wang and

Chen [17], Perko, Rousseau and Schlomiuk [18], Kuznetzov and Leonov [7] and others.

There are standard numerical procedures [7] to localize stable limit cycles; also, it is almost

impossible to vizualize “small” limit cycles, resulted from the coefficient perturbations [7].
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The problem to find planar quadratic systems with 4 limit cycles in (0,4)-configuration
was stated in [19].

We consider the following system which depends on 2 parameters B and p{
ẋ = −x− 0, 8y + 0, 4y2

ẏ =
(
2− p

0,4

)
x+ (1− 2p)y − xy − (B − p)y2.

(3)

It is a bounded quadratic system: for x = u and y = v√
0.4

,{
u̇ = −u− 2

√
0.4v + v2,

v̇ =
(
2
√
0.4− p√

0,4

)
u+ (1− 2p)v − uv − B−p√

0.4
v2

⇒

⇒ β = −2
√
0.4, c = p−B√

0.4
, α = c+ 2

√
0.4− p√

0.4
= 2

√
0.4− B√

0.4
; γ =

√
0.6.

We draw the bifurcation diagram of the 2-dimensional (B, p)-family in the (α, c)-coordi-
nate system. (α, β, γ, c) is the 4-uple which characterize any bounded quadratic system

−2 < c < 2 and α > β + 2γ.

The range of the parameters B and p is defined as the range of (α, β, γ, c)=

(α,−2
√
0.4,

√
0.6, c) such that the dynamical systems (3) are bounded, with 3 singulari-

ties.
We numerically detected limit cycles for certain values of B and p. We are interested

to mathematically prove the existence of these limit cycles. The problem of proving

the existence of computer-detected limit cycles was recently studied by Giacomini and

Grau [20], [21], [22].

The local stability analysis for (3) as bounded quadratic systems is made following

[12], [9], [10]. The hand calculations are followed by the computer – assisted ones for

the Lyapunov values and for the real parts of the Poincaré normal form coefficients. For

p = 0 and B = 0.5 ∗
(
1.7−

√
1.29

)
there is a Hopf bifurcation of codimension 2. The

construction of the Poincaré-Bendixson regions are based on the normal form [18] for the

small cycles, and on a technical lemma of Gasull, Grau, Giacomini [22] for the normal

size ones. We apply this lemma in our case, where we use a kind of coordinate system

based on the Catalan’s trisectrix – also known as L’Hospital’s cubic or the Tschirnhausen

Cubic.

3 Results
• A family of bounded quadratic dynamical systems which depends on 2 parameters,

with 3 finite singularities, which have at least 4 limit cycles around a singularity is

-560-



presented. It is the first example of this type of (4,0)-configuration. By definition,

an (i, j)-configuration means that one singular point is surrounded by i limit cycles

and a second one is surrounded by j limit cycles.

• The existence of two “new” normal size limit cycles (numerically detected in Perko’s

terminology) is proved using topological insight into the local bifurcation diagram

of the family of dynamical systems. We apply the well established results from the

local theory of planar quadratic systems in the case of the systems (3), and new

numerical results from Section 5.

• Some members of the family represent the dynamics of species concentrations of a

chemical reaction network (CRN), able to be specifically analyzed with dedicated

software.

4 Theory and computations.
The local Stability analysis. Bifurcations

4.1 The 1-dimensional Hopf bifurcations

For fixed B, the systems (3) form a (mod dx) family of rotated vector fields [23]. In

particular they have the same fixed points (singularities) for any fixed B and variable p

(as for p = 0).

ẋ = −x− 0.8y + 0.4y2

ẏ = 2x+ y − xy −By2 + p
0.4

(−x− 0.8y + 0.4y2) .
(4)

The computations of the 3 singular points (xi, yi) : x = 0.4y2 − 0.8y and 0.8y2 −

1.6y + y−

−y (0.4y2 − 0.8y)−By2

= −0.4y3 − 0.6y + (1.6−B)y2 = 0. (5)

y0 = x0 = 0 and y1 and y2 are solutions of 0.4y2 − (1.6−B)y + 0.6 = 0,

∆ > 0 ⇔ (1.6−B)2 > 0.96 ⇔ |1.6−B| >
√
0.96,

B = −c
√
0.4 ∈

(
−
√
1.6,

√
1.6
)
⇒ B < 1.6−

√
0.96 ≈ 0.62 and B > −

√
1.6.

y1 =
1.6−B−

√
(1.6−B)2−0.96

0.8
and x1 = 0.4y21 − 0.8y1; (x1, y1) is a saddle

y2 =
1.6−B+

√
(1.6−B)2−0.96

0.8
and x2 = 0.4y22 − 0.8y2; (x2, y2) is a stable node (or focus).
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B ∈
(
−
√
1.6; 1.6−

√
0.96

)
. For B = 1.6−

√
0.96 we have a system with 2 fixed points

for any p, and a saddle-node bifurcation.

The Jacobian of the system (3) is
(

−1 −0.8 + 0.8y
2− p

0.4
1− 2p− x− (2B − 2p)y

)
. The Jaco-

bian computed in the origin: J(0) =

(
−1 −0.8

2− p
0.4

1− 2p

)
, the characteristic equation is

z2 + 2pz + 0.6 = 0, z1.2 = −p± i
√

0.6− p2 if |p| <
√
0.6. ∂Re(zc)

∂p
6= 0 ⇒ we have a 1-dim

Hopf bifurcation for p = 0.

The stability of the origin and the type of the Hopf bifurcation is given by the first

Lyapunov value σ for p = 0 [9], which is computed as follows:

ẋ = ax+by+p(x, y), ∆ = ad−bc > 0, a+d = 0, p =
∑

i+j=2

aijx
iyj, q =

∑
i+j=2

bijx
iyj.

ẏ = cx+dy+q(x, y). In the case of our dynamical systems (3): a20 = a11 = b20 = 0

σ =
(

−3π

2b∆
3
2

)
(aca02b11 + abb211 + 2c2a01b02 − 2acb202 + (bc− 2a2) b11b02) =

−3π

2b∆
3
2
(1.6− 3.2B + 4B2 − 3.6B) = (B2 − 1.7B + 0.4) e, e > 0, B1,2 = 1.7±

√
1.29

2
. B1 =

B− = 1.7−
√
1.29

2
.

For B ∈
(
B−, 1.6−

√
0.96

)
the origin is stable and the Hopf bifurcation is supercritical.

For B ∈
(
−
√
1.6, B−

)
the origin is unstable and the Hopf bifurcation is subcritical.

For B = B− = 1.7−
√
1.29

2
the origin is a weak focus of order 2 (σ = 0). It is unstable

because the second Lyapunov value, W2 > 0. Its sign of is computed symbolically using

the formulae from [18] and [24]. For a planar quadratic dynamical systems as below:{
ẋ = −y + ax2 + bxy + y2

ẏ = x+ cx2 + dxy.
(6)

Sign of W2 = sign
(
−5cd3 + 9acd2 + 5cd2 − abd2 − bd2 − 20c3d− 19bc2d+

+b2cd+ 18a2cd+ 8acd+ 10cd− a2bd+ 18abd+ 19bd− 40ac3 − 18abc2 − 10bc2−

−9ab2c− 5b2c− 40a3c− 40a2c+ 20ac+ 5ab3 + 5b3 + 20a3b+ 40a2b+ 40ab+ 20b
)
.

Figure 1. Bifurcation diagram; the number of limit cycles is locally constant in
connected 2-dim and 1-dim domains
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We explain the local bifurcation diagram for the dynamical systems (3). For each pair

(B,p), we define the pair (α, c): α =
√
1.6− B√

0.4
, c = p−B√

0.4
; we can recover the coefficients

B and p. β = −
√
1.6 and γ =

√
0.6 are fixed. Each system from the family (3) represents

a point in the bifurcation diagram.

Ox-axis= the range of the α coefficients and Oy -axis= the range of the c -coefficients.

The parabolic curve, asympotic to the oy-axis, is the Hopf bifurcation curve for the second

anti-saddle (x2, y2).

1 dim-Hopf bifurcation curve around the origin (the line) has the equation:

c = α+ 1+γ2

β
= the relation between c and α coefficient such that the trace of the Jacobian

in the origin is zero.

Saddle-saddle connection (the upside-down parabolic curve) has the equation

c = 1
2

(
α + β +

√
(α− β)2 − 4γ2

)
= the relation between c and α coefficient such that

there is a saddle-saddle connection between the saddle (x1, y1) and the point [0; 0; 1] from

the Poincaré sphere (the structure of Figure 4, Type II for the stable manifolds).

Perko [9] proved the existence of the local homoclinic loop bifurcation curve and of the

local multiplicity 2 limit cycles bifurcation curve. Figure 1 is completed by Figure 3, where

there is the multiplicity 2 limit cycle bifurcation curve, tangent to the Hopf bifurcation

curve for the value B = B− = (1.7 −
√
1.29)/2. The most complete bifurcation diagram

is Figure 7, where there is the number of local and non-local limit cycles around the weak

focus of order 2.

4.2 The 2-dimensional Hopf bifurcation

It is proved in [12] the existence of the multiplicity – 2 limit cycle surface, which is given

for fixed γ, in the (α, c, β)-coordinates as the graph of an analytical function. Fixing

β will provide a curve in the (α, c)-plane = P , which is tangent to the Hopf bifurca-

tion line (Chow’s Theorem) for the value B = B− = (1.7 −
√
1.29)/2 and p=0. We

identify the position of this curve in the plane P . The intersections between P and the

1-dim Hopf bifurcation surface (which is the line c = α + 1+γ2

β
), and also to the mul-

tiplicity 2 – limit cycle bifurcation surface are transversal and they look like Figure 3.

More exactly, for the dynamical systems (3), the local zone from the bifurcation diagram

containing 2 limit cycles is located below the line– 1-dim Hopf curve from Figure 1 (or

the line from Figure 7) for negative p, in the supercritical Hopf bifurcation zone, for
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B ∈
(
B− = 1.7−

√
1.29

2
, 1.6−

√
0.96

)
. It is the generic topological picture when the origin

is unstable (W2 > 0). The dynamical systems (3) have two limit cycles around the ori-

gin (small, local limit cycles resulted from coefficient perturbations) if the signs of the

coefficients of equation (7) below alternate, as a necessary condition according to [18].

We apply Rousseau-Schlomiuk Theory [18] (Theorem 2.11) to determine the position

of the multiplicity 2-bifurcation curve in the (B, p) plane: in polar coordinates which came

from the Poincaré normal form, around the weak focus of order 2 for the system with

p = 0 and B = B−, the number of the limit cycles is the number of strictly positive roots

of the equation:

Re (c0) +Re (c1) r +Re (c2) r
2 = 0, Re (c0) = λ. (7)

The system (3) has to be brought to the form of the dynamical system (8) using affine

transformations and time parametrization. The coefficients of the eq. (7) are computed

using the the coefficients of:{
ẋ = λx− y + ax2 + bxy + y2

ẏ = x+ λy + cx2 + dxy
(8)

Re (c1) =
1
8
(b(a + 1) − c(d + 2a)) and Re (c2) =

1
288

W2. The formula for W2 followed

the equation (6). Using the linear transformation:(
u
v

)
=

(
e f
g h

)(
x
y

)
, where e =

−
(
p2−pB+B

)
+

√
(p2−pB+B)2+1.6(1+p−2B)(1−p)

0.8(1+p−2B)
,

f = 1, g = (B− p)e− 1, h = 0.4e, then scaling (diagonal transformation) and linear time

parametrization, we bring the dynamical system (3) to the form of the system (8) [18].

Using Mathematica, we compute the discriminant of the equation (7) and the local number

of limit cycles appears. The implicit analytical formula for the multiplicity 2 – limit cycle

curve is given by the discriminant of the equation (7) when it vanishes.

Figure 2. Mathematica computations: The line with negative slope:= the trace.
The almost horizontal lines are: the second focal value, the discriminant
of the equation (7) and the first focal value (the lowest line)
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Remark. The Normal Form Theory provide the universal unfolding for the codim 2

bifurcation at a weak focus of order 2 ( [12] and Theorem 6, Chapter 4.15 from [9]): if

the system has a weak focus of order 2 (the trace and the first Lyapunov values are zero),

there is a change of variables such that there is a family of bounded quadratic systems

whose coefficients depend on 2 parameters, whose bifurcation diagram is given by the

Figure 3:

Figure 3. The local bifurcation diagram around a weak focus of order 2.

Unfortunately, this local chart around the weak focus of order 2 is not in the (α, c)-

plane = P . The above mentioned theorems from [12] and [18] are required to complete

the picture. Mathematica implementations double-checked the zones of different signs for

the coefficients of the equation (7) and help us to properly attach Figure 3 to the local

bifurcation diagram of Figure 1, as described in the beginning of the Section 3.2. We had

four possibilities to attach Figure 3, or its mirror image, from the time reversal situation,

to the tangency point (the 2-weak focus).

For fixed β and γ of the system (2), the weak focus of order 2 is the solution of the

system

c = α +
1 + γ2

β
=

αβ − 2α2 − 1 +
√

(αβ − 2α2 − 1)2 − 4(α− β)(β − 2α)

2(β − 2α)
.

It is a degree 3 equation in α. For 1+γ2

β
= β the equation become of degree 2,

α = α(β, γ) is the only solution such that α > β + 2γ and c ∈ (−2, 2).

Remark. There are two instances where we use β < 0 < γ and the imposed relation
1+γ2

β
= β between β and γ. The first situation is motivated by the hand-calculations from

Section 2.2 which confirm that the Figure 3 is also the bifurcation diagram around the

weak focus of order 2 in the (α, c) -plane, attached as described at the beginning of this

section. The second situation where we use this relation and β = −
√
1, 6 is required by

numerical simulations from Section 5.
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5 Separatrix configurations

It is known the phase portrait for a bounded quadratic system with 3 singularities (the

topological structure of the stable and the unstable monifolds of the saddle, without the

exact number of limit cycles) [12], [9], [25]. From these seminal works we record that for

our systems (3) we have the following topological possibilities.

Type  I Type II Type III

Figure 4. The three possible topological structures for the unstable and stable
manifolds of the saddle
Type I: both stable manifolds came from “the left infinity” to the
saddle
Type II: there is a saddle-saddle connection between the finite saddle
and the point [0, 0, 1] from Poincaré sphere
Type III: both unstable manifolds converge to the second anti-saddle (or
to a limit cycle which surround it)

Figure 5. p = 0 and B = 0.2 The south separatrix from the saddle (−0.3; 0.5)
converges to the second anti-saddle (Type III). p = 0 and B = 0.61.
The east separatrix (stable manifold) came from left infinity towards
the saddle (Type I). p = 0 and B = 3√

40
. There is a saddle-saddle

connection between the saddle and the [0, 0, 1] from Poincaré sphere
(Type II)

6 New (non-local) limit cycles around the origin

For B = 0.2 and p = 0 the origin is unstable (the first Lyapunov value > 0) and locally

the field lines spiral out. We numerically detect that the Poincaré map, the cross-section

map with respect to Oy, satisfies P (z) < z for the initial conditions x = 0, y = 0.001. So,
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we have a stable limit cycle. For the initial conditions x = 0, y = 0.05, P (z) > z, so we

have a bigger unstable limit cycle.

The consequences of this enriched diagram are:

1) the existence of 4 limit cycles in (4, 0)- configuration in the “2-limit cycle” local

zone. This is a new fact that answers a question from [19] on the maximum number of

limit cycles around a singularity for a planar quadratic dynamical system.

2) the existence of 4 limit cycles around the (0, 0) and (x2, y2) in (3, 1)-configuration:

around the origin we have the 2 numerically detected limit cycles above and a 3rd one

from the subcritical Hopf bifurcation for p > 0. For B3 = −1−
√
6

5
, Tr

(
J(x2,y2)

)
= 0. For

positive p close to 0 and variable B close to B3 we have a supercritical Hopf bifurcation

for (x2, y2), giving birth to the 4th limit cycle around (x2, y2).

Figure 6. Poincaré map based on Oy axis. B=0.2, p=0. Initial conditions on the
Oy-axis: 0.1 for the expanding trajectory, and 0.02 for the smallest inside
trajectory. Between these values P (z) has a fixed point i.e. an unstable
limit cycle; there is also a stable limit cycle because the origin is unstable

Theorem 6.1 For B = 0.2 and p = 0, the dynamical system (3) has at least a stable

limit cycle surrounded by a bigger unstable limit cycle around the origin.

Proof 6.2 The systems (3) have the ability to not enter in general conditions of many

theorems which could prove the existence of these 2 limit cycles as for Lienard, Ricatti,

Abel, polar or normal form systems etc. The problem for the Brusselator and for the Van

der Pol oscillator was numerically approached in [20], [22], [21]. For a given system, it
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Figure 7. Enriched bifurcation diagram (local + non-local) around (0, 0)

was proved that the numerically detected cycle can be surrounded by a Poincaré-Bendixson

zone defined by 2 trigonometric polynomials (i.e. its boundaries).

From [22] we will use Corollary 2.1 as follows: Let C = Z(s) = (X(s), Y (s)) a

parametrization of a smooth curve in R2. By definition, C is transversal to the flow given

by the dynamical system (dx = P (x, y); dy = Q(x, y)) if F (s) = P (Z(s))·Y ′(s)−Q(Z(s))·

X ′(s) does not change sign and is zero at finitely many points called contact points.

Corollary 2.1 from [22]: For a given open orbit segment of the dynamical system (1),

γ(t) and for any ε small enough we can find 4 curves, ε-close to γ (distance measured on

the normal lines to γ at most ε), all transversal to the flow, inward or outward as desired,

on different sides of γ.

Lemma 6.3 The dynamical system (3) for B = 0.2 and p = 0 has a Figure 4 – Type III

configuration of its stable and unstable manifolds: both unstable manifolds converge to the

second anti-saddle (or to a limit cycle which surround it).

Proof 6.4 Suppose that the separatrix configuration is given by Figure 4, type I. The

origin is unstable and we automatically have an entrance zone for the flow, so we have a

stable limit cycle. Inside it, for B > B−, we have a small unstable limit cycle (from the

local theory around the weak focus of order 2). Both have to disappear before the saddle-

node bifurcation for B = 1.6 −
√
0.96. The stability of the homoclinic loop bifurcation is

given by the sign of the divergence at the saddle (x1, y1). Tr = Div

(
∂f
∂x

+ ∂g
∂y

∣∣∣∣
(x1,y1)

)
=(

p
0.4

− B
0.8

)
(0.8−B −

√
c) +

√
c− 1, where c = (1.6−B)2 − 0.96. If the homoclinic loop

bifurcation is not degenerate, the big stable limit cycle disappears first, then the small
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unstable one. But this is not possible: the positive divergence zone is below the curve

Div = 0 plotted in Figure 8. Div = 0 is the violet curve from Figure 7. For p = 0, on

the Hopf bifurcation line, Div = 0 if B=(
√
6 − 1)/5=0.2898..., after the value of B for

the order 2 weak focus: 0.282... in the supercritical Hopf bifurcation zone and before B =

3√
40

=0.474... where there is a saddle-saddle connection (Figure 4, Type II configuration:

this B=0.474... is given by the intersection between the saddle-saddle connection curve

and the Hopf bifurcation curve: p = 0 and c = 1
2

(
α + β +

√
(α− β)2 − 4γ2

)
. Theorem

2.20 from [12] and [9]).

Figure 8. The curve p=f(-B) given by the divergence at the saddle = 0.
..

Next, we apply to our systems (3) the following fundamental fact proved in [26]: Figure

4, Type I and III configurations alternate before and after a homoclinic loop bifurcation.

We do not have a degenerate homoclinic bifurcation because of the saddle-saddle con-

nection curve and its behavior under rotated vector fields [23] and [10]. Type II is

almost a Type I – Figure 4 configuration of the unstable manifolds. Otherwise, after

the degenerate degree 2 homoclinic bifurcation, increasing B from (
√
6 − 1)/5 towards

B = 3√
40

= 0.474.., another homoclinic bifurcation has to appear. So, for p=0 and B=0.2,

as for any B ∈
(
−
√
1.6, B−

)
we have a type III separatrix configuration as above (Figures

4 and 8). �

We consider the Catalan trisectrix y = ±x
√
1− x, rescaled in x and y, rotated by 60◦

and translated such that its left vertex will be in the saddle. It will be parametrized as

(x(t), y(t)). a = 0.09, b = 0.105, c = 0.3, d = 1, B = 0.2. x1(t) =
(
a
b

) (
sin
(
t
2

))2
,

y1(t) =
a
√
a

b
cos
(
t
2

) (
sin
(
t
2

))2
.

x(t) = d ·
(

1
2
x1(t) +

√
3
2
y1(t)− c

)
y(t) = d ·

(
−
√
3

2
x1(t) +

1
2
y1(t) +

5
3
c

)
.
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Figure 9. The the graphs of F (t) = P (Z(t))y′(t)−Q(Z(t))x′(t) and of the Catalan
trisectrix (x(t), y(t))

It has the following property, as in can be seen from Figure 9: For t ∈ (0, t0) the field

lines enter inside the curve. For t = t0 it has a contact with the flow. For t ∈ (t0, 2π) the

field lines exit the curve interior. F (t) is a polynomial in sin(t/2) and cos(t/2) of degree

9. For sin( t
2
) = 2z

1+z2
and cos( t

2
) = 1−z2

1+z2
the sign is given by a degree 18 real polynomial

in z.

Figure 10. The Catalan trisectrix; the solution curve C2 contains the only contact
point between the vector field and the Catalan curve

We have a separatrix configuration of Figure 4, type III. Suppose by contradiction

that all trajectories go from the origin to the second anti-saddle, or towards the saddle in

the case of the stable manifold. We take an orbit, spiral out from the origin. We deform

it using Gasull’s corollary mentioned at the beginning of the Section 3.1 in such a way

the field lines go inside it as in Figure 10. C1 is this transversal curve to the flow.

The first 3 intersection points between C0 -the Catalan curve and C1 are A, B and

D. C3= the solution curve for the flow containing A. We also have the solution curve
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C2, which contains the contact point between C0 and the flow. As we can see in Figure 10

above, the only way to have a “convex spiral out” pattern, with a positive displacement

map is for C2 to contain the point A. But the position of A ∈ C0 ∩ C1 can be modified.

C2 is a fixed solution curve which passes through the only contact point between C0 and

the flow. In conclusion, we do not have the situation in which all trajectories spiral out

from the origin, so we have at least two limit cycles, a stable one surrounded by a bigger

unstable limit cycle, in a Figure 4, Type III configuration. �

The trigonometric expansion of F (t), the function which measures the transversality

of the Catalan trisectrix with respect to the flow is:

0.00117697 Sin[t/2]-0.00209297 Sin[t]-0.00152813 Sin[(3 t)/2]+0.0005613 Sin[2 t]-

-0.000127706 Sin[(5 t)/2]-0.000254774 Sin[3 t]+0.00063798 Sin[(7 t)/2]+

+0.000433673 Sin[4 t]-0.0000466552 Sin[(9 t)/2]. t∈[0; 2π].

Remark: According to [12] and [9], the possible local bifurcation for a bounded quadratic

system are: saddle-node bifurcations, Hopf bifurcations of codim. 1 and 2, Bogdanov-

Takens bifurcations, saddle-saddle bifurcations, homoclinic-loop and multiplicity–two

limit cycle bifurcations. For B = 0.2 and p = −0.7, all field lines go out from the

Catalan trisectrix for any d between 0.95 and 1.

Figure 11 is the graph of F(t). If we suppose by contradiction that we had Figure 5, Type

I configuration for the stable and the unstable manifolds, then the stable limit cycle for

p = 0 has to disappear at p = −0.7. A homoclinic loop bifurcation (which has to be

located in the Tr(saddle) > 0 zone) or a multiplicity 2 – limit cycle bifurcation curve

automatically involves another unstable limit cycle, containing a stable one inside it. In

this way we justify Figure 4, Type III configuration –using again the Catalan curve,

without mentioning the saddle-saddle bifurcation (Lemma 6.3).

7 Discussion

A challenge is to vizualize the four limit cycles of these systems ”on the same screen”.

Future research directions could be the global bifurcations and the number of limit cycles

around the second anti-saddle. Previous studies ( [19]) and working hypotheses (the use

of computers) were against the conclusion that there exist quadratic systems with four
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Figure 11. The graphs of F (t) = P (Z(t))y′(t)−Q(Z(t))x′(t) > 0 and of the Cata-
lan curve (x(t), y(t)), for B = 0.2; p = −0.7; d = 0.95; a = 0.09; b =
0.105; c = 0.3

limit cycles around a singularity. Dynamical systems were also used in self-assembly [29]

to model probabilities or species concentrations.

7.1 Positive polynomials, signal processing and (a super-version
of) the 17th Hilbert’s problem

Hilbert’s 17th problem, posed at ICM Paris(1900), ask if a non-negative polynomial of n

variables can be written as a sum of squares of rational functions. The problem was solved

by Artin (1927). Hilbert’s problem was generalized to polynomials defined on intervals

and to positive trigonometric polynomials applied in optimization, engineering, in signal

processing [30], [31], [32]. The trigonometric polynomials which have exactly one root on a

given interval - as the trigonometric polynomials F (t) generated by the Catalan trisectrix

- are much complicated and their theoretical and numerical study could be relevant for

our instance of planar Hilbert’s 16th problem.

8 Materials and Methods

The theoretical results about dynamical systems are essential on proving the existence of

4 limit cycles around the origin for B = 0.5 ∗
(
1.7−

√
1.29

)
+ ε1 and p = −ε2 and ε1or2

strictly positive and very small. Theoretically, we do not know how small εi should be.

Conjecture: For B = 0.5∗
(
1.7−

√
1.29

)
+0.003 and p = −0.0001 the dynamical system

(3) has four limit cycles around the origin.

For these values, the Mathematica computations show that the equation (7) has two
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Figure 12. The unstable limit cycle intersects the Oy-axis between 0.022 and 0.023; the
stable limit cycle intersects the Oy-axis between 0.000038 and 0.000048 (for
B=0.2 and p=0, initial conditions of the four orbits above: x=0 and the
mentioned values for y)

strictly positive roots. A general statement about the analytical coefficients of equation

(7) symbolically computed in Mathematica is required. For{
ẋ = −x− 0, 8y + 0, 4y2

ẏ = 2x+ y − xy − 0.2y2.
(9)

the behaviour of the Poincare (or return, or cross-section) map – P (z) compared to z–for

the following initial values (starting point) are easy to be visualised on Mathematica

Cloud (or Mathematica and Matlab): x=0.0 and y ∈ [0.1; 0.02; 0.022; 0.023; 0.001; 0.05;

0.000038; 0.000048]. The transversal curve used in Section 5 (Figure 10) could be replaced

by any spiral-out trajectory. We esentially use the Catalan (or L’Hospital) trisectrix to

prove the above mentioned results, in a way which can be algoritmically checked using

the provided parameters.

9 Conclusions
The systems (3) came from a natural inverse problem: to find, for random data (stochastic

simulations using NFsim which generated quasi-cycles), biologically -relevant chemical

reaction networks. For p = 0 and B = 0.6 we found a dynamical system from the

family (3) above, such that there is a CRN with its prescribed dynamics of concentrations

(Section 6).

The systems (3) are counterexamples to a Perko’s conjecture [12] (it was conjectured
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that a bounded planar quadratic system has at most 2 limit cycles). In the recent [33], 14

types of planar 2-polynomial systems have unknown global bifurcation structure- some of

them can be found among our systems. The behavior of the L’Hospital cubic with respect

to the system and its way to provide a proof of the existence of 2 new (global, in any

case non-local) limit cycles can be generalized to other coefficients, if all ingredients of

the proof above are satisfied: we mention the positions of the weak focus of order 2 and

of the intersections between the saddle-saddle connection curve and zero-divergence curve

with the 1-dim Hopf bifurcation line in the bifurcation diagram. Inequalities involve roots

of polynomials of degree at least 5. The appeareance of the bounded planar quadratic

systems is explained by their biochemical origins.

10 Appendix. The second anti-saddle
The second anti-saddle is relevant for the dynamics of x and y concentrations for:

Y () → Y () + Y () (kinetic rate k1 = 0.2) ;X() + Y () → X() + P ()(k2 = 2
3 ); Y () + Y () → X() + Y ()

(k3 = 6
10 ); S() +X() → Y () + Y () (k4 = 1

3000000 ); X() → P () (k5 = 2
3 )

Figure 13. Dynamics of species concentrations become the dynamical system (3)
for B = 0.6 and p = 0.0 if the lower anti-saddle is translated to the
origin.

The first quadrant is invariant for the flow of the system dx
dt

= −x + 0.6y2; dy
dt

=

−0.6y2+ 2
3
x− 2

3
xy+0.2y. The second anti-saddle is the only stable node. If we translate the

lower anti-saddle to the origin, the phase space become the phase space of the dynamical

system (3) for B = 0.6 and p=0.0. There are no limit cycles around this stability node

for the system. To study the second anti-saddle, we have to go back to the bifurcation
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diagram of the family (3).

Figure 14. The line is the 1-dim Hopf curve for the origin. There are two very close
intersections between this line and the weak focus of order 2 curve for
the origin, and the zero-divergence curve.A system with an unstable
homoclinic loop can appear only below the second curve (upside-down
parabolic shape), where the divergence at the saddle is > 0. The upper
parabolic curve is the 1-dim Hopf curve for the second anti-saddle. The
last numbers are the x-coordinates of the intersections among these 6
curves ( the weak focus of order 2 curve for the second anti-saddle (in
our case, there is no focus of order 2 for the second anti-saddle and the
solutions are complex);the saddle-saddle connection curve,).

The oX-axis = the α coefficient =
√
1.6 − B√

0.4
. The oY-axis = c = p−B√

0.4
. β = −

√
1.6

and γ =
√
0.6.

The trace of the Jacobian matrix evaluated at the second anti-saddle (x2, y2) vanishes

if:

c(α+S) = 1+α(α+β+S)/2, where S =
√

(α− β)2 − 4γ2 (Theorem 5, Chapter 4.14, [9]).

In this case the systems (3) have (α,c)-coeficients on the highest convex curve from Figure

14.

The second anti-saddle (x2, y2) is a weak focus of order 2 if 2ac + b =
√

(b2 − 4ad,

where d = β−α−3S , a = 4S−2β and b = 2+(α+β−S)(β−2S).(Theorem 5, Chapter

4.14, [9]).

In our case we do not have a weak focus of order 2. The solutions are the first complex

numbers from Figure 14.
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The second anti-saddle is unstable for the coefficients (α,c) above the highest convex

curve from Figure 14. It is stable below this curve (in particular for B=0.6 and p=0.0).

Transversal passing of this curve by increasing p will generate a stable limit cycle from a

supercritical Hopf bifurcation around a second anti-saddle.

To find non-local limit cycles around the second anti-saddle as we proceeded for the ori-

gin, we need systems which cannot represent chemical reaction networks, and 2-parameter

families which satisfy this condition for all of its members. In this way, in the vicinity of

the intersection between 1-dimensional Hopf bifurcation curves for the origin and for the

second anti-saddle, we could find planar quadratic dynamical systems with more than 4

limit cycles.
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