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Abstract

For any polygonal array, independently of the number of sides on each polygon,
the zig-zag polygonal array has the extremal minimum value for the Merrifield–
Simmons index. This result generalizes a well known fact obtained for hexagonal
chains.

We analyze the product between two Fibonacci numbers with complementary
indices. The results of the analysis will be used in our proposal. Our method
does not require the explicit computation of the number of independent sets on the
involved array graphs, instead it is based on the application of the edge division
rule as a way to decompose polygonal array graphs.

1 Introduction

Polygonal array graphs have been widely investigated, and they represent a relevant area

of interest in mathematical chemistry because they have been used to study intrinsic

properties of molecular graphs [1]. Several works have been developed to analyze extremal

values for the number of independent sets (known in mathematical chemistry area as the

Merrifield–Simmons index) on polygonal arrays [2–7].

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 81 (2019) 505-522
                         

                                          ISSN 0340 - 6253 



Merrifield and Simmons showed the correlation between the number of independent

sets and the boiling points on polygonal chain graphs that represent chemical molecules.

It is well known that the Merrifield–Simmons index is an important invariant of the
structural chemistry [3, 5].

Gutman [8] analyzed extremal hexagonal chains according to three topological invari-

ants: Hosoya index, largest eigenvalue and Merrified-Simmons index. Gutman showed

that the extremal topology for the maximum Merrifield–Simmons index, in the particular

case of hexagonal chains, is the linear hexagonal chain. He conjectured that the chain
with the smallest Merrifield–Simmons index is unique and it corresponds to the zig-zag

polyphenegraph. The researchers of Gutman [4, 8] greatly inspired the study of extremal

polygonal chains.

Zhang et al. [6,7] solved Gutman’s conjecture. They showed that the minimum of the

Merrifield–Simmons index on hexagonal chains is achieved by the zig-zag polyphenegraph.

Later on, Cao et al. [2] showed extremal polygonal chains for k-matchings (Hosoya in-

dex), considering the topology of polygonal arrays that provide maximum as well as

minimum values. His proofs are based on the use of the Z-polynomial (Z-counting poly-

nomial). While Zhang et al. [9] determined extremal hexagonal chains concerning the

total φ-electron energy, which are similar to the extremal chains in [7].

Several works deal with the characterization of the extremal graphs with respect to

Hosoya and Merrifield–Simmons indices in several given graph classes, like: trees, unicyclic

graphs, and certain structures involving pentagonal and hexagonal cycles [1–3, 5, 10–12].

For example, Ren et al. [13] determined the minimal Merrifield–Simmons index of double

hexagonal chains. In [14], Li et al. characterized the tree with the maximal Merrifield–

Simmons index among the trees with a given diameter. In [12], a survey about extremal

graphs for Hosoya and Merrifield–Simmons indices involving different graph topologies is

considered.

In this paper, we determine the extremal graph for the minimum Merrifield–Simmons

index regarding any kind of polygonal arrays, generalizing a result previously obtained

for hexagonal and pentagonal chains. Our proofs are based on properties that are derived

from the product between two Fibonacci numbers that have complementary indices. Fur-

thermore, our proofs do not require the explicit computation of the Merrifield–Simmons

index on those polygonal arrays, instead the edge division rule is applied as a way to
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decompose polygonal arrays. We believe that our method can be adapted to compute

other intrinsic properties on molecular graphs.

2 Array of polygons
Let G = (V,E) be an undirected graph with vertices set V and set of edges E. It is

assumed that G is a simple graph, it has not loops nor parallel edges. The neighborhood

of x ∈ V is the set N(x) = {y ∈ V : xy ∈ E}, and its closed neighborhood is N(x) ∪ {x}

which is denoted by N [x]. The degree of a vertex x in the graph G, denoted by δG(x), is

|N(x)|. The degree of the graph G is ∆(G) = max{δG(x) : x ∈ V }.

A path between two vertices v and w, denoted as Pvw, or simply as Pn, is a sequence

of edges: v0v1, v1v2, . . . , vn−1vn such that v = v0, vn = w, and vkvk+1 ∈ E, for 0 ≤ k < n;

the length of the path is n. A simple path is a path where v0, v1, . . . , vn−1, vn are all

distinct. A cycle is a non-empty path such that the first and last vertices are identical,

and a simple cycle is a cycle in which no vertex is repeated, with the exception that the

first and last vertices are identical.

A subset S ⊆ V is called independent if for every u, v ∈ S implies that uv /∈ E.

The corresponding counting problem on independent sets, denoted by i(G), consists of

counting the number of independent sets of a graph G. Computing i(G) is a ]P-complete

problem for graphs G where ∆(G) ≥ 3. The computation of i(G) remains ]P-complete

even if it is restricted to 3-regular graphs.

Let G = (V,E) be a molecular graph. Denote by n(G, k) the number of ways in which

k mutually independent vertices can be selected in G. By definition, n(G, 0) = 1 for

all graphs, and n(G, 1) = |V (G)|. Furthermore, i(G) =
∑

k≥0 n(G, k) is the Merrifield–

Simmons index of G, that is, exactly the number of independent sets of G.

A polygon (also called a polygonal graph) is a simple cycle graph. Therefore, a cycle

graph Cn of length n represents a polygon of n sides, and it forms a n-gon. The way

that two k-gons are joined, via a common vertex or via a common edge, defines different
classes of polygonal chemical compounds. Two polygons that have an edge in common

are called adjacent.

A polygonal chain is a 2-connected simple graph G obtained by identifying a finite
number of congruent regular polygons (called basic polygons) one by one such that each

vertex of G has degree 2 or 3 and each basic polygon, except the first one and the last
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one, is adjacent to exactly two basic polygons. A polygonal array is a graph Pk,t obtained

by identifying a finite number of t congruent polygons each of size k, also known as a

chain of t k-gons.

A special class of polygonal arrays is the class of hexagonal chains, which are chains

formed by n 6-gons. Hexagonal chains are the graph representations of an important

subclass of benzenoid molecules, namely of the so called unbranched catacondensed ben-
zenoids. The structure of these graphs is apparently the simplest among all hexagonal sys-

tems. Therefore, it is not surprising that a great deal of mathematical and mathematico–

chemical results known in the theory of hexagonal systems apply, in fact, only to hexagonal

chains [8].

Let Hn = h1h2 · · ·hn be a polygonal array with n basic polygons, the polygons do not

have the same number of sides necessarily, and where each hi and hi+1 have exactly one

common edge ei, i = 1, 2, . . . , n−1. A polygonal array with at least two polygons has two

end-polygons, h1 and hn, while h2, . . . , hn−1 are the internal polygons of the array. In a

polygonal array, each vertex has degree either 2 or 3. The vertices of degree 3 are exactly
the end points of the common edges between adjacent polygons. Let H be the subgraph

from Hn induced by the vertices of degree 3. A polygonal array Hn is called a chain of

type one if H is a path [2].

The distance dG(x, y) from a vertex x to another vertex y is the minimum number

of edges in an x − y path of G. The distance dG(x, S) from a vertex x to a set S is the

miny∈S dG(x; y). Similarly, we define the distance between two edges e1, e2 on the graph

G: dG(e1, e2), as the minimum number of edges in an e1 − e2 path of G, without consider

the same edges e1 and e2.

Let Hn be a hexagonal chain with n basic 6-gons joined by one common edge between

two adjacent hexagons. If for each pair of consecutive sharing edges ei and ei+1 of Hn, it

holds that dHn(ei, ei+1) = 2 according to the clockwise direction, then Hn is known as the

linear hexagonal chain (Ln), and if dHn(ei, ei+1) = 1 according to the clockwise direction

on each pair of consecutive common edges, then Hn is known as the zig-zag hexagonal

chain (Zn). Notice that in a zig-zag polygonal array the induced subgraph H (formed by

the vertices of degree 3) is a path.

In some articles, the number of independent sets (i(G)) is also called the Fibonacci

number of the graph G. For example, in [14], Li et al., characterized the tree with the
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maximum Fibonacci number among the trees with a given diameter. In [16], Zhao and

Li investigated the orderings of two classes of trees by their Fibonacci numbers. In [1],

Pedersen and Vestergaard studied the Fibonacci number for the unicyclic graphs. In [19],
Yu and Tian studied the Fibonacci numbers of the graphs with given edge-independence

number and cyclomatic number. Yu and Lv [17, 20] studied the Fibonacci numbers of

trees with maximum degree and given pendent vertices, respectively. Ye et al., ordered

the unicyclic graphs with given girth according to the Fibonacci numbers in [18]. More

related to our work, in [15] is analyzed the array of polyphenylene compounds represented

by graphs obtained from a hexagonal cactus by expanding each of its cut-vertices to an

edge.

In recent years, several works have been done for determining topology graphs cor-
responding to extremal Hosoya and the Merrifield–Simmons indices [2, 5, 10]. For many

graph classes that have been studied so far, graphs that minimizes the Hosoya index co-

incide with those that maximizes the Merrifield–Simmons index, and vice versa, although

its relation is still not totally understood. For example, Deng [3] showed that graphs with

n vertices and n+ 1 edges, denoted as (n, n+ 1)-graphs, its smallest Merrifield–Simmons

index does not coincide with the maximum for the Hosoya index.

Here, we determine the extremal topology for the minimum Merrifield–Simmons index

for any polygonal array, not only for hexagonal chains. In fact, it does not matter the

number of sides of each polygon in the array. For this, we develop in the following chapter

results about the product between Fibonacci numbers.

3 Product between two Fibonacci numbers
It is well known that for any simple path Pn of length n− 1, that is Pn has n vertices and

n − 1 edges, Pn fulfills i(Pn) = Fn+2, where Fn is the nth-Fibonacci number with initial

values F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2. Let us consider an isolated vertex as a

linear path of length zero, therefore, i(P1) = F3 = 2.

Let k > 0 be a constant integer and let Pi and Pj be two disjointed simple paths, such

that i+ j = k. It is known that i(Pi ⊕ Pj) = i(Pi) · i(Pj) = Fi+2 · Fj+2. Let the sequence

βk,s = Fs · Fk−s, defined for all k = 2, 3, ... and 1 ≤ s < k. Given a constant k > 0, we

want to determine for which pair: (i, j), i, j ≥ 1, and j + i = k, the product i(Pi)i(Pj)

has extremal values, that is, when it achieves the maximum and the minimum values. We
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establish which are the extremal values for the sequence βk,s = Fs · Fk−s in the following

proposition.

Proposition 1 For any integers s with 1 ≤ s < k,

1. if k ≥ 3 then mins {FsFk−s} = F2Fk−2 = Fk−2,

2. and if k ≥ 2 then maxs {FsFk−s} = F1Fk−1 = Fk−1

Proof 1 Let βk,s = FsFk−s be the sequence of the Fibonacci product with 2 ≤ k and

1 ≤ s < k. The number of terms in the sequence {βk,s}s is k − 1. The proof is done,

first, by assuming that k is an even number and then, assuming that k is odd. Let

us recall that Fibonacci numbers can be given using Binet’s formula, that is for any k,

Fk = (ak − bk)/(a − b) where a = (1 +
√
5)/2 and b = (1 −

√
5)/2 are the roots of the

polynomial P (r) = r2 − r − 1. This also means that a, b satisfies the two equations:

a+ b = 1 and ab = −1.

Let us assume that k is even, in other words k = 2r for some r ≥ 1. Thus, βk,b k
2
c−s =

Fr−sFr+s. However, βk,b k
2
c+s = β2r,r+s = Fr+sFr−s, therefore, βk,b k

2
c−s = βk,b k

2
c+s. On the

other hand, if k = 2r + 1 for some r, it is obvious that b2r+1
2

c = r, then β2r+1,r+1+j =

Fr+1+jFr−j = β2r+1,r−j. This means that the sequence is symmetric, thus, it can be

assumed without losing generality that 1 ≤ s ≤ bk
2
c. If we now choose the subsequence

βk,2, βk,4,..., that is the sequence where s takes only even values, then by using Binet’s

formula and some algebraic manipulations, it could be checked that

βk,2(p+1) = βk,2p + Fk−2(2p+1) (1)

where the facts ab = −1 and a + b = 1 are used in the calculations. Equation 1 only

makes sense for k ≥ 6 or r ≥ 3, since p runs from one onwards. Furthermore, in the

case where p = 1, we have that β6,4 = F4F2 = F2F4 = β6,2, since F0 = 0 as expected of the

symmetry of the sequence. The other cases, when k ≤ 5, are easily handled since when

k = 2 the sequence β2,s has only one term and, therefore, there is no minimum value.

As for k = 4, there are only three terms in the sequence βk,s, that is {βk,s}s = {2, 1, 2}

thus mins{βk,s} = 1 = Fk−2 and maxs{βk,s} = 2. Therefore, for k ≥ 2 the sequence

satisfies βk,2 ≤ βk,3 ≤ · · · ≤ βk,b k
2
c. From the above discussion, and from the fact that

Fk−2(2p+1) > 0 in Equation 1 for k > 6, it makes the inequalities strict.
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n Fn β1,k β2,k β3,k β4,k β5,k β6,k β7,k β8,k β9,k β10,k β11,k β12,k β13,k

Max Min
1 1 0
2 1 1 0
3 2 1 1 0
4 3 2 1 2 0
5 5 3 2 2 3 0
6 8 5 3 4 3 5 0
7 13 8 5 6 6 5 8 0
8 21 13 8 10 9 10 8 13 0
9 34 21 13 16 15 15 16 13 21 0
10 55 34 21 26 24 25 24 26 21 34 0
11 89 55 34 42 39 40 40 39 42 34 55 0
12 144 89 55 68 63 65 64 65 63 68 55 89 0
13 233 144 89 110 102 105 104 104 105 102 110 89 144 0
14 377 233 144 178 165 170 168 169 168 170 165 178 144 233

Table 1. The product of two Fibonacci numbers with complementary indices.

Analogously, taken the subsequence βk,2p+1, that is when s takes odd values, then

(a− b)2βk,2p+3 = (a2p+3 − b2p+3)(ak−2p−3 − bk−2p−3)

= ak − a2p+3bk−2p−3 − ak−2p−3b2p+3 + bk

= (a− b)2βk,2p+1 + a2p+3b2p+3a
2 − b2

a2b2
(ak−4(p+1) − bk−4(p+1)). (2)

By using ab = −1, a + b = 1 and Binet’s formula again, Equation 2 is equivalent to

βk,2p+3 = βk,2p+1 − Fk−4(p+1). Once again, Fk−4(p+1) has only meaning for k ≥ 8, but the

other cases were discussed above. Thus, the sequence satisfies βk,1 ≥ βk,3 ≥ · · · ≥ βk,b k
2
c.

Therefore, mins{FsFk−s} = βk,2 = Fk−2 and maxs{FsFk−s} = βk,1 = Fk−1 and the

proposition follows. �

In Table 1, we present some of the values of the sequence βk,s = Fs ·Fk−s. Notice that
different relations can be inferred when we consider the values of the table arranged like

the Pascal’s triangle.

Notice that the maximum F1 ·Fk−1 = Fk−1 for the row (k) of the table results to be the

minimum F2 ·Fk−1 = Fk−1 for the row (k+1). Also, the difference between the maximum

and minimum in the row k is Fk−1 − Fk−2 = Fk−3. The fact that the extremal values of

βk,s are in the first two consecutive columns of the Table 1 will have logical consequences

on the topologies that represent the extremal values for the Merrifield–Simmons index on

polygonal arrays.

Observe the symmetrical behavior of the sequence βk,s at the position s > bk
2
c. In

fact, β
k,
⌊
k
2

⌋
−j

= β
k,
⌊
k
2

⌋
+j

if k is even, and β
k,
⌊
k
2

⌋
−j

= β
k,
⌊
k
2

⌋
+j+1

if k is odd, and for all j
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such that 1 ≤ j ≤
⌊
k
2

⌋
− 2.

Also, the sequence βk,s is increasing on the even indices of s, and it has a decreasing

behavior on the odd indices of s. For example, βk,2p < βk,2(p+1) for every p ∈
{
1, 2, ...,

⌊
k
4

⌋}
,

and all k. While, βk,2p+1 > βt,2p+3 for every p ∈
{
0, 1, ...,

⌊
k
4

⌋
− 1
}

and all k.

We show in the following chapters, how the properties about the sequence βk,s, and how

the application of the edge division rule, are useful for the computation of the extremal

values of the Merrifield–Simmons index on polygonal arrays.

4 Extremal topologies for a polygon joined to two
paths

Some reductions rules have been useful to count combinatorial objects on graphs, par-

ticularly, the following rules are commonly used to count independent sets on a graph

G:

1. Vertex reduction rule: Let v ∈ V (G),

i(G) = i(G− v) + i(G− (N [v]))

2. Edge division rule : let e = {x, y} ∈ E(G),

i(G) = i(G− e)− i(G− (N [x] ∪N [y]))

Let hr be a polygon of r sides. Let Pi and Pj be two different simple paths of lengths

(i−1) and (j−1), respectively, and such that i+ j = k becomes a constant. Pi∪ehr∪ePj

denotes the graph formed by joining Pi and Pj to the end-vertices of an edge e ∈ E(hr),

as it is illustrated in Figure 1a. Notice that e can be any edge of the polygon since in

fact, the initial polygon is a cycle and all of its edges are indistinguishable.

We show that i(G) is maximum under the restriction |Pi| + |Pj| = k when i = 2 (Pi

has exactly two vertices and only one edge) and j = k − 2 (a path of k − 2 vertices and

k − 3 edges).

Let e = {x, y} ∈ E(hr). Let Pi = {x, x1, . . . , xi−1} and Pj = {y, y1, . . . , yj−1} be

two disjointed paths, where i + j = k. Pi ∪x hr ∪y Pj denotes the resulting graph of

joining Pi with hr in the vertex x, and Pj with hr in the vertex y, this means that

V (Pi) ∩ V (hr) = {x}, V (Pj) ∩ V (hr) = {y}, and V (Pj) ∩ V (Pi) = ∅.
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x x1 xi−1

y y1 yj−1

e

(a) The graph G with the edge e = xy
to be removed

x x1 xi−1

y y1 yj−1

(b) The graph G after the operation
(G− e)

x2 xi−1

y2 yj−1

(c) The graph G where all neighbours
of x and y are removed: G −
(N [x] ∪N [y])

Figure 1. A base graph G

Lemma 1 If G = Pi∪x hr ∪y Pj then the maximum for i(G) is achieved when the path Pi

has length 1 (two vertices {x, x1}) and the path Pj has length k − 3 (j = k − 2 vertices).

Proof 2 Applying the edge division rule on e = {x, y} ∈ E(hr), it results in i(G) =

i(G − e) − i(G − (N [x] ∪N [y])). Notice that (G − e) is a simple path of length r + (i −

1) + (j − 1) = r + k − 2; therefore, i(G− e) = Fr+k. Furthermore, i(G− e) is invariant

with respect to the selected position of the edge e ∈ E(hr).

On the other hand, (G− (N [x]∪N [y])) is formed by three disjointed paths: Pi−2, Pj−2

and the path that results from eliminating e and its two adjacent edges from hr, e.g. Pr−4.

Then, i(G − (N [x] ∪ N [y]))) = Fr−2 · Fi · Fj. In fact, the result of this product does not

depend on the initial position of e in hr, because the three resulting paths will have same

lengths independently of the position of e in hr.

Then, the maximization of i(G) is equivalent to the minimization of Fi ·Fj because that

term appears as minus in the equation to compute i(G), and they are the unique parameters

that can vary under the restriction i+ j = k. According to part 1 of Proposition 1, Fi ·Fj

has a minimum value when Fi = F2 and Fj = Fk−2 which means that the resulting path

Pi−2 after removing N [x] from G must be empty and the resulting path Pj−2 after removing

N [y] from G should have k − 4 vertices. This also means that the initial path Pi has two

vertices {x, x1} and the original path Pj has k − 2 vertices, (see Figure 2). �

Lemma 2 If G = Pi ∪x hr ∪y Pj then the minimum for i(G) is achieved when the path

Pi has length zero (i = 1 vertices) and the path Pj has length k − 2 (j = k − 1 vertices).
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Proof 3 Similar to Lemma 1, using case 2 from Proposition 1. �

Furthermore, the maximum and minimum values for i(G) are achieved independently

of the number of edges in the polygon hr. Consequently, our results are fulfilled for any

polygon joined with two disjointed paths in the end-points of any of its edges. We show

in Figure 2, the extremal topologies for i(G) for the class of graphs: G = Pi ∪x hr ∪y Pj.

From the previous two proofs, it is inferred that extremal value for G = Pi∪xhr∪yPj is

not unique, since due to the commutativity of Fi·Fj and the symmetry of G′ = Pj∪xhr∪yPi

with G, we obtain that i(G) = i(G′), and both subgraphs get the same value for the

Merrifield–Simmons index, and in its extremal value.

x x1

y y1 yk−3

hr

(a) max i(G)

x

y y1 yk−2

hr

(b) min i(G)

Figure 2. Extremal arrays for i(G), for G = Pi ∪x hr ∪y Py

The following Lemmas and the Corollary will be useful for our analysis. They show

that given an initial graph G = (V,E), if new edges are added to E(G) then i(G) is

decreasing, while if new vertices are added to V (G) then i(G) is increasing, even if the

new vertices are connected to all original v ∈ V (G).

Lemma 3 Let G = (V,E) be an undirected graph, let x, y ∈ V (G), and e = {x, y} /∈

E(G), then i(G) > i(G ∪ e).

Proof 4 Let Se = {S ∈ i(G) : x, y ∈ S} be the independent sets in G containing the

two vertices x, y ∈ V . |Se| > 0 since at least the set {x, y} ∈ Se because e /∈ E(G). As,

i(G ∪ e) = i(G)− |Se| then i(G) > i(G ∪ e).

Lemma 4 Let G = (V,E) be an undirected graph, and let x /∈ V . Let G1 = G∪ {{x, v} :

∀v ∈ V }, then i(G1) = i(G) + 1.

Proof 5 i(G1) = i(G)∪|{{x}}|, since there are no more independent set including x and

any other vertex from V . Then, i(G1) = i(G) + 1.

Corollary 1 Let G = (V,E) be an undirected graph, and let x, v be two vertices such that

x /∈ V , v ∈ V . Let G1 = G ∪ {x, v}, then i(G1) > i(G).
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Proof 6 According to previous lemma, i(G1) = i(G)+1 if there are no more edges between

x and any other vertex v ∈ V . If any edge {v, x} is omitted in E(G1) then G1 is even

greater than i(G) + 1. In whatever case, i(G1) > i(G).

5 Extremal topologies on polygonal arrays

Let Hr1,r2...,rp be a linear array of p polygons, each one of ri sides 1 ≤ i ≤ p, e.g, Hr1,r2...,rp =

hr1hr2 · · ·hrp . We denote ei as the common edge between the polygon hri and hri+1
. Let us

write H
l1,l2...,lp−2
r1,r2...,rp to represent Hr1,r2...,rp where li denotes the distance between the common

edges ei and ei+1 of three consecutive polygons.

Lemma 5 Let l be the distance between the common edges e1 and e2 in H l
r1,r2,r3

such that

1 ≤ l <
⌊
r−1
2

⌋
max{i(H l

r1,r2,r3
)} = i(H2

r1,r2,r3
)

Proof 7 By applying the edge division rule on the edge e2 = {x, y} ∈ E(hr2), we obtain:

i(H l
r1,r2,r3

) = i(H l
r1,r2,r3

− e2)− i(H l
r1,r2,r3

− (N [x] ∪N [y])) (3)

Notice that (H l
r1,r2,r3

−e2) is an array of two polygons, H : hr1hr2+r3−2, with the common

edge: e1. Furthermore, i(H l
r1,r2,r3

−e2) is invariant with respect to l since without regarding

the value of l, it consists of a linear array of two polygons that are invariants in its lengths

independently of the position of e2.

(H l
r1,r2,r3

− (N [x]∪N [y])) is the graph formed by two connected components. The first

component is a simple path Pr3−4 with r3− 4 vertices and therefore i(Pr3−4) = Fr3−2. The

second component depends on the value of l. When l = 1, this second component, denoted

by G1, is a path Pr1+r2−6 with r1 + r2 − 6 vertices and r1 + r2 − 7 edges. But in the case

l > 1, the second connected component is G2 = Pl−1 ∪x hr1 ∪y Pr2−l−3, that is a subgraph

with r1 + r2 − 6 vertices and r1 + r2 − 6 edges.

Both connected subgraphs, G1 and G2 come from the same original array: hr1hr2.

They have the same number of vertices, but G2 has one edge more than G1 because the

neighbor of x in hr1 has a degree bigger (one more) when l = 1 than when l > 1. And

according to Lemma 3 and corollary 1, i(G2) < i(G1).

Hence, in order to maximize i(H l
r1,r2,r3

), we must select the minimum between i(G2)

and i(G1). As i(G2) < i(G1) then the minimum is achieved for l > 1. However, l > 1 has
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several possibilities for the size of the path Pl−1 for G2. By Lemma 2, the minimum for

i(G2) is achieved when the path Pl−1 has just one vertex (Pl−1 = {x}) and then Pr2−l−3

has r2 − 4 vertices. This topology is only achieved if the original distance between e1 and

e2 is two, and therefore, l = 2. �

Notice that distance l ≥ 2 between common edges in a polygonal array can only be
obtained for polygons with size greater than 5. In fact, distance two between adjacent

hexagons gives us an unique topology. This is because the common edge is positioned in
the same edge of the last hexagon independently of the direction of how it was counted,

clockwise or counterclockwise direction.

Lemma 6 Let l be the distance between the common edges e1 and e2 in H l
r1,r2,r3

such that

1 ≤ l <
⌊
r−1
2

⌋
.

min{i(H l
r1,r2,r3

)} = i(H1
r1,r2,r3

)

Proof 8 By applying the edge division rule on the edge e2 = {x, y} ∈ E(hr2), we obtain

that

i(H l
r1,r2,r3

) = i(H l
r1,r2,r3

− e2)− i(H l
r1,r2,r3

− (N [x] ∪N [y])) (4)

Notice that (H l
r1,r2,r3

− e2) is an array of two polygons: hr1hr2+r3−2, with a common

edge: e1. Furthermore, i(H l
r1,r2,r3

− e2) is invariant with respect to l because H l
r1,r2,r3

− e2

consists of an array of two polygons that maintain the same number of sides independently

of the value l.

(H l
r1,r2,r3

− (N [x] ∪ N [y])) is a graph formed by two connected components. The first

component is a simple path Pr3−4 with r3− 4 vertices and therefore i(Pr3−4) = Fr3−2. The

second component depends on the value of l. Let G1 be such component when l = 1. In

this case, G1 is a path Pr1+r2−6 with r1 + r2 − 6 vertices and r1 + r2 − 7 edges. But in

the case l > 1, the second connected component is G2 = Pl−1 ∪x hr1 ∪y Pr2−l−3, that is a

subgraph with r1 + r2 − 6 vertices and r1 + r2 − 6 edges.

Both connected subgraphs, G1 and G2 come from the same original array: hr1hr2. They
have same number of vertices, but G2 has one edge more than G1 because the neighbor of

x in hr1 has a degree bigger (one more) when l = 1 than when l > 1. And according to

Lemma 3 and corollary 1, i(G2) < i(G1).

Hence, in order to minimize i(H l
r1,r2,r3

) we need to select the maximum between i(G1)

and i(G2). As i(G1) is greater than i(G2), then the case l = 1 achieves the maximum.
Thus, the distance 1 between e1 and e2 minimize i(H l

r1,r2,r3
). �
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Similar to lemma 5, distance l ≥ 1 between common edges in a polygonal array can

only be obtained for polygons with size greater than 3. In fact, distance one between

adjacent quadrangles defines an unique topology. This is because the common edge is

positioned in the same edge of the last quadrangle independently of the direction of how

it was counted, clockwise or counterclockwise direction.

Let Hn : h1h2 · · ·hn be an array of n ≥ 2 polygons and let hn+1 be a new polygon of

k sides. We denote by ei = {xi, yi}, i = 1, . . . , n− 1 the common edge between polygons

hi and hi+1. Let us enumerate the edges of hn as b0, b1, . . . , bk−1, where b0 = en−1 is

the common edge between hn and hn−1 and the sequence follows the clockwise direction.

We must select e ∈ E(hn) such that i(Hn ∪e hn+1) is maximum into the set of possible

selections of edges in hn. For example, e can not be any of the edges b0, b1, bk−1 because

if we join hn+1 to Hn in any of those edges then Hn ∪ hn+1 looses the topology to be a

polygonal array.

(a) Distance 2
(b) Distance 1

Figure 3. An octagonal array with distance 2 and 1, respectively.

i

 h1

xn−1

yn−1hn−1

hn

· · ·

︸︷︷︸
Hn−1

 = i

 h1

xn−1

yn−1hn−1

hn

· · ·

︸︷︷︸
Hn−1

− i

 h1

xn−1

yn−1hn−1· · ·

︸︷︷︸
Hn−1


Figure 4. Application of the edge division rule on a (n+ 1)-octagonal array, with

distance l = 2 between common edges

i

 · · ·︸︷︷︸
Hn−1

 = i

 · · ·︸︷︷︸
Hn−1

− i

(
· · ·︸︷︷︸
Hn−2

)

Figure 5. Application of the edge division rule on a (n+ 1)-octagonal array, with
distance l = 1 between common edges
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The extremal minimum topology for the Merrifield–Simmons index for hexagonal ar-

rays has been identified as the zig-zag array (Zn) - array with distance 1 between adjacent

hexagons [6]. We present a generalized result taking into consideration all kind of polyg-

onal arrays. The following theorem shows such result.

Theorem 1 The minimum for the Merrifield–Simmons index for any polygonal array Hn

is achieved when the distance between common edges for any pair of adjacent polygons is

one.

Proof 9 By induction on n - the number of polygons in the array.

1. The base case for H3 was shown previously (Lemma 6).

2. Suppose that the hypothesis holds for any polygonal array Hi with i ≤ n.

3. Let Hn be a polygonal array with n polygons, and let hn+1 be an additional polygon

of k ≥ 4 sides, joined to Hn in the position e = {x, y} ∈ E(hn). By applying the

edge division rule on e, we obtain

i(Hn+1) = i(Hn+1 − e)− i(Hn+1 − (N [x] ∪N [y])) (5)

(Hn+1 − e) is an array of n polygons where the inductive hypothesis is held. Then,

i(Hn+1 − e) is minimum when the list of common edges e1, . . . , en−1 is arranged at

distance 1 between any pair of consecutive edges in the list. Add more, the term

i(Hn+1 − e) is invariant from e because its value does not depend on the selected

position of e to join hn+1 to Hn.

On the other hand, Hn+1 − (N [x] ∪ N [y]) is a graph formed by two connected

components. The first component is a simple path Pk−4 with k − 5 edges and k − 4

vertices, where i(Pk−4) = Fk−2 is an invariant value independent to the position of

e ∈ E(hn). The other connected component depends on the position of e in hn.

When the distance between en and e is l = 1, the second component is formed from

Hn for removing the vertices S = {xn, yn, xn−1, yb}, where xn−1 = NHn(xn), yb =

NHn(yn), xn−1 6= yb. We denote by G1 such component, where V (G1) = V (Hn)−S.

Then, i(Hn+1 − (N [x] ∪ N [y])) = i(G1)Fk−2. Notice that |V (G1)| = |V (Hn)| − 4.

Furthermore, δHn(xn) = δHn(yn) = δHn(yb) = 2, and δHn(xn−1) = 3. In this case,
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there are 5 edges incident to S from E(hn) and two edges from E(hn−1) incident to

S, this is, |EHn(S)| = 6.

In the case l > 1, the second component is formed from Hn due to the same set of

vertices S being removed. But in this case, xa = NHn(xn), yb = NHn(yn), xa 6= yb.

Then, δHn(xn) = δHn(yn) = δHn(yb) = δHn(xa) = 2. Let G2 = (Hn − S), then

G2 = Pi∪xn−1 Hn−1∪yn−1 Pj is a polygonal array where the edge en−1 = {xn−1, yn−1}

from the polygon hn−1 is joined to two disjointed paths Pi and Pj. In this case,

i(Hn+1− (N [x]∪N [y])) = i(G2)Fk−2. Notice that V (G2) = V (Hn)−S, then G2 and

G1 have the same set of vertices. But in the case l > 1, there are only 5 edges from hn

incident to S in Hn. In fact, G1 = G2−{xa, xn−1}, and for Lemma 3, i(G1) > i(G2).

Hence, in order to minimize i(Hn+1) we must select max{i(G1), i(G2)} since those

are the unique values that can vary in equation 5. As i(G1) > i(G2), the maximum

corresponds to the case l = 1, this is, distance one between common edges in the

array minimize i(Hn+1). �

When we consider the class of hexagonal arrays theorem 1 solves the Gutman’s

conjecture [8], showing that the zig-zag hexagonal chain is effectively the topology with

a minimum value for i(Hn), as it was already noticed by Zhang [6]. The last theorem

generalizes such result, showing that independently of the kind of polygons, considering
polygons with more than 5 sides, distance one between adjacent polygons minimize the

Merrifield–Simmons index for any polygonal array, even for hexagonal arrays.

Notice that the selection of the vertex v, that holds that δ(v) = 3 and v ∈ (N(x) ∪

N(y)), could belong to N(x) or to N(y). Afterwards, two different but symmetrical

subgraphs Hn and H ′
n can be formed, such that i(Hn) = i(H ′

n).

Then, distance one between adjacent polygons can be obtained in clockwise or in
counterclockwise direction. Following the same direction for distance one between adja-

cent polygons (the clockwise or the counterclockwise), then two different but symmetrical

array of polygons Hn and H ′
n are formed. They hold i(Hn) = i(H ′

n), and both topologies

achieve the minimum value for the Merrifield–Simmons index.

We have shown that the minimum value for i(Hn) is achieved independently of the
number of edges in each polygon in the array, while the distance one between a pair of
adjacent polygons is constant following, for example, the clockwise direction.

Since the topology that minimizes i(Hn) is achieved when there is one edge of distance
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between a pair of adjacent polygons, and if we want to extend the array with an extra

polygon and keep a minimum value for i(Hn+1), then there must be one edge separating

the edges: en−1 and en. Thus, the direction has to be constant, for example, following the

clockwise direction.

There is a question for further analysis that we establish in the following hypothesis.

Conjecture 1 The polygonal array with a maximum Merrifield–Simmons index is the

one that maintains distance two between consecutive common edges.

6 Conclusions

We have shown how the properties of the product between two Fibonacci numbers can be

used for the computation of the Merrifield–Simmons index on polygonal arrays. We have

proved that the zig-zag polygonal array (polygonal arrays where each pair of adjacent poly-

gons is joined at distance 1) has the extremal minimum value for the Merrifield–Simmons

index. Also, there exists two symmetrical polygonal arrays obtaining the minimum value

for the Merrifield–Simmons index.

This result works independently of the length of the polygons in the array, and it

generalizes a well known result obtained for hexagonal chains.

Our method does not require the explicit computation of the number of independent

sets of the involved graphs, instead it is based on the application of the edge division rule

as a way to decompose polygonal array graphs.

Acknowledgments: The authors are grateful to the anonymous referees for their valuable
comments, corrections and suggestions, which led to an improved version of this article.
The authors also thank SNI-Conacyt México.

References

[1] A. S. Pedersen, P. D. Vestergaard, The number of independent sets in unicyclic
graphs, Discr. Appl. Math. 152 (2005) 246–256.

[2] Y. Cao, F. Zhang, Extremal polygonal chains on k-matchings, MATCH Commun.
Math. Comput. Chem. 60 (2008) 217–235.

[3] H. Deng, The smallest Merrifield–Simmons index of (n, n+1)-graphs, Math. Comput.
Model. 49 (2009) 320–326.

-520-



[4] I. Gutman, Advances in the Theory of Benzenoid Hydrocarbons II , Springer, Berlin,
1992.

[5] S. Wagner, I. Gutman, Maxima and minima of the Hosoya index and the Merrifield–
Simmons index, a survey of results and techniques, Acta Appl. Math. 112 (2010)
323–346.

[6] Z. Lianzhu, The proof of Gutman’s conjectures concerning extremal hexagonal chains,
J. Syst. Sci. Math. Sci. 04 (1998) 460–465.

[7] L. Z. Zhang, F. Zhang, Extremal hexagonal chains concerning k-matchings and
k-independent sets, J. Math. Chem. 27 (2000) 319–329.

[8] I. Gutman, Extremal hexagonal chains, J. Math. Chem. 27 (1993) 197–210.

[9] F. Zhang, Z. Li, L. Wang, Hexagonal chains with maximal total 3.1416-electron
energy, Chem. Phys. Lett. 337 (2001) 131–137.

[10] H. Deng, Catacondensed benzenoids and phenylenes with the extremal third–order
Randić index, MATCH Commun. Math. Comput. Chem. 64 (2010) 471–496.

[11] W. C. Shiu, Extremal Hosoya index and Merrifield–Simmons index of hexagonal
spiders, Discr. Appl. Math. 156 (2008) 2978–2985.

[12] Z. Zhu, S. Li, L. Tan, Tricyclic graphs with maximum Merrifield–Simmons index,
Discr. Appl. Math. 158 (2010) 204–212.

[13] H. Ren, F. Zhang, Double hexagonal chains with maximal Hosoya index and minimal
Merrifield–Simmons index, J. Math. Chem. 42 (2007) 679–690.

[14] I. Gutman, X. Li, H. Zhao, On the Merrifield–Simmons index of trees, MATCH
Commun. Math. Comput. Chem. 54 (2005) 389–402.

[15] T. Došlić, M. S. Litz, Matchings and independent sets in polyphenylene chains,
MATCH Commun. Math. Comput. Chem. 67 (2012) 313–330.

[16] X. L. Li, H. X. Zhao, On the Fibonacci numbers of trees, Fib. Quarter. 44 (2006)
32–38.

[17] X. Z. Lv, A. M. Yu, The Merrifield–Simmons indices and Hosoya indices of trees
with a given maximum degree, MATCH Commun. Math. Comput. Chem. 56 (2006)
605–616.

[18] Y. L. Ye, X. F. Pan, H. Q. Liu, Ordering unicyclic graphs with respect to Hoyosa
indices and Merrifield–Simmons indices, MATCH Commun. Math. Comput. Chem.
59 (2008) 191–202.

-521-



[19] A. M. Yu, F. Tian, A kind of graphs with minimal Hosoya indices and maximal
Merrifield–Simmons indices, MATCH Commun. Math. Comput. Chem. 55 (2006)
103–118.

[20] A. M. Yu, X. Z. Lv, The Merrifield–Simmons indices and Hosoya indices of trees with
k pendent vertices, J. Math. Chem. 41 (2007) 33–43.

-522-


