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Abstract
Existence and basic properties of the singlet andlkét dormants proposed in the preceding paperigoeously
proved and explained by using the topological in&xand Z-counting polynomial. Due to rapidly increasing
complexity of multiplet dormants higher than triplmathematically incomplete but useful stratefpedinding them

are proposed and demonstrated.

1 Introduction
In the preceding paper [1] by demonstrating a variety of multiplet ddsriawas

convinced that the conventional endospectral graphs (ESG’s) [2-Ab#riag else but “singlet
dormants.” There the topological ind&xandZ-counting polynomial, o€ function, which have
been proposed by the present author [5-7] are shown to work as useful kégrridesng these
dormants without being bothered by solving eigen values of the charactelgtiomial. First, in
this paper mathematical analysis will be performed for suppohghiove techniques and results
of the dormants with lower multiplicity. As the multiplicity ir@ses the mathematical structure of

this problem rapidly becomes entangled. However, thanks to our lucky situation neaagting
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results could be obtained by using several optimistic ConjectndeBxpectations, which will be
introduced and demonstrated as honestly as possible. Of course, sgstematiterized survey
is highly expected to amend the defect and sloppiness of the reSuts back-of-envelop

calculation.

2 Singlet dor mant

First consider two graphs D and G. The host D has at leastestioes, while G only
needs to have a root vertex. Then choose one vertex u from D, followed byagigintgtive name
u to the root of G. We are going to attach G to D by identifying bottoget graph C = GuD as

illustrated in Figure 1. At this stage there is no restriction to cho&senD.

Figure 1. By identifying vertex u of G and D one gets Gud.

TheQ function of GuD can be expressed by

QGuD = QH QD + QG QDOU—QH QDBU (1)
according to the recursion formula obtained by the present author iff7]9ji8te independently
from Schwenk for characteristic polynomials }8Here DBuis the graph obtained from D by

deleting vertex u together with all the edges incident to u. Bt Be denoted simply by H. For

L In the case of characteristic polynomid®&(x)) the corresponding expressiorQsud = QH Qb +

Qc QpOu-—x QH QpAu. Notice the factor multiplied to the last term of RHS of Eq. (1). Hewer,Pg(x) will no
longer be treated in this paper.
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later discussion instead of usi@glet us simply uséin italic to represent it® function. Then Eq.
(1) can be changed into a slimmer expression as
GuD=H D + (G —H) (DOu) 2)
If G is simply an edgez=1+x andH=1, giving
GuD =D +x (DOu). 3)
By puttingx=1 into Eq. (3) one gets
Z(GuD) =Z(D) + Z(D6u), 4
which is found to be very useful in checking the isospectrality of graphs, where G is and edge.
Now try to choose another vertex v from D, and rename u of G &&n.theQ of GvD
obtained by identifying both v’s of G and D can be expressed by
GvD=H D + (G —H) (DOV) (5)
By comparing Egs. (2) and (5) we get important Theorem 1, which alsongove

conventional ESG discussion.

[Theorem 1] (singlet dormant)

If a pair of graphs GuD and GvD are isospectral, i@ = DOv. vice versa.

Namely Theorem 1 is the necessary and sufficient conditiorhéoexistence of the
singlet dormant in the realm of tree graphs. Let us call such sitsyod D like BBu and DBv as
“pre-dormants” in the discussion of dormants. We have checketh#@s of the pre-dormants
of all the 64 examples of endospectral trees in the paper by Knogd3tfalfill Theorem 1. Here

one may add the following Corollary.
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[Corollary 1] (singlet dormant)

If a pair of graphs GuD and GvD are isospectral, #®&®©u) = Z(DOv). Namely, the
Z's of their pre-dormants are the same. However, the revenset inecessarily true, but highly

probable.
Let us takel~3 as an example for realizing Theorem 1. GrahD) in Fig. 2 has been

known as the smallest endospectral tree to generate a pair of 12 ted8s,[3,8].

Z(DOU)=1x21=21
2 !
u I v Y DOU o oo oo
IS Z=71
D=1 Brva S SO N S
3

Z(DOV)=7x3=21
Figure 2. Smallest singlet dormant D generates a pair ofd&s.
By applying Eq. (3) t@ and3 one gets
C2o=D +x(DGu)and C3=D +x(DOv), (6)
where theQ of D has already been obtained tovel +8¢+ 2062+ 1 7x+4x* [6]. DOuU andDBV
can be calculated by using the easily obtainable [2,3,®3] of small graphs to be
DOU=1+6x+10¢+4x° and Dev:(1+4x+2x2)(1+2x) =1+6¢+10+4x°. Then we getCo=
Ca=1+0+262+27C+8x". By puttingx=1 in these polynomials, we get
Z1=Z(D)=50, Z(DOu)=21, and Z(DOV)=7x 3=21.
By using Eq. 4 we havér=Z3=71.
We can understand whyis the smallest singlet dormant, or ESG, in the tree graphs by
drawing the whole map of thévalues of all the candidates of pre-dormag{®Gu), of 1 as in

Fig. 3, where only a pair of vertices are found to have the gdp®u) values as encircled.

34
. @ I 25 24
6 @ 1o

Figure 3: TheZ values of the subgraph@ for all the vertices of. The encircled

2

31

vertices become the sprouts of the singlet dormant.
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All other tree graphs beloi<9 are found to have no duplicaD®u) value among
their symmetrically independent vertices. A rigorous mathemagicedf can be reached by
switching the above discussion from thendex to theQ function.

Next we will show an interesting property of a singlet dormahich already has
ben known for non-tree ESG’s but without sophisticated discussion [10,11}o Taitach
graphs G and E to dormant D with two sprouts u and v to generate a@aiDeE and EuDvG

as in Fig. 4.

GUDVE Ev(Dou)

5 /%@ @@® ﬂ

\j@yu

_____________________ 3” +(®u )@{d
=C§u :@v

EuDvVG Eu(DOv)

Figure4. A pair of graphs GuDVE and EuDvG are construftech G, E, and D. The two pairs,
GuD and GvD, and EuD and EvD, are isospectral widasich other.

By using Eq. (1) th€ functions of both the graphs can be expressed as (See Fig. 4)
GUDVE =H(EvD) + (G —H){ Ev(DOu)} (@)
and
EuDvVG = H(EuD) + (G — H){ Eu(DoV)}. 8)
Since the vertices u and v are the sprouts of dormant D,
EvD = EuD. 9)
Although we know the equality of the following pair@ffunctions as
DOu = DOV, (10)

the equality of theQ's of the pair of graphs, Ev@u) and Eu(®v) (as shown in the
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right-most part of Fig. 4) is not yet proved at this stage. By usmg(1) theseQ's can be
expressed, respectively, as
Ev(DOU) = F(DAU) + (E - F)(DAW) (11)
and
Eu(DOv) =F(D&V) + (E-F)(Dow), (12)
whereD@uv is theQ of the graph obtained from D by deleting u and v together with all the
edges incident to u and v.
Then by using Eqg. (10) we get
Ev(DOu) = Eu(Dov), (13)
trace back through Egs. (7) and (8), and finally reach the desired result as
GUDVE = EuDVG, (14
which ensures
[Theorem 2] XDY=YDXof singlet dormant)
Singlet dormant D (tree) with a pair of sprouts, u and v, geneaatdS pair of
XuDvY and YuDvX,

by using a pair of rooted graphs, X andl Y.

3 Doublet dor mant

Consider a doublet dormant suchdaa Fig. 5[12], which has two pairs of sprouts,(u
w2) and (4, v2), and generates an IS tree pairsi{@D and Guv2D) as5 and6 by adding a pair of

edges to those sprouts (See Figure 6a).

2 X and Y can be chosen from non-tree graphs, buare@ot going into detailed discussion here.
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Vi u I I 5
I up v, Uy — !
4 5=

Figure5. Example of a doublet dormasgenerating IS graphS,and6.

doublet dormant pre-dormants

N N
Call ”OD‘E p @V vei® 3/\ o D
G W 2 5 ) b
N2 ) N
X] j DOu; DOu, Douu,
7\ SN N YN
5 )] e
i ¢ b ¢
G 5 NN
C=GuuD  C=Gvv,D pev;  Dev,  Dov,
Figure 6a. Doublet dormant Figure 6b. Various pre-dormants

After repeated calculation using Eq. (1) the following pair of esgioms for theQ
functions of jointed graphsiG GuuzD and G = GwivzD can be obtained as Egs. (15) and (16).
The relevant pre-dormants are shown in Fig. 6b. Especially whennGge, the corresponding

Z values can be obtained as Egs. (17) and (18).

C1=H2D +H (G —H) {(DOwW) + (DBOW2)} + (G —H)? (DOU1L) (15)
G=H?D +H (G —H) {(DOW1) + (DBV2)} + (G —H)? (DOViv2) (16)
Z (GuuzD) =Z (D) + {Z (DOu1) +Z (DOW2)} + Z (DOU1L2) 17)
Z(GvavzD) = Z (D) + {Z (DOv1) + Z (DOV2)} + Z (DOVav2) (18)

From Egs. (15) and (16) the following theorem for doublet dormants can be derived.
[Theorem 3] (doublet dormant)

For graph D with two pairs of verticesi(ue) and (4, v2), if (i) DOuU1Uz=DOv1v2 and (ii)
>(DOu) =%(DOv), then GuuzD and Guv2D become an IS pair, both of which are generated from

the doublet dormant D.
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[Expectation 1] (doublet dormant)
For graph D with two pairs of vertices(u) and (\, v2), if (i) Z(DOuuz)=Z(DBOv1v2)
and (i) 2Z(Deu)=2Z(D0Ov), then it is highly possible that @uD and GuvzD become an IS pair,

both of which are generated from the doublet dormant D.

Theorem 3 is indeed a sufficient condition@rCz. However, it is very difficult to find
such IS pair graphs that do not have the property of (i) and (ii) sinradtisly. On the other hand,
Expectation 1 is not actually a corollary but just an expectatiomdyitesent author. Namely,
there is no mathematical rigorousness in it. However, as wshben in this paper it has a strong
strategic role for finding dormants very effectively.

Instead of pursuing mathematical rigorousness let us make surehtemse 3 and
Expectation 1 hold true in concrete examples. Consider grashich generates an IS p&iand6.
Further, when G is an edge, dunctions necessary for applying Egs. (15) and (16) are given in
Figure 7.

Now by assembling (*1)~(*3) in Figure 7 we get
Ci=Co= (*1) +X (*2) + X2 (*3) = 1 + 11x + 4352 + 735 + 53x* + 145 + (19)
as already given in Eq. (6) of the preceding paper.ZTinglices can be obtained by puttixgl
into the above formulas as

Z(C1) =Z(C2) =81 +90 +25=196, (20)

which is the same as Eq. (7) of the preceding paper.
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C, = Guu,D C, = Gwv,D

1% i@
\ Vi D=4 /

u; V2 U

D=1+9x+232+3D3+12¢4+x> (*1) Z=81

DOy z-5 z=8 DOv. Z=55
.—Q—I * oo 1. LN un S Sun Sun aa e ]
DA, = (1+ X+ X3 (1 + 4x+3xd) DOv; =1 +8x+ 212 + 203 + 5¢*
= DOv; = Z=5
DOu, Z=50 2 Z 7I
DOU, =1+ 8x+ 202+ 1753 + 4t DOV, = (1+ 4x+ 24 (1 + 3x+x9)

SDOU=3DOv=2+15x+ 362+ 303+ I+ (*2) 2Z=90

DOy, Dov,v,

||I *—o—o—o —eo—o—o
o o o o

DOULU,= DOV, = (1 +3x+x3)(1+3x+x3) (*3) Z=25

Figure 7. Q functions for supporting Egs. (15) and (16) fae thase with~6. G is chosen as an edge.

Then try to find other doublet dormants. We could not find any doublet doemeortg
the tree graphs witN=5 and 6, but many among those With7 as already shown in Figure 6 of

the preceding paper. Rapid increase Witlhom here might be expected.

4 Triplet dormant

Next consider a triplet dormant D as in Figure 8 which has twe paihree sprouts {u
Uz, ) and (\, vz, v3), and generates an IS tree pair {@uwsD and Gyv2vsD) by adding an edge to

each of their sprouts.
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triplet dormant (1,1,1)

pre-dormants
Uie) @1

Hy—~u Lpp | = | DGV v
e e D ﬁ g |
= X b

¢ 4

—~ DOu; DOui; DOwW,u; Dev,

¢ etc.

D 0—B C,=Gvv,v3D
5
NZare)

Figure 8. Triplet dormant and its pre-dormants.
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Gyl ugD IS

= __

G

By performing a similar manipulation as in the case of the doubletaitrin Figure 6

we get theQ function andZ index of jointed graph GuzusD as follows:
GuuzusD = H3 D + H? (G —H) {(DOu1) + (DOW) + (DOu3)}

+H (G —H)%(DOu2) + (DOU1U3) + (DOU2U3)}

+@ —H)® (DOu1U2u3) (21)

Z(GuiupusD) = Z(D) + {Z(DOu1) + Z(DOW) + Z(DBus)}

+{Z(DOu1u2) + Z(DOU1U3) + Z(DBU2u3)}+ Z(DOU1U2U3) (22)

Here G is also supposed to be an edge in Eq. (22). The pre-dormants in these expresdésons are

shown in Figure 8. It is interesting to observe that for the cabeGmil+x andH=1 Eq. (21) is

turned into the form

GuuzusD = D + x Z(DOu1) + 32 Z(DOu1Lz) + X° (DOU1U2U3). (23)

Similarly for theZ index in the case where G is an edge we get

Z(GuuzusD) = Z(D) + 2Z(DOur) + XZ(DOuilz) + Z(DOualzus). (24)

By following the above manipulations we get Theorem 4.
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[Theorem 4] (triplet dormant (1,1,1))

For graph D with two pairs of vertices i(ue, w) and (M, vz, v3), if (i)
DOu1U2uz=DOV1V2V3,

(i) Z(DOwU)=Z(DOV1V2), (iii) X(DOu1)=%(DOwv1), then GuuxusD and GwuvavsD
become an IS pair, both of which are generated from the triplet dormant D.

In this case also this is a sufficient condition@+C.. However, it is very difficult to
find such IS pair graphs that do not have all the properties (i)~(iii) at all.

As in the case with doublet dormants we would like to propose Expectation 2.

[Expectation 2] (triplet dormant (1,1,1))

For graph D with two pairs of vertices 1{uwe, w) and (d, vz, vs), if (i)
Z(DOu1U2uz)=Z(DOV1V2V3),

(i) ZZ(DOW1U2)=2Z(DOv1v2), and (i) ZZ(DOu1)= ZZ(DOv1), then it is highly possible
that

GutzusD and GyvavsD become an IS pair, both of which are generated from thettripl
dormant D.

Anyway a concrete example for supporting Theorem 4 and Expectatiogi&isin
Figure 9 for the case with triplet dormaniN=6) and the IS paB and9 which are derived from it.

They were already introduced in Fig. 4 of the preceding paper.

7 Q: (G +xH) (G2+ 4xGH + x2H?)
/ \ & Z:(G+H) (G?+ 4GH + H?)

BWIS QT

Figure 9. Triplet dormant generating mirror-symmetric |Srpgriaphs.
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It is to be noted that Theorem 4 and Expectation 2 do not directly apfe triplet
dormant10 and the derived IS paifl and12, because Egs. (21) and (22) were derived for the
dormant whose sproutsi(ue, us) and (\, vz, va) grow, respectively, from all different vertices. On
the other hand, in both dfl and12 two sprouts grow from the same vertex. Namely, there are

found two different types in the family of triplet dormants, i.e., (1,1,1) and (1,2) types.

Figure 10. Triplet dormant in which three sprouts grow fromotvertices.

As the former graphs have already been discussed in Figure 8 andrifldeave are
going to discuss the latter. See Figure 11, where (1,2)-type tiptetant D and the resultant
graph C=GuG’u2D are demonstrated with the relevant pre-dormants. This C ismnettay
identifying the single and double sproutsand u, with the roots of the attaching graphs G and G,

respectively.

triplet dormant (1,2) pre-dormants

i s )64
s ¢

C =GuG'w,D DOu; Deuz DOu;u,

Figure 11. (1,2)-Type triplet dormant and the relevant preqamnts.

TheQ function of C is obtained to be
C=GuG'uzD=HH'D + (G-H H (DOuw) + (G- H') H (DBOu2)

+ (G-H (G- H') (DOU1L). (25)
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The expression for the correspondiigndex can easily be obtained from Eq. (25) in parallel with
the case of Egs. (21) and (22) as

Z(C) =Z(D) + Z(DBuw) + 2ZD0Ou2) + 2ZDBu1ly). (26)
Note that this expression seems to be essentially the saBwe é4) if those sprouts attached to
the same vertex are not allowed to be included in the summation.

By applying Eq. (25) td1 and12 one gets

C(11) =H H (1+4x+23) + (G—H) H' (1+X) + G —H) H (L + ) + (G—H) (G — H) (27)
and
C(12) =H H' (1+4x+23) + G —H) H' (1+3x) + (G —H) H (1 +x) + (G—H) (G' - H"). (28)

Note that in both the graphs, the verticesuud u are chosen, respectively, for single and double
sprouts. Then in the special case viitrand12, asG=1+x, H=1, G'=1+2x, andH'=1, we get the
same results as

C(11) = (1+4+23) + X(14+X) + X(1+2X) + 23=1 + &K+ 9, (29) and

C (12) = (1+4+232) + X(1+3X) + 2X(1+xX) + 2@ =1 + K + 2. (30)

5 Multiplet dormantsin general

We have hitherto seen that multiplet dormants not only encompass trepttohthe
endospectral graph and vertices but also have various interestingedeafulS tree graphs.
Although the necessary conditions for their existence seem to getompdicated rapidly with
their multiplicity, we found that we are in a lucky situation iarsé of finding highly multiplet

dormants as suggested in Egs. (23) and (24).

This situation will be shown in the case with another IS gfal and14 derived from
the same graph0, but quadruplet dormant in this case. Initially they were found fronisiwof

the four IS pair tree graphs wit+9 (Seel6 and17 in Fig. 4 of the preceding paper) [1], but this
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fact was confirmed by the following check.

13
B 85+
e 14
&3

10

Figure 12. Quadruplet dormant in which four sprouts grow fritnree vertices.

First assume the existence of IS pair(s) W#® derived from dormaritO by growing
four edges from its various sprouts whose distribution is allowed tithee €1,1,1,1), (1,1,2), or
(2,2). Then they should be in the list of Figure 13 prepared according to the conditioribguescr

above. In this case twenty-nine candidates were listed up amongi8hacial14 are included.

Gye © © ©
@ @ ] @ @ ° T ) LI @ o
© b1 ©6© © " 103 ©O 13 1014-14©

10-2

L 4 oo o @ LI ) GG
o 4o 80

10-18 10-20 10-28 10-29

Figure 13. N=9 tree graphs derived from the smallest dorm@rity adding four edges, G's.

We can calculate thef-indices,Z(l)'s, of all these graphs, which scatter in the range of

21~48. Then try to calculate the sum of ZI'eeof pre-dormantZ(DOu1), which appeared in Egs.

5
(24) and (26). For this purpose the following diagrén‘? 34 is useful whidsdheZ values

of the pre-dormants for the component vertices. Then each of the 29 igr&hse 13 is given a
set of two nhumberg(C) and>Z(D®us). As the candidates for the IS pairs only the following two
pairs were found to have the same set, naniéy, (or 13) and10-14 (or 14) with (36, 16) and
10-18 and10-28 with (31, 13).

Finally we have to calculate ti§g¢functions of these four graphs. Although details are
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not given here, the obtained results are as follows,

C13=Cua=1+ &+ 172 + 106,
Cio18= 1 + & + 153 + 7¢C,
and Cio28=1+ &+ 16¢ + 6¢. (31)

Then we can conclude th&s and14 are the only IS pair which are derived from the
quadruplet dormart0. On the other hand0-18 and10-28 are not IS but I1Z (is@) pair graphs.
The conclusion already declared for the results shown in Figure 5érashu@ined after this line
of analysis, including the check against the possibility of growing nane three sprouts from
one vertex.

As shown above we could select the candidates for the IS ptimmiedious check of
the Q functions of a large number of candidates but only with simple marigrulat their Z
indices and&Z(DOu1) values.

Furthermore, unexpected and useful results were obtained by calculaingalues of
>7Z(DOuilz) andXZ(DOuius) of 13 and14 as in Figure 14.

Namely, it was found that tfi&indices of botH3 and14 can be correctly calculated by
using Eq. (24) as 36=7+16+11+2. Similarly for b@f18 and10-28 we could get the correct
results as 31=7+13+9+2. The difference between these two pairs 4o come from the terms

>Z(DOu1) andzZ(DOuiuz).

13
®
@0 P (mw) (12) (13) (14) (23) (24) (lels)  (123) (124)
ZDOu) =1 +3 +3 +2 +2 =11 ¥ZDOuiuz)= 1 + 1 =2
@ 14
®
@ @ (nw2) (12) (13) (14) (23) (249) 1(11us) (123) (124)

SZDOuy) =3 +2 +2 +2 +2 =11 3Z(DOupus)= 1 + 1 =2

Figure 14. Calculation 0f2Z(DOuu,) and2Z(DOu;u,us) of 13 and14.
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TheQ functions ofl3 and14 were also correctly obtained by using Eq. (23) as
C13= C14 = (1+4+2)+X(4+10¢+ 2 +x2(5+6X)+ x3(2)=1+8+17%+10C,  (32)

while theQ functions of the pait0-18,28 were found to be different from each other as expected.
Although we cannot get any mathematical proof for this lucky situatidnude

optimistically assume the following expectation and conjecture.

[Expectation 3] (multiplet dormant)

For a pair of I1Z graphs, Gue...usD and Guvz...vsD, derived from graph D by attaching
sedges one by one to two pairs of verticasi@) -+, us) and (\, vz, -+, Vs), if (i) ZZ(DOu1Uz...Us)
= 3Z(DOviva...vs) and (ii))ZZ(DOu1)=2Z(DOv1), then it is highly possible that these graphs are

IS derived from multg)plet dormant D.

[Conjecture 1] (multiplet dormant)
TheQ function of the graph I=Guz:--usD obtained from dormant D composeddof
vertices by attachingedges one by one to the sprouta- -, us which are distributed
amongt (<d,s) vertices is obtained to be

Guitz--usD =D +x Z(DOu1) + x2 3(DOU1R) + -+ X! Z(DOU1LU2... ). (33)

Eq. (33) can be deemed as a formal extension of Eq. (23). Note thatsanmmation
belowZ(DOuiuz) in RHS of Eq. (33) only one sprout u should be selected from one vertex.

Conjecture 1 seems to assert that one needs to make sure @boeecbrrespondence
between each term in RHS of Eq. (33) to check if a pair of grapHSaCuriously enough it was

found that the value of the first summation is enough for checkingdstiality among the above
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29 graphs.
We will add one more example of our lucky situation for finding multiplet dormant and

the IS pair graphs derived from it. Amazingly the tree graph

s

was found to work not only as a triplet dormant, but also quadruplet, setxtaptuplet, and
nonuplet dormants to generate a variety of IS graphs.

Here let us demonstrate how the two nonuplet items were discobgraging
Expectation 3. First assume the existence of IS tree paitfs)\Nwl5 derived from5 by growing
nine edges from its various sprouts whose distribution is either (1,1,1,&8:22p,2,2,2) type.
Here no other type like (2,2,2,3) is assumed to be allowed. Quiteryjnilahe case with Fig. 13

the aimed pair(s) should be in the list of Fig. 15 prepared according to the prescnitiidms.

O @© S© S©
G GG @ @ @ @ ©© o0 0 ©Y @ o0 0
LM E SO CERN A CEENIO

eye eye)
©1©.0,,.01004,..0]900,,,0]000
IO A CRECICR N ECO M MNGICICICIE
15-10 15-24 15-26
/ I
©®© ©GG
OFTpo© *** OgT o0 C o0
1527 1529 15-30

Figure 15. N=15 tree graphs derived from dormahtby attaching nine G’s.

Now assume again that G is an edge. Then we calculateditiiices of these 30
graphs, which scattered in the wide range of 323~471. Among them we coutulfinpairs with
the same’s, namely,15-3,24 (333),15-6,26 (360),15-10,27 (396), andl5-14,29 (408). Note that

in the above trees onlys-27~30 graphs were found to have non-ze(G,6), as suggested from
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the following diagram,

while 15-1~26 cannot. Then we can conclude that the last two pairs cannot be IS.

Now try to check graphks-6,26. As Z(D)=2(15)=11, the next step is the calculation of

the values oEZ(DOu1) and of the terms that follow in the RHS of Eq. (33). Although each te

for these two graphs is different as seen in Figure 16, their sums were fountiécshme as 53.

The sums of th€ functions £ZD Au1)) of their pre-dormants were also calculated to be equal.

Qy®
g?" g D 156
Doy

ug 1 Z(DOuw) uy Dey;
1 1+ 4+2¢2 7 1 1+2

2,3 1+3 4 2,3 1+ 4+3x2
45 1+ &+3x2 8

6,7 1+ 2 3 6,7 1+ %

8,9 1+ 4x+3x2 8 8,9 1+ 4x+2x2

S 9+30+14x2 53 T 9+30¢+14x2

45  (1%)(1+2X)=1+3x+2x2

2] 000
50600 2

Z(DOuy)
3

8
6
4
7
53

Figure 16. Calculation 02D @u; and2Z(DOuy) of 15-6,26

Although details are not given here, we could ob&#{DOuUiU2), ~Z(DOu1U2Us),

>Z(DOuiuzusus), and >Z(DOuiuz2ususus), respectively, to be 104, 112, 64, and 16 for both the

graphs. Now we have 11+53+104+112+64+16=360. Further, by calculating all thgcodieg

Q functions our Conjecture 2 was supported in this case.

Quite similarly we could show that another [ir3,24 was found to be nonuplet IS. In

this way we could also enjoy our Expectation 3.
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6 Concluding remark

We have exposed rather clumsy methodology for finding multiplet dormants for

generating IS tree graphs by the manipulation ofZtfredex without recourse to any computer

search on a large scale. However, once candidates for an |Sefarad, its fair judgment is quite

easily obtained. Further, as already mentioned, the finding of mullimetants encompasses the

conventional discussions concerning the endospectral graphs and vertices.

However, the present author is eagerly waiting for more sgsiemnd mathematical

survey of this problem. There are so many interesting and impprtaiiiems which are relevant

to the mathematical structure and properties of the multipletatdsrin many fields, such as

conjugated polyenes, aromatic hydrocarbons, and QSAR studies in tthes@seral inverse

problems in physics, fundamental problems of spectra of graphs in nagiteratc. Especially in

chemistry, this line of analysis should be extended to weighted amatieree graphs leading to

the basic discussion on the origin of aromaticity.

References

(1]

(2]

(3]

(4]

(5]

H. Hosoya, Dormants and sprouts generating isospectral tree grapless IMAd CH
Commun. Math. Comput. Che8@.(2018) 393-405.

D. M. Cvetkovt, M. Doob, H. SachsSpectra of Graphs — Theory and Applications
Barth, Heidelberg, 1995, pp. 156-188.

D. Cvetkovi, P. Rowlinson, S. Sirdj An Introduction to the Theory of Graph Spectra
Cambridge Univ. Press, Cambridge, 2010.

M. Randit, M. Novi¢, D. Plavsé, Solved and Unsolved Problems of Structural
Chemistry CRC Press, Boca Raton, 2016, pp. 72-74.

H. Hosoya, Topological index. A newly proposed quantity characterizing the
topological nature of structural isomers of saturated hydrocarBalisChem. Soc. Jpn
44 (1971) 2332-2339.



(6]

[7]

(8]

9]

(10]

(1]

(12]

-504-

K. Mizutani, K. Kawasaki, H. Hosoya, Tables of non-adjacent numbersaatbestic
polynomials and topological index, |. Tree graplatl. Sci. Rept. Ochanomizu Univ
22 (1971) 39-58.

H. Hosoya, Topological index and Fibonacci numbers with relation to ctigmis
Fibonacci Quart 11 (1973) 255-266.

A. J. Schwenk, Almost all trees are cospectral, in: F. HgEaty), New Directions in the
Theory of GraphsAcademic Press, New York, 1973, pp. 275-307.

J. V. Knop, W. R. Miller, K. Szymanski, N. TrinajstiA. F. Kleiner, M. Randi, On
irreducible endospectral grapldsMath. Phys27 (1986) 2601-2612.

T. Zivkovi¢, N. Trinajsté, M. Randé, On the topological spectra of composite
molecular system&roat. Chem. Actd9 (1977) 89-100.

W. C. Herndon, M. L.Ellzey, The construction of isospectral grag§,CH Commun.
Math. Comput. Chen20 (1986) 53-79.

H. Hosoya, Chemstry-relevant isospectral graphs. Acyclic conjugatgenesCroat.
Chem. Acta9 (2017) 455-461.



