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Abstract

Let A\ > A > -+ > )\, be the eigenvalues of the adjacency matrix of a simple
graph G of order n. A graph-spectrum-based invariant, put forward by Gutman
et al. [Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem.

75 (2016) 279-290], is defined as ER(G) = >°7_; (n — A;)~1. In the same paper
the authors proposed several conjectures. In this paper we partially prove two
conjectures.

1 Introduction

Let G = (V, E) be a simple graph of order n with m edges, where |V(G)| = n and
|E(G)] = m. If the vertices v; and v; are adjacent, we write v;v; € E(G). The ad-
jacency matrix A = A(G) of the graph G is defined so that its (¢,7)-entry is equal
to 1 if vv; € E(G) and 0 otherwise. Let Ay > Xy > --- > A, denote the eigen-
values of A(G). When more than one graph is under consideration, then we write
Ai(G) instead of A;. In what follows, the adjacency spectrum of the graph G, i.e.,
the multiset {A(G), A2(G), ..., A\(G)} will be denoted by S(G). If G has distinct
eigenvalues A1, Ao, ..., A, with multiplicities ki, ks, ..., k. respectively, we shall write

{/\gkl), /\g”)7 e A&’“’} for the spectrum of G (We often omit those k; equal to 1).

Recently, Gutman et al. introduced the resolvent energy [8], and it is defined by

ER(G) = Z ”jA_. (1)

i=
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For its basic mathematical properties, including various lower and upper bounds, see
[1,5-9] and the references therein. Also, its Laplacian spectrum version was recently put

forward [2].

The k-th spectral moment of the graph G is defined as
My = Mi(G) =Y AL (2)
i=1

As usual, P,, Cy, and S,, denote, respectively, the path, the cycle, and the star graph
on n vertices. Let P be a tree of order n obtained from a path P,_; : v1v2 - Uy_oUn_1
by attaching a new pendant edge v,_ov, at v,_a. A tree is called a double star DS, 4
(p>q>1,p+q+2=n)if it is obtained from Sy,1 and S,41 by connecting the center
of Sp41 with that of S,y via an edge. Let S;; be a tree of order n with maximum degree
n — 2. In particular, S = DS, _3 ;1 (The symbol = means ‘is isomorphic to’). Since

S(Sy,) = {Vn — 1,02 —/n — 1}, we have

2n n—2
ER(S"):annleJr n

3)

Gutman et al. [8] mentioned the following two conjectures:

Conjecture 1. Among trees of order n, the tree P} has second smallest and the tree S

second-greatest resolvent energy.

Conjecture 2. The inequality ER(S,) < ER(C,) holds for alln > 4. Consequently, any

tree has smaller ER-value than any unicyclic graph of the same order.

Farrugia discussed about the increase in the resolvent energy of a graph due to the addition
of a new edge in [6]. In [1], Allem et al. presented some results on the extremal resolvent
energy of unicyclic graphs, bicyclic graphs and tricyclic graphs. Ghebleh et al. [7] proved
that the tree P,_;(a) has the a-th smallest resolvent energy (P,_1(a) is a tree obtained by
attaching a pendant vertex at position a of the (n — 1)-vertex path P,_1). So, one part of
the Conjecture 1 has been proved in [7], and here we confirm the remaining part of this
conjecture. That is, ER(T) < ER(S}) < ER(S,) for any tree T' (2 S,, S;). Moreover
we give lower bounds on ER(C,) in terms of n and it is better than the previous lower

bound given by Du [5]. Finally we prove that ER(C,,) > ER(S,) for even n.
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2 On Conjecture 1

V3 Vo
Vg | Vs
—_— Vg
.
.
Vi Vn
G,

Figure 1. Transformation I.

In [4], Deng obtained the following result:

Lemma 3. [4] Let u be a non-isolated vertex of a simple graph G. If G1 and Go are the
graphs obtained from G by identifying a leaf vo and the center vy of the n-vertex star S,

to u, respectively, depicted in Fig. 1, then Mop(G1) < Mor(G2) forn >3 and k > 2.

Lemma 4. Let DS, , (p>q> 1, p+q+2=n) be a double star. Then the spectrum of
DS, 4 is the following:

— 2
S(Dqu)_{i\/p+q+1+\/(p PO (o
: 2 N

jE\/er(1+1\/(p(z)“r?(p+(1)+1 }
. b

Proof. One can easily see that 0 is an eigenvalue of multiplicity n — 4 and the remaining

eigenvalues of DS, , satisfy the following equations:
ATy = pr3 + T2, ATy = qT4 + T1, ATy = X1, ATy = T,
that is,
XN = (p+a+ 1N +pg =0,

that is,

)\i\/[)+q+1i\/(pq)2+2(p+q)+l
= 5 .

Lemma 5. Let DS, , (p>q> 1, p+q+2=n) be a double star. Then

ER(DS,,) < ER(DSy41.g-1) < -+ < ER(DSpsq1.1) = ER(S?).
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Proof. Leta=n—1=p+qg+1andb=+/(p—q)%+2(p+q)+ 1. By Lemma 4, the

spectrum of DS, , is the following:
a+b a—1>b
S(DS,.q) =4 +4/ , 1/ 0,0,...,0%.
(DSp,q) { 5 D) }
n—4

n—4 2n 2n
ER(DS =
(DS).q) et t

Then

n2 — a=b

n—4 dn(n? —a/2)
n (n?—a/2)2—-0?/4

n—4 4n <7L2 — ”;1>
+

nom e -0 2 g 1)

Since p > ¢, the difference ER(DSpt1,4-1) — ER(DS, ) is positive by noting that, after

cancelling =%, the denominator of ER(DS,1,4-1) is smaller than that of ER(DS,, ;) but
the numerators of ER(DSy1,4-1) and ER(DS, ;) are equal. Thus we have

ER(DS, ,) < ER(DSpt1,4-1),
that is,
ER(DS, ) < ER(DSpt1,g-1) <+ < ER(DSp14-1,1) = ER(S},).
This completes the proof. |
We are now ready to prove the remaining part of Conjecture 1.
Theorem 1. Let T (£ Sy, S;) be a tree of order n. Then
ER(T) < ER(S}) < ER(S,).

Proof. f T =DS,,(p>q>1,p+q+2=n), then ER(T) = ER(DS, ,) < ER(S}) <
ER(S,) as T 2 S:. Otherwise, T 2 DS, , and T 2 S5,,. Repeating Transformation I as
shown in Fig. 1, any n-vertex tree 7' can be changed into the n-vertex double star DS, ,
(r=T—-"T —- - —1T,=DS,,). By Lemma 3, we have

Afzk(T) = Afgk(Tl) < Afgk(Tz) <0 K< ]\JZk(Tk) = Afzk.(DSqu)A
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For tree T, we have My(T) = 0 for all odd values of k. It is well known that [8]:

o Ml Lyn D) (@)

k=0 k=0

:\'—‘

Using the above results, we have
ER(T) = ER(T1) < ER(T) < --- < ER(T};) = ER(DS,,,)-

By Lemma 3, we have My, (S:) < My (S,) and hence ER(S:) < ER(S,), by (4). By

Lemma 5, we conclude that

ER(T) = ER(T}) < ER(T3) < -+- < ER(DS, ) < -+ < ER(DSpyq_1.1) =
ER(S%) < ER(S,).

This completes the proof of the theorem. |

3 On Conjecture 2

In this section we prove ER(S,) < ER(C,) holds for all n > 4 and n is even. Du [5]

presented the following result:

Lemma 6. [5] Forn > 3,

(1) if n is even, then

n 4
E >0 __ 2
R(Cn) = TL2 —4 TL2 — 47
(%) if n is odd, then
ER(Cy) > ——mt 5

W2—4 n?-4
Lemma 7. [3] The adjacency spectrum of cycle C,, is

2mj
2 cos L‘],j:(), 1,...,n—1
n

One can easily find the following trigonometric identity:

Z cos (a + kb) = Tf; ((;) o (a+(n—1)g). (5)

It is very useful to prove our main result in this section.

We present a lower bound on ER(C,,) for even n.
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Theorem 2. Let C, be a cycle of order n (n is even). Then

2n +g+n(n74)
n n?—2

if n = 4p,

2n N n(n—2)
n?—4 n2-2+ -4

n—2

ifn=4p+ 2,

where p s a positive integer.

Proof. Since n is even, we consider the following two cases:

Case (i) : n = 4p. By Lemma 7, the adjacency spectrum of cycle C,, is

2r® 4r® 2(p — )@
S(C,) = { £2, 02, £2c0s 25 | £2cos — ..., £2cos (p—Lm
n n

p—1

Using the arithmetic-harmonic-mean inequality, we have

n

ER(C,) = anxi

1 12 & 1 1
= —+2 - -
n72+n+2+n+ ;{n—20052’7ﬂ+n+2c0s217”

2m 2 s 2n
= Sy 2
w4t .27127400s2M
i=1 n
2n 2 4n (p —1)?
= 71,274+ﬁJr p=l (©)

n?(p—1)—4 ) cos? 2T
=1
2n 2 dn (p — 1)
2 —4  n p-1 -
" " n2(p—1) —2 3 (1 + cos 4¥)
=1

n

), we get

t

By (
p—1 .
dim
E cos — =0 asn =4p.
- n
i=1
By the arithmetic-harmonic-mean inequality, one can easily see that the inequality in (6)

is strict. Moreover, using the above result in (7), we have

2n 2 4n (p — 1)? 2n 2 nn-—4
L2 amo1f 2 a4

B z )
R(C")>n274 n n?(p—-1)—-2p—-1) n*—-4 n n?—2
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Case (ii) : n = 4p + 2. By Lemma 7, the adjacency spectrum of cycle C), is

972 Ar @ oy 2
S(Cy) =< 2, +2cos L ,iZcos—W ,...,chosﬂ
n n n

Similarly to the Case (i), using the arithmetic-harmonic-mean inequality, we have

1 1
ER(C,) = —+
(Cn) n—2 7L+2+ Z { —2cos ZT " n 4 2cos 2”7

2n 2n
= ) a4
n? + Z n? — 4 cos? 2”’

i=1

4 2
> 22n n npp (8)
n np —4 ; cos? 2T
2n 4n p?
= 5+ - —. 9)
n?*p—2 3 (1+ cos %)
i=1

By (5), we get

p dim % cos (Q;pi N 21) __cos (%) sin (%)

€os n - sin (2—") n n sin (2,—7;)

1

1
=3 asn =4p+ 2.
i=1

By the arithmetic-harmonic-mean inequality, one can easily see that the inequality in (8)

is strict. Moreover, using the above result in (9), we have

2n dnp? 2n n(n—2)
ER(C,) > = .
(Cn) n274+n2p72p+1 n274+n272+$
|
Remark 8. The bound in Theorem 2 is always better than the bound in Lemma 6 (i).
Proof. One can easily obtain
n 4\ 3
—— =1l <1l+—. 10
n? —4 ( n2) T (10)
Now
z+n(n—4)7 nn—-2) g+n(n—4)7 n(n—2)?
n n?—2 B n?—2 nd —2n% —2n +8
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Sn — 32 >0 >4
= as n > 4.
(n® =2n)(n® —2n% —2n 4+ 8) ~ -

From the above, we have

2n 2 n(n—4) 2n n(n—2)

= > . 11
712—4+n+ n? —2 *n2—4+n2—2+ﬁ (11)

Therefore we have to prove that

2n n(n—2) n 4

> .
n?—4 n?-2+4 4 n2—4 n?:—4

Using (10), we have to prove that

2n + 4 n(n—2)>2 3
2 + 3 2 I+ =,
n?—4 n3—2n2—-2n+38 n
that is,
2n+4 —2n? +6n—38 >i
n2—4 np3—2n2—-2n+8  n?’
that is,
6n® — 12n% — 16n + 64 - 3
(n2—4)(n3 —2n2 —2n+8) = n?’
that is,
3n® — 6n* 4+ 2n® 4+ 16n% — 24n + 96 > 0,
which is always true for n > 4. |

We now obtain a lower bound on ER(C),) for odd n.

Theorem 3. Let C, be a cycle of order n (n is odd). Then
1 (n=1)(n*—n+2)

ifn=4p+1
n—2 n(n?—n-+4) ifn=dp+1,
ER(C,) > ( ) (n? )
1 n—3)(n*—3n+2 2n
ifn=4 3
n_2 " n(n?—3n+4) +nz+7r ifn=dp+3,

where p is a non-negative integer.

Proof. 1f p = 0, then n = 3 and hence E(Cs) > 1+ ﬁ holds. Otherwise, p > 1. Since n

is odd, we consider the following two cases:

Case (i) : n = 4p + 1. By Lemma 7, the adjacency spectrum of cycle C,, is

27 (2 47 (2 2pr )
S(Cn){Q,QCOSTr ,2cos—7r ,‘.‘,QCOSE ,
n n n

P



By the arithmetic-harmonic-mean inequality, we have

1 P 1 1
ER(C,) = +2 + -
( ) n—29 ; |:’I’L — 92c¢os 217r n+ 2cos (Zznl)fr:|
1 2p? 2p?
> + b + u

P ) :
np—23 cosZE  pp+2 Z cos &izlr 1)”

i=1 i=1

By (5), we get

[N}
o
‘1\3
<
3
|
)
@
=]
—
=[5
—
o
o
w
RS
—
|
—
N
N
3
N~

I n
n
_ C(?S(i)_l_ .1 3
sin (:’7) 2 sin (Zln)
and
P S P pm in (27 s
2ZCOS(21 1 :251n(r€)(’05(n>:bn}<n) _ C(:)b<2n) asn:4p+l
¢ n sin (%) sin (%) sin (%)
_ 1
" 2sin (%)
From the above results, we have
2 2
ER(C,) > — 2P PR A
n—2 np-— 25m )+1 " F T
1 2p? (2np+ 1)
= + T
n—2 n2p2+4+np+ W T T (E)

1 2p° (2 1
> + P (2np + 1) as 2sin<l)<1
n—2 n’p? + np 2n

1 (n—1)(n?—n+2)

= s n=4p+ 1.
n—2Jr n(n?—n+4) as n=dp+
Case (ii) : n = 4p + 3. By Lemma 7, the adjacency spectrum of cycle C,, is
27 (2 47 (@) 2pr )
S(Cn){Q,QCOSTr ,2(3051 ,‘.‘,QCOSE ,
n n n

P
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@ 3@ 2p+ 1)r?
—2cosZ ,—2cos—7r ,‘.‘,—QCOSM .
n n n
P+l
By the arithmetic-harmonic-mean inequality, we have
1 4 1 Ak 1
ER(C,) = ——+2 — +2 -
(Cn) n—2 ;TL—QCOSZITW ;”*‘QCOS@
1 2 p2 2p? 2
= n—2+ + (211),.4_ 49 cos ZtbT
np —2 Z cos2Z  np+2 Z cos n cos ==
i=1 i=1

Using the results in Case (i) with sin © < = and n = 4p + 3, from the above, we get

1 2 2 2
ER(C,) > + p +- v

T on=2 np— 25111( )+1 +

1
2 sin (ﬁ) n+2 sin 2n

1 2p% (2np + 1) 2n
=2z + 32
n—2 n2p? +np ne+m
B 1 (n—3) (n273n+2)Jr 2n
o2 n(n? —3n+4) n?+7

Remark 9. The bound in Theorem 3 is always better than the bound in Lemma 6 (it)

Proof. Now,

(n—1)(n*—n+2) (n—3)(n2—3n+2)_ 2n?
(n?—n+4) (n? —3n+4) n?47

2n* — 8n® + 22n% — 32n + 16 2n?
(n? —n+4)(n? —3n+4) n? 47

m(2n' — 8n® + 22n2 — 32n + 16) — 1602 50 >3
= asn > 3.
(n?2—n+4)(n®> - 3n+4)(n2+m) -

From the above result, we have

1 +(nfl)(n27n+2)> 1 (n—3)(n*—3n+2) 2n

n—2 n(n?—n+4) n—a2 " n(n?—3n+4) n?+m
Therefore we have to prove that
1 (n—3)(n*—3n+2) 2n 5" 8
n—2 n(n?—3n+4) n24+m m2—4 n2—4

By (10), we have to prove that

1 (n—3)(n*—3n+2) 2n 3 8
+ - - >1+if7 ’
n—2 n(n?—3n+4) nt+m n? n?—-4
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that is,
1 —3n>+Tn—6 2n 5n% 4+ 12 -0
n—2 nd=3n2+4n  n2+7  n%(n?-4) ’
that is,
4n® — 4n® 4 w(—2n% 4 10n? — 16n + 12)2n n 5 50
(n? + m)(n* — 5n3 + 10n? — 8n) (n?2—4) ’
that is,

5n8 — (27 + 21)n° + (157 + 46)n* — (337 + 56)n® + (227 + 16)n? + 247n — 487 > 0,
which is always true for n > 3.

Here we prove Conjecture 2 when n is even.
Theorem 4. The inequality ER(S,) < ER(C,,) holds for alln >4 (n is even).

Proof. By Theorem 2 with (11), we have
2n +2+n(n—4)> 2n N n(n—2)
n n?—2 T m2—4 n?-2+-4

= for even n.
We have to prove that ER(S,) < ER(C,,), for all n > 4 (n is even), that is,

ER(C,) >

2n n(n—2) 2n n—2
ER(C, > = ER(S,),
( )>n?—4—i_nz—2—&-"‘i2 nz—n+1+ n (),
that is,
n(n—2)? n-=2 2n(n —5)
n?—2n? —2n+8 n n2—4)(n2—n+1)
that is,
n?—6n+8 - n(n —5)
nt—2n3—2n2+8n " (n?—4)(n?—n+1)
that is,

3n* — 4n® — 12n% 4+ 56n — 32 > 0,
which is always true for n > 4. This completes the proof of the theorem.

Remark 10. Still Conjecture 2 is open for odd n.

Remark 11. From Theorem 3, we have ER(C41) > 0.99979 and ER(S11) = 1.01638, by

(3). Hence our lower bound on ER(C,,) in Theorem 3 is not enough to prove Conjecture

2 completely. We need to find better lower bound on ER(C,) when n is odd.

Acknowledgment: The author is supported by the Sungkyun research fund, Sungkyu-

nkwan University, 2017, and National Research Foundation of the Korean government

with grant No. 2017R1D1A1B03028642.



-464-

References

[1]

L. E. Allem, J. Capaverde, V. Trevisan, I. Gutman, E. Zogi¢, E. Glogi¢, Resolvent
energy of unicyclic, bicyclic and tricyclic graphs, MATCH Commun. Math. Comput.
Chem. 77 (2017) 95-104.

A. Cafure, D. A. Jaume, L. N. Grippo, A. Pastine, M. D. Safe, V. Trevisan, I. Gut-
man, Some results for the (signless) Laplacian resolvent, MATCH Commun. Math.
Comput. Chem. 77 (2017) 105-114.

D. Cvetkovié, M. Doob, H. Sachs, Spectra of Graphs, Barth, Heidelberg, 1995.

H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math.
Comput. Chem. 62 (2009) 599-606.

Z. Du, Asymptotic expressions for resolvent energies of paths and cycles, MATCH
Commun. Math. Comput. Chem. 77 (2017) 85-94.

A. Farrugia, The increase in the resolvent energy of a graph due to the addition of a
new edge, Appl. Math. Comput. 321 (2018) 25-36.

M. Ghebleh, A. Kanso, D. Stevanovi¢, On trees with smallest resolvent energy,
MATCH Commun. Math. Comput. Chem. 77 (2017) 635-654.

I, Gutman, B. Furtula, E. Zogi¢, E. Glogi¢, Resolvent energy of graphs, MATCH
Commun. Math. Comput. Chem. 75 (2016) 279-290.

I. Gutman, B. Furtula, E. Zogi¢, E. Glogi¢, Resolvent energy, in: I. Gutman, X. Li
(Eds.), Graph Energies — Theory and Applications, Univ. Kragujevac, Kragujevac,
2016, pp. 277-290.



