Conjectures on Resolvent Energy of Graphs

Kinkar Ch. Das
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
kinkardas2003@gmail.com

(Received June 20, 2018)

Abstract

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix of a simple graph G of order n. A graph-spectrum-based invariant, put forward by Gutman et al. [Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 279-290], is defined as $E R(G)=\sum_{i=1}^{n}\left(n-\lambda_{i}\right)^{-1}$. In the same paper the authors proposed several conjectures. In this paper we partially prove two conjectures.

1 Introduction

Let $G=(V, E)$ be a simple graph of order n with m edges, where $|V(G)|=n$ and $|E(G)|=m$. If the vertices v_{i} and v_{j} are adjacent, we write $v_{i} v_{j} \in E(G)$. The adjacency matrix $A=A(G)$ of the graph G is defined so that its (i, j)-entry is equal to 1 if $v_{i} v_{j} \in E(G)$ and 0 otherwise. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ denote the eigenvalues of $A(G)$. When more than one graph is under consideration, then we write $\lambda_{i}(G)$ instead of λ_{i}. In what follows, the adjacency spectrum of the graph G, i.e., the multiset $\left\{\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right\}$ will be denoted by $S(G)$. If G has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ with multiplicities $k_{1}, k_{2}, \ldots, k_{r}$ respectively, we shall write $\left\{\lambda_{1}^{\left(k_{1}\right)}, \lambda_{2}^{\left(k_{2}\right)}, \ldots, \lambda_{r}^{\left(k_{r}\right)}\right\}$ for the spectrum of G (We often omit those k_{i} equal to 1).

Recently, Gutman et al. introduced the resolvent energy [8], and it is defined by

$$
\begin{equation*}
E R(G)=\sum_{i=1}^{n} \frac{1}{n-\lambda_{i}} \tag{1}
\end{equation*}
$$

For its basic mathematical properties, including various lower and upper bounds, see [1,5-9] and the references therein. Also, its Laplacian spectrum version was recently put forward [2].

The k-th spectral moment of the graph G is defined as

$$
\begin{equation*}
M_{k}=M_{k}(G)=\sum_{i=1}^{n} \lambda_{i}^{k} . \tag{2}
\end{equation*}
$$

As usual, P_{n}, C_{n}, and S_{n} denote, respectively, the path, the cycle, and the star graph on n vertices. Let P_{n}^{*} be a tree of order n obtained from a path $P_{n-1}: v_{1} v_{2} \cdots v_{n-2} v_{n-1}$ by attaching a new pendant edge $v_{n-2} v_{n}$ at v_{n-2}. A tree is called a double star $D S_{p, q}$ ($p \geq q \geq 1, p+q+2=n$) if it is obtained from S_{p+1} and S_{q+1} by connecting the center of S_{p+1} with that of S_{q+1} via an edge. Let S_{n}^{*} be a tree of order n with maximum degree $n-2$. In particular, $S_{n}^{*} \cong D S_{n-3,1}$ (The symbol \cong means 'is isomorphic to'). Since $S\left(S_{n}\right)=\left\{\sqrt{n-1}, 0^{(n-2)},-\sqrt{n-1}\right\}$, we have

$$
\begin{equation*}
E R\left(S_{n}\right)=\frac{2 n}{n^{2}-n+1}+\frac{n-2}{n} . \tag{3}
\end{equation*}
$$

Gutman et al. [8] mentioned the following two conjectures:

Conjecture 1. Among trees of order n, the tree P_{n}^{*} has second smallest and the tree S_{n}^{*} second-greatest resolvent energy.

Conjecture 2. The inequality $E R\left(S_{n}\right)<E R\left(C_{n}\right)$ holds for all $n \geq 4$. Consequently, any tree has smaller ER-value than any unicyclic graph of the same order.

Farrugia discussed about the increase in the resolvent energy of a graph due to the addition of a new edge in [6]. In [1], Allem et al. presented some results on the extremal resolvent energy of unicyclic graphs, bicyclic graphs and tricyclic graphs. Ghebleh et al. [7] proved that the tree $P_{n-1}(a)$ has the a-th smallest resolvent energy $\left(P_{n-1}(a)\right.$ is a tree obtained by attaching a pendant vertex at position a of the $(n-1)$-vertex path $\left.P_{n-1}\right)$. So, one part of the Conjecture 1 has been proved in [7], and here we confirm the remaining part of this conjecture. That is, $E R(T)<E R\left(S_{n}^{*}\right)<E R\left(S_{n}\right)$ for any tree $T\left(\nexists S_{n}, S_{n}^{*}\right)$. Moreover we give lower bounds on $E R\left(C_{n}\right)$ in terms of n and it is better than the previous lower bound given by Du [5]. Finally we prove that $E R\left(C_{n}\right)>E R\left(S_{n}\right)$ for even n.

2 On Conjecture 1

Figure 1. Transformation I.

In [4], Deng obtained the following result:
Lemma 3. [4] Let u be a non-isolated vertex of a simple graph G. If G_{1} and G_{2} are the graphs obtained from G by identifying a leaf v_{2} and the center v_{1} of the n-vertex star S_{n} to u, respectively, depicted in Fig. 1, then $M_{2 k}\left(G_{1}\right)<M_{2 k}\left(G_{2}\right)$ for $n \geq 3$ and $k \geq 2$.

Lemma 4. Let $D S_{p, q}(p \geq q \geq 1, p+q+2=n)$ be a double star. Then the spectrum of $D S_{p, q}$ is the following:

$$
\begin{array}{r}
S\left(D S_{p, q}\right)=\{ \pm \sqrt{\frac{p+q+1+\sqrt{(p-q)^{2}+2(p+q)+1}}{2}}, \underbrace{0,0, \ldots, 0}_{n-4}, \\
\left. \pm \sqrt{\frac{p+q+1-\sqrt{(p-q)^{2}+2(p+q)+1}}{2}},\right\}
\end{array}
$$

Proof. One can easily see that 0 is an eigenvalue of multiplicity $n-4$ and the remaining eigenvalues of $D S_{p, q}$ satisfy the following equations:

$$
\lambda x_{1}=p x_{3}+x_{2}, \lambda x_{2}=q x_{4}+x_{1}, \lambda x_{3}=x_{1}, \lambda x_{4}=x_{2},
$$

that is,

$$
\lambda^{4}-(p+q+1) \lambda^{2}+p q=0
$$

that is,

$$
\lambda= \pm \sqrt{\frac{p+q+1 \pm \sqrt{(p-q)^{2}+2(p+q)+1}}{2}} .
$$

Lemma 5. Let $D S_{p, q}(p \geq q \geq 1, p+q+2=n)$ be a double star. Then

$$
E R\left(D S_{p, q}\right)<E R\left(D S_{p+1, q-1}\right)<\cdots<E R\left(D S_{p+q-1,1}\right)=E R\left(S_{n}^{*}\right)
$$

Proof. Let $a=n-1=p+q+1$ and $b=\sqrt{(p-q)^{2}+2(p+q)+1}$. By Lemma 4, the spectrum of $D S_{p, q}$ is the following:

$$
S\left(D S_{p, q}\right)=\{ \pm \sqrt{\frac{a+b}{2}}, \pm \sqrt{\frac{a-b}{2}}, \underbrace{0,0, \ldots, 0}_{n-4}\} .
$$

Then

$$
\begin{aligned}
E R\left(D S_{p, q}\right) & =\frac{n-4}{n}+\frac{2 n}{n^{2}-\frac{a+b}{2}}+\frac{2 n}{n^{2}-\frac{a-b}{2}} \\
& =\frac{n-4}{n}+\frac{4 n\left(n^{2}-a / 2\right)}{\left(n^{2}-a / 2\right)^{2}-b^{2} / 4} \\
& =\frac{n-4}{n}+\frac{4 n\left(n^{2}-\frac{n-1}{2}\right)}{\left(n^{2}-\frac{n-1}{2}\right)^{2}-\frac{1}{4}\left[(p-q)^{2}+2(p+q)+1\right]}
\end{aligned}
$$

Since $p \geq q$, the difference $E R\left(D S_{p+1, q-1}\right)-E R\left(D S_{p, q}\right)$ is positive by noting that, after cancelling $\frac{n-4}{n}$, the denominator of $E R\left(D S_{p+1, q-1}\right)$ is smaller than that of $E R\left(D S_{p, q}\right)$ but the numerators of $E R\left(D S_{p+1, q-1}\right)$ and $E R\left(D S_{p, q}\right)$ are equal. Thus we have

$$
E R\left(D S_{p, q}\right)<E R\left(D S_{p+1, q-1}\right),
$$

that is,

$$
E R\left(D S_{p, q}\right)<E R\left(D S_{p+1, q-1}\right)<\cdots<E R\left(D S_{p+q-1,1}\right)=E R\left(S_{n}^{*}\right)
$$

This completes the proof.

We are now ready to prove the remaining part of Conjecture 1 .
Theorem 1. Let $T\left(\not \not S_{n}, S_{n}^{*}\right)$ be a tree of order n. Then

$$
E R(T)<E R\left(S_{n}^{*}\right)<E R\left(S_{n}\right)
$$

Proof. If $T \cong D S_{p, q}(p \geq q \geq 1, p+q+2=n)$, then $E R(T)=E R\left(D S_{p, q}\right)<E R\left(S_{n}^{*}\right)<$ $E R\left(S_{n}\right)$ as $T \not \not S_{n}^{*}$. Otherwise, $T \not \not D S_{p, q}$ and $T \nexists S_{n}$. Repeating Transformation I as shown in Fig. 1, any n-vertex tree T can be changed into the n-vertex double star $D S_{p, q}$ $\left(T \cong T_{1} \rightarrow T_{2} \rightarrow \cdots \rightarrow T_{k} \cong D S_{p, q}\right)$. By Lemma 3, we have

$$
M_{2 k}(T)=M_{2 k}\left(T_{1}\right)<M_{2 k}\left(T_{2}\right)<\cdots<M_{2 k}\left(T_{k}\right)=M_{2 k}\left(D S_{p, q}\right) .
$$

For tree T, we have $M_{k}(T)=0$ for all odd values of k. It is well known that [8]:

$$
\begin{equation*}
E R(T)=\frac{1}{n} \sum_{k=0}^{\infty} \frac{M_{k}(T)}{n^{k}}=\frac{1}{n} \sum_{k=0}^{\infty} \frac{M_{2 k}(T)}{n^{2 k}} \tag{4}
\end{equation*}
$$

Using the above results, we have

$$
E R(T)=E R\left(T_{1}\right)<E R\left(T_{2}\right)<\cdots<E R\left(T_{k}\right)=E R\left(D S_{p, q}\right)
$$

By Lemma 3, we have $M_{2 k}\left(S_{n}^{*}\right)<M_{2 k}\left(S_{n}\right)$ and hence $E R\left(S_{n}^{*}\right)<E R\left(S_{n}\right)$, by (4). By Lemma 5, we conclude that

$$
\begin{aligned}
& E R(T)=E R\left(T_{1}\right)<E R\left(T_{2}\right)<\cdots<E R\left(D S_{p, q}\right)<\cdots<E R\left(D S_{p+q-1,1}\right)= \\
& E R\left(S_{n}^{*}\right)<E R\left(S_{n}\right)
\end{aligned}
$$

This completes the proof of the theorem.

3 On Conjecture 2

In this section we prove $E R\left(S_{n}\right)<E R\left(C_{n}\right)$ holds for all $n \geq 4$ and n is even. Du [5] presented the following result:

Lemma 6. [5] For $n \geq 3$,
(i) if n is even, then

$$
E R\left(C_{n}\right) \geq \frac{n}{\sqrt{n^{2}-4}}-\frac{4}{n^{2}-4}
$$

(ii) if n is odd, then

$$
E R\left(C_{n}\right) \geq \frac{n}{\sqrt{n^{2}-4}}-\frac{8}{n^{2}-4}
$$

Lemma 7. [3] The adjacency spectrum of cycle C_{n} is

$$
2 \cos \frac{2 \pi j}{n}, j=0,1, \ldots, n-1
$$

One can easily find the following trigonometric identity:

$$
\begin{equation*}
\sum_{k=0}^{n-1} \cos (a+k b)=\frac{\sin \left(\frac{n b}{2}\right)}{\sin \left(\frac{b}{2}\right)} \cos \left(a+(n-1) \frac{b}{2}\right) \tag{5}
\end{equation*}
$$

It is very useful to prove our main result in this section.
We present a lower bound on $E R\left(C_{n}\right)$ for even n.

Theorem 2. Let C_{n} be a cycle of order n (n is even). Then

$$
E R\left(C_{n}\right)> \begin{cases}\frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{n(n-4)}{n^{2}-2} & \text { if } n=4 p \\ \frac{2 n}{n^{2}-4}+\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}} & \text { if } n=4 p+2\end{cases}
$$

where p is a positive integer.
Proof. Since n is even, we consider the following two cases:
Case (i) : $n=4 p$. By Lemma 7, the adjacency spectrum of cycle C_{n} is

$$
S\left(C_{n}\right)=\{ \pm 2,0^{(2)}, \underbrace{ \pm 2 \cos \frac{2 \pi^{(2)}}{n}, \pm 2 \cos \frac{4 \pi^{(2)}}{n}, \ldots, \pm 2 \cos \frac{2(p-1) \pi^{(2)}}{n}}_{p-1}\}
$$

Using the arithmetic-harmonic-mean inequality, we have

$$
\begin{align*}
E R\left(C_{n}\right) & =\sum_{i=1}^{n} \frac{1}{n-\lambda_{i}} \\
& =\frac{1}{n-2}+\frac{1}{n+2}+\frac{2}{n}+2 \sum_{i=1}^{p-1}\left[\frac{1}{n-2 \cos \frac{2 i \pi}{n}}+\frac{1}{n+2 \cos \frac{2 i \pi}{n}}\right] \\
& =\frac{2 n}{n^{2}-4}+\frac{2}{n}+2 \sum_{i=1}^{p-1} \frac{2 n}{n^{2}-4 \cos ^{2} \frac{2 i \pi}{n}} \\
& \geq \frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{4 n(p-1)^{2}}{n^{2}(p-1)-4 \sum_{i=1}^{p-1} \cos ^{2} \frac{2 i \pi}{n}} \tag{6}\\
& =\frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{4 n(p-1)^{2}}{n^{2}(p-1)-2 \sum_{i=1}^{p-1}\left(1+\cos \frac{4 i \pi}{n}\right)} \tag{7}
\end{align*}
$$

By (5), we get

$$
\sum_{i=1}^{p-1} \cos \frac{4 i \pi}{n}=0 \text { as } n=4 p
$$

By the arithmetic-harmonic-mean inequality, one can easily see that the inequality in (6) is strict. Moreover, using the above result in (7), we have

$$
E R\left(C_{n}\right)>\frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{4 n(p-1)^{2}}{n^{2}(p-1)-2(p-1)}=\frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{n(n-4)}{n^{2}-2} .
$$

Case (ii) : $n=4 p+2$. By Lemma 7, the adjacency spectrum of cycle C_{n} is

$$
S\left(C_{n}\right)=\{ \pm 2, \underbrace{ \pm 2 \cos {\frac{2 \pi^{(2)}}{n}}^{2}, \pm 2 \cos {\frac{4 \pi^{(2)}}{n}}^{2}, \ldots, \pm 2 \cos \frac{2 p \pi^{(2)}}{n}}_{p}\}
$$

Similarly to the Case (i), using the arithmetic-harmonic-mean inequality, we have

$$
\begin{align*}
E R\left(C_{n}\right) & =\frac{1}{n-2}+\frac{1}{n+2}+2 \sum_{i=1}^{p}\left[\frac{1}{n-2 \cos \frac{2 i \pi}{n}}+\frac{1}{n+2 \cos \frac{2 i \pi}{n}}\right] \\
& =\frac{2 n}{n^{2}-4}+2 \sum_{i=1}^{p} \frac{2 n}{n^{2}-4 \cos ^{2} \frac{2 i \pi}{n}} \\
& \geq \frac{2 n}{n^{2}-4}+\frac{4 n p^{2}}{n^{2} p-4 \sum_{i=1}^{p} \cos ^{2} \frac{2 i \pi}{n}} \tag{8}\\
& =\frac{2 n}{n^{2}-4}+\frac{4 n p^{2}}{n^{2} p-2 \sum_{i=1}^{p}\left(1+\cos \frac{4 i \pi}{n}\right)} \tag{9}
\end{align*}
$$

By (5), we get

$$
\sum_{i=1}^{p} \cos \frac{4 i \pi}{n}=\frac{\sin \left(\frac{2 p \pi}{n}\right)}{\sin \left(\frac{2 \pi}{n}\right)} \cos \left(\frac{2 p \pi}{n}+\frac{2 \pi}{n}\right)=-\frac{\cos \left(\frac{\pi}{n}\right) \sin \left(\frac{\pi}{n}\right)}{\sin \left(\frac{2 \pi}{n}\right)}=-\frac{1}{2} \quad \text { as } n=4 p+2
$$

By the arithmetic-harmonic-mean inequality, one can easily see that the inequality in (8) is strict. Moreover, using the above result in (9), we have

$$
E R\left(C_{n}\right)>\frac{2 n}{n^{2}-4}+\frac{4 n p^{2}}{n^{2} p-2 p+1}=\frac{2 n}{n^{2}-4}+\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}} .
$$

Remark 8. The bound in Theorem 2 is always better than the bound in Lemma 6 (i).
Proof. One can easily obtain

$$
\begin{equation*}
\frac{n}{\sqrt{n^{2}-4}}=\left(1-\frac{4}{n^{2}}\right)^{-1 / 2}<1+\frac{3}{n^{2}} \tag{10}
\end{equation*}
$$

Now,

$$
\frac{2}{n}+\frac{n(n-4)}{n^{2}-2}-\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}}=\frac{2}{n}+\frac{n(n-4)}{n^{2}-2}-\frac{n(n-2)^{2}}{n^{3}-2 n^{2}-2 n+8}
$$

$$
=\frac{8 n-32}{\left(n^{3}-2 n\right)\left(n^{3}-2 n^{2}-2 n+8\right)} \geq 0 \quad \text { as } n \geq 4 .
$$

From the above, we have

$$
\begin{equation*}
\frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{n(n-4)}{n^{2}-2} \geq \frac{2 n}{n^{2}-4}+\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}} . \tag{11}
\end{equation*}
$$

Therefore we have to prove that

$$
\frac{2 n}{n^{2}-4}+\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}}>\frac{n}{\sqrt{n^{2}-4}}-\frac{4}{n^{2}-4} .
$$

Using (10), we have to prove that

$$
\frac{2 n+4}{n^{2}-4}+\frac{n(n-2)^{2}}{n^{3}-2 n^{2}-2 n+8}>1+\frac{3}{n^{2}},
$$

that is,

$$
\frac{2 n+4}{n^{2}-4}+\frac{-2 n^{2}+6 n-8}{n^{3}-2 n^{2}-2 n+8}>\frac{3}{n^{2}},
$$

that is,

$$
\frac{6 n^{3}-12 n^{2}-16 n+64}{\left(n^{2}-4\right)\left(n^{3}-2 n^{2}-2 n+8\right)}>\frac{3}{n^{2}}
$$

that is,

$$
3 n^{5}-6 n^{4}+2 n^{3}+16 n^{2}-24 n+96>0
$$

which is always true for $n \geq 4$.
We now obtain a lower bound on $E R\left(C_{n}\right)$ for odd n.

Theorem 3. Let C_{n} be a cycle of order n (n is odd). Then

$$
E R\left(C_{n}\right)> \begin{cases}\frac{1}{n-2}+\frac{(n-1)\left(n^{2}-n+2\right)}{n\left(n^{2}-n+4\right)} & \text { if } n=4 p+1 \\ \frac{1}{n-2}+\frac{(n-3)\left(n^{2}-3 n+2\right)}{n\left(n^{2}-3 n+4\right)}+\frac{2 n}{n^{2}+\pi} & \text { if } n=4 p+3\end{cases}
$$

where p is a non-negative integer.

Proof. If $p=0$, then $n=3$ and hence $E\left(C_{3}\right)>1+\frac{6}{9+\pi}$ holds. Otherwise, $p \geq 1$. Since n is odd, we consider the following two cases:

Case (i) : $n=4 p+1$. By Lemma 7, the adjacency spectrum of cycle C_{n} is

$$
S\left(C_{n}\right)=\{2, \underbrace{2 \cos {\frac{2 \pi^{(2)}}{n}}^{2}, 2 \cos \frac{4 \pi^{(2)}}{n}, \ldots, 2 \cos \frac{2 p \pi^{(2)}}{n}}_{p},
$$

By the arithmetic-harmonic-mean inequality, we have

$$
\begin{aligned}
E R\left(C_{n}\right) & =\frac{1}{n-2}+2 \sum_{i=1}^{p}\left[\frac{1}{n-2 \cos \frac{2 i \pi}{n}}+\frac{1}{n+2 \cos \frac{(2 i-1) \pi}{n}}\right] \\
& \geq \frac{1}{n-2}+\frac{2 p^{2}}{n p-2 \sum_{i=1}^{p} \cos \frac{2 i \pi}{n}}+\frac{2 p^{2}}{n p+2 \sum_{i=1}^{p} \cos \frac{(2 i-1) \pi}{n}} .
\end{aligned}
$$

By (5), we get

$$
\begin{aligned}
2 \sum_{i=1}^{p} \cos \frac{2 i \pi}{n} & =\frac{2 \sin \left(\frac{p \pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)} \cos \left(\frac{(p-1) \pi}{n}+\frac{2 \pi}{n}\right) \\
& =\frac{2 \sin \left(\frac{p \pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)} \cos \left(\frac{p \pi}{n}+\frac{\pi}{n}\right) \\
& =\frac{\cos \left(\frac{\pi}{2 n}\right)}{\sin \left(\frac{\pi}{n}\right)}-1=\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)}-1
\end{aligned}
$$

and

$$
\begin{aligned}
2 \sum_{i=1}^{p} \cos \frac{(2 i-1) \pi}{n}=2 \frac{\sin \left(\frac{p \pi}{n}\right) \cos \left(\frac{p \pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)}=\frac{\sin \left(\frac{2 p \pi}{n}\right)}{\sin \left(\frac{\pi}{n}\right)} & =\frac{\cos \left(\frac{\pi}{2 n}\right)}{\sin \left(\frac{\pi}{n}\right)} \text { as } n=4 p+1 \\
& =\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)} .
\end{aligned}
$$

From the above results, we have

$$
\begin{aligned}
E R\left(C_{n}\right) & \geq \frac{1}{n-2}+\frac{2 p^{2}}{n p-\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)}+1}+\frac{2 p^{2}}{n p+\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)}} \\
& =\frac{1}{n-2}+\frac{2 p^{2}(2 n p+1)}{n^{2} p^{2}+n p+\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)}-\frac{1}{4 \sin ^{2}\left(\frac{\pi}{2 n}\right)}} \\
& >\frac{1}{n-2}+\frac{2 p^{2}(2 n p+1)}{n^{2} p^{2}+n p} \quad \text { as } 2 \sin \left(\frac{\pi}{2 n}\right)<1 \\
& =\frac{1}{n-2}+\frac{(n-1)\left(n^{2}-n+2\right)}{n\left(n^{2}-n+4\right)} \quad \text { as } n=4 p+1 .
\end{aligned}
$$

Case (ii) : $n=4 p+3$. By Lemma 7, the adjacency spectrum of cycle C_{n} is

$$
S\left(C_{n}\right)=\{2, \underbrace{2 \cos {\frac{2 \pi^{(2)}}{n}}^{2}, 2 \cos \frac{4 \pi^{(2)}}{n}, \ldots, 2 \cos \frac{2 p \pi^{(2)}}{n}}_{p},
$$

By the arithmetic-harmonic-mean inequality, we have

$$
\begin{aligned}
E R\left(C_{n}\right) & =\frac{1}{n-2}+2 \sum_{i=1}^{p} \frac{1}{n-2 \cos \frac{2 i \pi}{n}}+2 \sum_{i=1}^{p+1} \frac{1}{n+2 \cos \frac{(2 i-1) \pi}{n}} \\
& \geq \frac{1}{n-2}+\frac{2 p^{2}}{n p-2 \sum_{i=1}^{p} \cos \frac{2 i \pi}{n}}+\frac{2 p^{2}}{n p+2 \sum_{i=1}^{p} \cos \frac{(2 i-1) \pi}{n}}+\frac{2}{n+2 \cos \frac{(2 p+1) \pi}{n}} .
\end{aligned}
$$

Using the results in Case (i) with $\sin x<x$ and $n=4 p+3$, from the above, we get

$$
\begin{aligned}
E R\left(C_{n}\right) & \geq \frac{1}{n-2}+\frac{2 p^{2}}{n p-\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)}+1}+\frac{2 p^{2}}{n p+\frac{1}{2 \sin \left(\frac{\pi}{2 n}\right)}}+\frac{2}{n+2 \sin \frac{\pi}{2 n}} \\
& >\frac{1}{n-2}+\frac{2 p^{2}(2 n p+1)}{n^{2} p^{2}+n p}+\frac{2 n}{n^{2}+\pi} \\
& =\frac{1}{n-2}+\frac{(n-3)\left(n^{2}-3 n+2\right)}{n\left(n^{2}-3 n+4\right)}+\frac{2 n}{n^{2}+\pi} .
\end{aligned}
$$

Remark 9. The bound in Theorem 3 is always better than the bound in Lemma 6 (ii).
Proof. Now,

$$
\begin{aligned}
& \frac{(n-1)\left(n^{2}-n+2\right)}{\left(n^{2}-n+4\right)}-\frac{(n-3)\left(n^{2}-3 n+2\right)}{\left(n^{2}-3 n+4\right)}-\frac{2 n^{2}}{n^{2}+\pi} \\
= & \frac{2 n^{4}-8 n^{3}+22 n^{2}-32 n+16}{\left(n^{2}-n+4\right)\left(n^{2}-3 n+4\right)}-\frac{2 n^{2}}{n^{2}+\pi} \\
= & \frac{\pi\left(2 n^{4}-8 n^{3}+22 n^{2}-32 n+16\right)-16 n^{2}}{\left(n^{2}-n+4\right)\left(n^{2}-3 n+4\right)\left(n^{2}+\pi\right)}>0 \quad \text { as } n \geq 3 .
\end{aligned}
$$

From the above result, we have

$$
\frac{1}{n-2}+\frac{(n-1)\left(n^{2}-n+2\right)}{n\left(n^{2}-n+4\right)}>\frac{1}{n-2}+\frac{(n-3)\left(n^{2}-3 n+2\right)}{n\left(n^{2}-3 n+4\right)}+\frac{2 n}{n^{2}+\pi} .
$$

Therefore we have to prove that

$$
\frac{1}{n-2}+\frac{(n-3)\left(n^{2}-3 n+2\right)}{n\left(n^{2}-3 n+4\right)}+\frac{2 n}{n^{2}+\pi}>\frac{n}{\sqrt{n^{2}-4}}-\frac{8}{n^{2}-4} .
$$

By (10), we have to prove that

$$
\frac{1}{n-2}+\frac{(n-3)\left(n^{2}-3 n+2\right)}{n\left(n^{2}-3 n+4\right)}+\frac{2 n}{n^{2}+\pi}>1+\frac{3}{n^{2}}-\frac{8}{n^{2}-4}
$$

that is,

$$
\frac{1}{n-2}+\frac{-3 n^{2}+7 n-6}{n^{3}-3 n^{2}+4 n}+\frac{2 n}{n^{2}+\pi}+\frac{5 n^{2}+12}{n^{2}\left(n^{2}-4\right)}>0,
$$

that is,

$$
\frac{4 n^{3}-4 n^{2}+\pi\left(-2 n^{3}+10 n^{2}-16 n+12\right) 2 n}{\left(n^{2}+\pi\right)\left(n^{4}-5 n^{3}+10 n^{2}-8 n\right)}+\frac{5}{\left(n^{2}-4\right)}>0,
$$

that is,

$$
5 n^{6}-(2 \pi+21) n^{5}+(15 \pi+46) n^{4}-(33 \pi+56) n^{3}+(22 \pi+16) n^{2}+24 \pi n-48 \pi>0
$$

which is always true for $n \geq 3$.
Here we prove Conjecture 2 when n is even.
Theorem 4. The inequality $E R\left(S_{n}\right)<E R\left(C_{n}\right)$ holds for all $n \geq 4$ (n is even).
Proof. By Theorem 2 with (11), we have

$$
E R\left(C_{n}\right)>\frac{2 n}{n^{2}-4}+\frac{2}{n}+\frac{n(n-4)}{n^{2}-2} \geq \frac{2 n}{n^{2}-4}+\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}} \text { for even } n
$$

We have to prove that $E R\left(S_{n}\right)<E R\left(C_{n}\right)$, for all $n \geq 4$ (n is even), that is,

$$
E R\left(C_{n}\right)>\frac{2 n}{n^{2}-4}+\frac{n(n-2)}{n^{2}-2+\frac{4}{n-2}}>\frac{2 n}{n^{2}-n+1}+\frac{n-2}{n}=E R\left(S_{n}\right),
$$

that is,

$$
\frac{n(n-2)^{2}}{n^{3}-2 n^{2}-2 n+8}-\frac{n-2}{n}>\frac{2 n(n-5)}{\left(n^{2}-4\right)\left(n^{2}-n+1\right)},
$$

that is,

$$
\frac{n^{2}-6 n+8}{n^{4}-2 n^{3}-2 n^{2}+8 n}>\frac{n(n-5)}{\left(n^{2}-4\right)\left(n^{2}-n+1\right)},
$$

that is,

$$
3 n^{4}-4 n^{3}-12 n^{2}+56 n-32>0
$$

which is always true for $n \geq 4$. This completes the proof of the theorem.
Remark 10. Still Conjecture 2 is open for odd n.
Remark 11. From Theorem 3, we have $E R\left(C_{11}\right)>0.99979$ and $E R\left(S_{11}\right)=1.01638$, by (3). Hence our lower bound on $E R\left(C_{n}\right)$ in Theorem 3 is not enough to prove Conjecture 2 completely. We need to find better lower bound on $E R\left(C_{n}\right)$ when n is odd.

Acknowledgment: The author is supported by the Sungkyun research fund, Sungkyunkwan University, 2017, and National Research Foundation of the Korean government with grant No. 2017R1D1A1B03028642.

References

[1] L. E. Allem, J. Capaverde, V. Trevisan, I. Gutman, E. Zogić, E. Glogić, Resolvent energy of unicyclic, bicyclic and tricyclic graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 95-104.
[2] A. Cafure, D. A. Jaume, L. N. Grippo, A. Pastine, M. D. Safe, V. Trevisan, I. Gutman, Some results for the (signless) Laplacian resolvent, MATCH Commun. Math. Comput. Chem. 77 (2017) 105-114.
[3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Barth, Heidelberg, 1995.
[4] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606.
[5] Z. Du, Asymptotic expressions for resolvent energies of paths and cycles, MATCH Commun. Math. Comput. Chem. 77 (2017) 85-94.
[6] A. Farrugia, The increase in the resolvent energy of a graph due to the addition of a new edge, Appl. Math. Comput. 321 (2018) 25-36.
[7] M. Ghebleh, A. Kanso, D. Stevanović, On trees with smallest resolvent energy, MATCH Commun. Math. Comput. Chem. 77 (2017) 635-654.
[8] I, Gutman, B. Furtula, E. Zogić, E. Glogić, Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 279-290.
[9] I. Gutman, B. Furtula, E. Zogić, E. Glogić, Resolvent energy, in: I. Gutman, X. Li (Eds.), Graph Energies - Theory and Applications, Univ. Kragujevac, Kragujevac, 2016, pp. 277-290.

