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Abstract

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of a simple
graph G of order n. A graph-spectrum-based invariant, put forward by Gutman
et al. [Resolvent energy of graphs, MATCH Commun. Math. Comput. Chem.
75 (2016) 279–290], is defined as ER(G) =

∑n
i=1 (n − λi)

−1. In the same paper
the authors proposed several conjectures. In this paper we partially prove two
conjectures.

1 Introduction

Let G = (V, E) be a simple graph of order n with m edges, where |V (G)| = n and

|E(G)| = m. If the vertices vi and vj are adjacent, we write vivj ∈ E(G). The ad-

jacency matrix A = A(G) of the graph G is defined so that its (i, j)-entry is equal

to 1 if vivj ∈ E(G) and 0 otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigen-

values of A(G). When more than one graph is under consideration, then we write

λi(G) instead of λi. In what follows, the adjacency spectrum of the graph G, i.e.,

the multiset {λ1(G), λ2(G), . . . , λn(G)} will be denoted by S(G). If G has distinct

eigenvalues λ1, λ2, . . . , λr with multiplicities k1, k2, . . . , kr respectively, we shall write{
λ
(k1)
1 , λ

(k2)
2 , . . . , λ

(kr)
r

}
for the spectrum of G (We often omit those ki equal to 1).

Recently, Gutman et al. introduced the resolvent energy [8], and it is defined by

ER(G) =
n∑

i=1

1

n− λi

. (1)
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For its basic mathematical properties, including various lower and upper bounds, see

[1, 5–9] and the references therein. Also, its Laplacian spectrum version was recently put

forward [2].

The k-th spectral moment of the graph G is defined as

Mk = Mk(G) =
n∑

i=1

λk
i . (2)

As usual, Pn, Cn, and Sn denote, respectively, the path, the cycle, and the star graph

on n vertices. Let P ∗
n be a tree of order n obtained from a path Pn−1 : v1v2 · · · vn−2vn−1

by attaching a new pendant edge vn−2vn at vn−2. A tree is called a double star DSp, q

(p ≥ q ≥ 1, p + q + 2 = n) if it is obtained from Sp+1 and Sq+1 by connecting the center

of Sp+1 with that of Sq+1 via an edge. Let S∗
n be a tree of order n with maximum degree

n − 2. In particular, S∗
n
∼= DSn−3, 1 (The symbol ∼= means ‘is isomorphic to’). Since

S(Sn) =
{√

n− 1, 0(n−2),−
√
n− 1

}
, we have

ER(Sn) =
2n

n2 − n+ 1
+

n− 2

n
. (3)

Gutman et al. [8] mentioned the following two conjectures:

Conjecture 1. Among trees of order n, the tree P ∗
n has second smallest and the tree S∗

n

second-greatest resolvent energy.

Conjecture 2. The inequality ER(Sn) < ER(Cn) holds for all n ≥ 4. Consequently, any

tree has smaller ER-value than any unicyclic graph of the same order.

Farrugia discussed about the increase in the resolvent energy of a graph due to the addition

of a new edge in [6]. In [1], Allem et al. presented some results on the extremal resolvent

energy of unicyclic graphs, bicyclic graphs and tricyclic graphs. Ghebleh et al. [7] proved

that the tree Pn−1(a) has the a-th smallest resolvent energy (Pn−1(a) is a tree obtained by

attaching a pendant vertex at position a of the (n− 1)-vertex path Pn−1). So, one part of

the Conjecture 1 has been proved in [7], and here we confirm the remaining part of this

conjecture. That is, ER(T ) < ER(S∗
n) < ER(Sn) for any tree T (� Sn, S

∗
n). Moreover

we give lower bounds on ER(Cn) in terms of n and it is better than the previous lower

bound given by Du [5]. Finally we prove that ER(Cn) > ER(Sn) for even n.
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2 On Conjecture 1

Figure 1. Transformation I.

In [4], Deng obtained the following result:

Lemma 3. [4] Let u be a non-isolated vertex of a simple graph G. If G1 and G2 are the

graphs obtained from G by identifying a leaf v2 and the center v1 of the n-vertex star Sn

to u, respectively, depicted in Fig. 1, then M2k(G1) < M2k(G2) for n ≥ 3 and k ≥ 2.

Lemma 4. Let DSp, q (p ≥ q ≥ 1, p+ q + 2 = n) be a double star. Then the spectrum of

DSp, q is the following:

S(DSp, q) =

{
±

√
p+ q + 1 +

√
(p− q)2 + 2(p+ q) + 1

2
, 0, 0, . . . , 0︸ ︷︷ ︸

n−4

,

±

√
p+ q + 1−

√
(p− q)2 + 2(p+ q) + 1

2
,

}
.

Proof. One can easily see that 0 is an eigenvalue of multiplicity n− 4 and the remaining

eigenvalues of DSp, q satisfy the following equations:

λx1 = px3 + x2, λx2 = qx4 + x1, λx3 = x1, λx4 = x2,

that is,

λ4 − (p+ q + 1)λ2 + pq = 0,

that is,

λ = ±

√
p+ q + 1±

√
(p− q)2 + 2(p+ q) + 1

2
.

Lemma 5. Let DSp, q (p ≥ q ≥ 1, p+ q + 2 = n) be a double star. Then

ER(DSp, q) < ER(DSp+1, q−1) < · · · < ER(DSp+q−1, 1) = ER(S∗
n).
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Proof. Let a = n − 1 = p + q + 1 and b =
√

(p− q)2 + 2(p+ q) + 1. By Lemma 4, the

spectrum of DSp, q is the following:

S(DSp, q) =

{
±

√
a+ b

2
, ±

√
a− b

2
, 0, 0, . . . , 0︸ ︷︷ ︸

n−4

}
.

Then

ER(DSp, q) =
n− 4

n
+

2n

n2 − a+b
2

+
2n

n2 − a−b
2

=
n− 4

n
+

4n(n2 − a/2)

(n2 − a/2)2 − b2/4

=
n− 4

n
+

4n
(
n2 − n−1

2

)
(n2 − n−1

2
)2 − 1

4

[
(p− q)2 + 2(p+ q) + 1

] .
Since p ≥ q, the difference ER(DSp+1, q−1)− ER(DSp, q) is positive by noting that, after

cancelling n−4
n

, the denominator of ER(DSp+1, q−1) is smaller than that of ER(DSp, q) but

the numerators of ER(DSp+1, q−1) and ER(DSp, q) are equal. Thus we have

ER(DSp, q) < ER(DSp+1, q−1),

that is,

ER(DSp, q) < ER(DSp+1, q−1) < · · · < ER(DSp+q−1, 1) = ER(S∗
n).

This completes the proof.

We are now ready to prove the remaining part of Conjecture 1.

Theorem 1. Let T (� Sn, S
∗
n) be a tree of order n. Then

ER(T ) < ER(S∗
n) < ER(Sn).

Proof. If T ∼= DSp, q (p ≥ q ≥ 1, p+ q + 2 = n), then ER(T ) = ER(DSp, q) < ER(S∗
n) <

ER(Sn) as T � S∗
n. Otherwise, T � DSp, q and T � Sn. Repeating Transformation I as

shown in Fig. 1, any n-vertex tree T can be changed into the n-vertex double star DSp, q

(T ∼= T1 → T2 → · · · → Tk
∼= DSp, q). By Lemma 3, we have

M2k(T ) = M2k(T1) < M2k(T2) < · · · < M2k(Tk) = M2k(DSp, q).
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For tree T , we have Mk(T ) = 0 for all odd values of k. It is well known that [8]:

ER(T ) =
1

n

∞∑
k=0

Mk(T )

nk
=

1

n

∞∑
k=0

M2k(T )

n2k
. (4)

Using the above results, we have

ER(T ) = ER(T1) < ER(T2) < · · · < ER(Tk) = ER(DSp, q).

By Lemma 3, we have M2k(S
∗
n) < M2k(Sn) and hence ER(S∗

n) < ER(Sn), by (4). By

Lemma 5, we conclude that

ER(T ) = ER(T1) < ER(T2) < · · · < ER(DSp, q) < · · · < ER(DSp+q−1, 1) =

ER(S∗
n) < ER(Sn).

This completes the proof of the theorem.

3 On Conjecture 2

In this section we prove ER(Sn) < ER(Cn) holds for all n ≥ 4 and n is even. Du [5]

presented the following result:

Lemma 6. [5] For n ≥ 3,

(i) if n is even, then

ER(Cn) ≥
n√

n2 − 4
− 4

n2 − 4
,

(ii) if n is odd, then

ER(Cn) ≥
n√

n2 − 4
− 8

n2 − 4
.

Lemma 7. [3] The adjacency spectrum of cycle Cn is

2 cos
2πj

n
, j = 0, 1, . . . , n− 1.

One can easily find the following trigonometric identity:

n−1∑
k=0

cos (a+ kb) =
sin

(
nb
2

)
sin

(
b
2

) cos

(
a+ (n− 1)

b

2

)
. (5)

It is very useful to prove our main result in this section.

We present a lower bound on ER(Cn) for even n.
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Theorem 2. Let Cn be a cycle of order n (n is even). Then

ER(Cn) >


2n

n2 − 4
+

2

n
+

n (n− 4)

n2 − 2
if n = 4p,

2n

n2 − 4
+

n (n− 2)

n2 − 2 + 4
n−2

if n = 4p+ 2,

where p is a positive integer.

Proof. Since n is even, we consider the following two cases:

Case (i) : n = 4p. By Lemma 7, the adjacency spectrum of cycle Cn is

S(Cn) =

±2, 0(2), ±2 cos
2π

n

(2)

, ±2 cos
4π

n

(2)

, . . . , ±2 cos
2(p− 1)π

n

(2)

︸ ︷︷ ︸
p−1

 .

Using the arithmetic-harmonic-mean inequality, we have

ER(Cn) =
n∑

i=1

1

n− λi

=
1

n− 2
+

1

n+ 2
+

2

n
+ 2

p−1∑
i=1

[
1

n− 2 cos 2iπ
n

+
1

n+ 2 cos 2iπ
n

]

=
2n

n2 − 4
+

2

n
+ 2

p−1∑
i=1

2n

n2 − 4 cos2 2iπ
n

≥ 2n

n2 − 4
+

2

n
+

4n (p− 1)2

n2(p− 1)− 4
p−1∑
i=1

cos2 2iπ
n

(6)

=
2n

n2 − 4
+

2

n
+

4n (p− 1)2

n2(p− 1)− 2
p−1∑
i=1

(1 + cos 4iπ
n
)

. (7)

By (5), we get
p−1∑
i=1

cos
4iπ

n
= 0 as n = 4p.

By the arithmetic-harmonic-mean inequality, one can easily see that the inequality in (6)

is strict. Moreover, using the above result in (7), we have

ER(Cn) >
2n

n2 − 4
+

2

n
+

4n (p− 1)2

n2(p− 1)− 2(p− 1)
=

2n

n2 − 4
+

2

n
+

n (n− 4)

n2 − 2
.
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Case (ii) : n = 4p+ 2. By Lemma 7, the adjacency spectrum of cycle Cn is

S(Cn) =

±2, ±2 cos
2π

n

(2)

, ±2 cos
4π

n

(2)

, . . . , ±2 cos
2pπ

n

(2)

︸ ︷︷ ︸
p

 .

Similarly to the Case (i), using the arithmetic-harmonic-mean inequality, we have

ER(Cn) =
1

n− 2
+

1

n+ 2
+ 2

p∑
i=1

[
1

n− 2 cos 2iπ
n

+
1

n+ 2 cos 2iπ
n

]

=
2n

n2 − 4
+ 2

p∑
i=1

2n

n2 − 4 cos2 2iπ
n

≥ 2n

n2 − 4
+

4n p2

n2p− 4
p∑

i=1

cos2 2iπ
n

(8)

=
2n

n2 − 4
+

4n p2

n2p− 2
p∑

i=1

(1 + cos 4iπ
n
)

. (9)

By (5), we get
p∑

i=1

cos
4iπ

n
=

sin
(
2pπ
n

)
sin

(
2π
n

) cos

(
2pπ

n
+

2π

n

)
= −

cos
(
π
n

)
sin

(
π
n

)
sin

(
2π
n

) = −1

2
as n = 4p+ 2.

By the arithmetic-harmonic-mean inequality, one can easily see that the inequality in (8)

is strict. Moreover, using the above result in (9), we have

ER(Cn) >
2n

n2 − 4
+

4n p2

n2p− 2p+ 1
=

2n

n2 − 4
+

n (n− 2)

n2 − 2 + 4
n−2

.

Remark 8. The bound in Theorem 2 is always better than the bound in Lemma 6 (i).

Proof. One can easily obtain

n√
n2 − 4

=

(
1− 4

n2

)−1/2

< 1 +
3

n2
. (10)

Now,

2

n
+

n (n− 4)

n2 − 2
− n (n− 2)

n2 − 2 + 4
n−2

=
2

n
+

n (n− 4)

n2 − 2
− n (n− 2)2

n3 − 2n2 − 2n+ 8
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=
8n− 32

(n3 − 2n)(n3 − 2n2 − 2n+ 8)
≥ 0 as n ≥ 4.

From the above, we have

2n

n2 − 4
+

2

n
+

n (n− 4)

n2 − 2
≥ 2n

n2 − 4
+

n (n− 2)

n2 − 2 + 4
n−2

. (11)

Therefore we have to prove that

2n

n2 − 4
+

n (n− 2)

n2 − 2 + 4
n−2

>
n√

n2 − 4
− 4

n2 − 4
.

Using (10), we have to prove that

2n+ 4

n2 − 4
+

n (n− 2)2

n3 − 2n2 − 2n+ 8
> 1 +

3

n2
,

that is,
2n+ 4

n2 − 4
+

−2n2 + 6n− 8

n3 − 2n2 − 2n+ 8
>

3

n2
,

that is,
6n3 − 12n2 − 16n+ 64

(n2 − 4)(n3 − 2n2 − 2n+ 8)
>

3

n2
,

that is,

3n5 − 6n4 + 2n3 + 16n2 − 24n+ 96 > 0,

which is always true for n ≥ 4.

We now obtain a lower bound on ER(Cn) for odd n.

Theorem 3. Let Cn be a cycle of order n (n is odd). Then

ER(Cn) >


1

n− 2
+

(n− 1) (n2 − n+ 2)

n (n2 − n+ 4)
if n = 4p+ 1,

1

n− 2
+

(n− 3) (n2 − 3n+ 2)

n (n2 − 3n+ 4)
+

2n

n2 + π
if n = 4p+ 3,

where p is a non-negative integer.

Proof. If p = 0, then n = 3 and hence E(C3) > 1 + 6
9+π

holds. Otherwise, p ≥ 1. Since n

is odd, we consider the following two cases:

Case (i) : n = 4p+ 1. By Lemma 7, the adjacency spectrum of cycle Cn is

S(Cn) =

{
2, 2 cos

2π

n

(2)

, 2 cos
4π

n

(2)

, . . . , 2 cos
2pπ

n

(2)

︸ ︷︷ ︸
p

,
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−2 cos
π

n

(2)

, −2 cos
3π

n

(2)

, . . . , −2 cos
(2p− 1)π

n

(2)

︸ ︷︷ ︸
p

}
.

By the arithmetic-harmonic-mean inequality, we have

ER(Cn) =
1

n− 2
+ 2

p∑
i=1

[
1

n− 2 cos 2iπ
n

+
1

n+ 2 cos (2i−1)π
n

]

≥ 1

n− 2
+

2 p2

np− 2
p∑

i=1

cos 2iπ
n

+
2 p2

np+ 2
p∑

i=1

cos (2i−1)π
n

.

By (5), we get

2

p∑
i=1

cos
2iπ

n
=

2 sin
(
pπ
n

)
sin

(
π
n

) cos

(
(p− 1)π

n
+

2π

n

)

=
2 sin

(
pπ
n

)
sin

(
π
n

) cos
(pπ
n

+
π

n

)

=
cos

(
π
2n

)
sin

(
π
n

) − 1 =
1

2 sin
(

π
2n

) − 1

and

2

p∑
i=1

cos
(2i− 1)π

n
= 2

sin
(
pπ
n

)
cos

(
pπ
n

)
sin

(
π
n

) =
sin

(
2pπ
n

)
sin

(
π
n

) =
cos

(
π
2n

)
sin

(
π
n

) as n = 4p+ 1

=
1

2 sin
(

π
2n

) .
From the above results, we have

ER(Cn) ≥ 1

n− 2
+

2 p2

np− 1
2 sin

(
π
2n

) + 1
+

2 p2

np+ 1
2 sin

(
π
2n

)

=
1

n− 2
+

2p2 (2np+ 1)

n2p2 + np+ 1
2 sin

(
π
2n

) − 1
4 sin2

(
π
2n

)

>
1

n− 2
+

2p2 (2np+ 1)

n2p2 + np
as 2 sin

( π

2n

)
< 1

=
1

n− 2
+

(n− 1) (n2 − n+ 2)

n (n2 − n+ 4)
as n = 4p+ 1.

Case (ii) : n = 4p+ 3. By Lemma 7, the adjacency spectrum of cycle Cn is

S(Cn) =

{
2, 2 cos

2π

n

(2)

, 2 cos
4π

n

(2)

, . . . , 2 cos
2pπ

n

(2)

︸ ︷︷ ︸
p

,
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−2 cos
π

n

(2)

, −2 cos
3π

n

(2)

, . . . , −2 cos
(2p+ 1)π

n

(2)

︸ ︷︷ ︸
p+1

}
.

By the arithmetic-harmonic-mean inequality, we have

ER(Cn) =
1

n− 2
+ 2

p∑
i=1

1

n− 2 cos 2iπ
n

+ 2

p+1∑
i=1

1

n+ 2 cos (2i−1)π
n

≥ 1

n− 2
+

2 p2

np− 2
p∑

i=1

cos 2iπ
n

+
2 p2

n p+ 2
p∑

i=1

cos (2i−1)π
n

+
2

n+ 2 cos (2p+1)π
n

.

Using the results in Case (i) with sin x < x and n = 4p+ 3, from the above, we get

ER(Cn) ≥ 1

n− 2
+

2 p2

np− 1
2 sin

(
π
2n

) + 1
+

2 p2

n p+ 1
2 sin

(
π
2n

) +
2

n+ 2 sin π
2n

>
1

n− 2
+

2p2 (2np+ 1)

n2p2 + np
+

2n

n2 + π

=
1

n− 2
+

(n− 3) (n2 − 3n+ 2)

n (n2 − 3n+ 4)
+

2n

n2 + π
.

Remark 9. The bound in Theorem 3 is always better than the bound in Lemma 6 (ii).

Proof. Now,

(n− 1) (n2 − n+ 2)

(n2 − n+ 4)
− (n− 3) (n2 − 3n+ 2)

(n2 − 3n+ 4)
− 2n2

n2 + π

=
2n4 − 8n3 + 22n2 − 32n+ 16

(n2 − n+ 4)(n2 − 3n+ 4)
− 2n2

n2 + π

=
π(2n4 − 8n3 + 22n2 − 32n+ 16)− 16n2

(n2 − n+ 4)(n2 − 3n+ 4)(n2 + π)
> 0 as n ≥ 3.

From the above result, we have

1

n− 2
+

(n− 1) (n2 − n+ 2)

n (n2 − n+ 4)
>

1

n− 2
+

(n− 3) (n2 − 3n+ 2)

n (n2 − 3n+ 4)
+

2n

n2 + π
.

Therefore we have to prove that

1

n− 2
+

(n− 3) (n2 − 3n+ 2)

n (n2 − 3n+ 4)
+

2n

n2 + π
>

n√
n2 − 4

− 8

n2 − 4
.

By (10), we have to prove that

1

n− 2
+

(n− 3) (n2 − 3n+ 2)

n (n2 − 3n+ 4)
+

2n

n2 + π
> 1 +

3

n2
− 8

n2 − 4
,
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that is,
1

n− 2
+

−3n2 + 7n− 6

n3 − 3n2 + 4n
+

2n

n2 + π
+

5n2 + 12

n2(n2 − 4)
> 0,

that is,
4n3 − 4n2 + π(−2n3 + 10n2 − 16n+ 12)2n

(n2 + π)(n4 − 5n3 + 10n2 − 8n)
+

5

(n2 − 4)
> 0,

that is,

5n6 − (2π + 21)n5 + (15π + 46)n4 − (33π + 56)n3 + (22π + 16)n2 + 24πn− 48π > 0,

which is always true for n ≥ 3.

Here we prove Conjecture 2 when n is even.

Theorem 4. The inequality ER(Sn) < ER(Cn) holds for all n ≥ 4 (n is even).

Proof. By Theorem 2 with (11), we have

ER(Cn) >
2n

n2 − 4
+

2

n
+

n (n− 4)

n2 − 2
≥ 2n

n2 − 4
+

n (n− 2)

n2 − 2 + 4
n−2

for even n.

We have to prove that ER(Sn) < ER(Cn), for all n ≥ 4 (n is even), that is,

ER(Cn) >
2n

n2 − 4
+

n (n− 2)

n2 − 2 + 4
n−2

>
2n

n2 − n+ 1
+

n− 2

n
= ER(Sn),

that is,
n (n− 2)2

n3 − 2n2 − 2n+ 8
− n− 2

n
>

2n(n− 5)

(n2 − 4) (n2 − n+ 1)
,

that is,
n2 − 6n+ 8

n4 − 2n3 − 2n2 + 8n
>

n(n− 5)

(n2 − 4) (n2 − n+ 1)
,

that is,

3n4 − 4n3 − 12n2 + 56n− 32 > 0,

which is always true for n ≥ 4. This completes the proof of the theorem.

Remark 10. Still Conjecture 2 is open for odd n.

Remark 11. From Theorem 3, we have ER(C11) > 0.99979 and ER(S11) = 1.01638, by

(3). Hence our lower bound on ER(Cn) in Theorem 3 is not enough to prove Conjecture

2 completely. We need to find better lower bound on ER(Cn) when n is odd.
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