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Abstract

Let G be a simple graph with order n and µ1, µ2, . . . , µn be the roots
of its matching polynomial. The matching energy of G is defined to be
the sum of the absolute values of µi(i = 1, 2, . . . , n), which was proposed
by Gutman and Wagner. A maximum matching is one which covers as
many vertices as possible. The number of edges in a maximum matching
of a graph G is called the matching number of G and denoted by α′(G).
Let B(n, β) and UB(n, β) be the set of connected bipartite graphs and
connected bipartite unicyclic graphs with order n and matching number
β, respectively. In this paper, we characterize graphs with the first three
largest matching energies in B(n, β). Also we determine the extremal
graph with minimal and the second minimal matching energy among
graphs in B(n, β), respectively. Furthermore, we determine the extremal
graph from UB(n, β) minimizing the matching energy.

1 Introduction

In this paper, all graphs under our consideration are finite, connected, undirected and

simple. Let G be a graph with n vertices and A(G) be its adjacency matrix. The

characteristic polynomial of G, denoted by φ(G), is defined as

φ(G) = det(xI − A(G)) =
n∑

i=0

ai(G)xn−i,
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where I is the identity matrix of order n. The roots of the equation φ(G) = 0, denoted by

λ1, λ2, . . . , λn, are the eigenvalues of A(G). The energy of G, denoted by E(G), is defined

as

E(G) =
n∑

i=1

|λi|.

The concept of graph energy was proposed by Gutman in [13] and now is well-studied. For

details, we refer the book on graph energy [26] and some new recent references [20,21,27].

Let G be a graph with n vertices and m edges. A matching in G is a set of pairwise

nonadjacent edges and its size is the number of edges in it. A matching M with size k is

called a k-matching. Denote by m(G, k) the number of k-matchings of G. In particular,

m(G, 1) = m and m(G, k) = 0 for k > bn
2
c or k < 0. In addition, define m(G, 0) = 1.

Then the matching polynomial of the graph G is defined as

α(G) = α(G,µ) =
∑
k≥0

(−1)km(G, k)µn−2k.

For more details of the results on the matching polynomial of the graph, please refer

to [11, 12, 14].

In [18], Gutman and Wagner firstly proposed the concept of matching energy. They

defined the matching energy of a graph G as follows:

ME(G) =
n∑

i=1

|µi|,

where µi(i = 1, 2, . . . , n) are the roots of α(G,µ) = 0. Besides, Gutman and Wagner also

gave the following equivalent definition of matching energy.

Definition 1.1 ( [18]) Let G be a simple graph, and let m(G, k) be the number of its

k-matchings, k = 0, 1, 2, . . .. The matching energy of G is

ME = ME(G) =
2

π

∫ ∞

0

1

x2
ln

[∑
k≥0

m(G, k)x2k

]
dx. (1)

Eq. (1) is called the Coulson integral formula of matching energy. Obviously, by the

monotonicity of the logarithm function, Eq. (1) implies that the matching energy of a

graph G is a monotonically increasing function of any m(G, k). Then we can define a

quasi-order “�” as follows: for two graphs G1 and G2,

G1 � G2 ⇐⇒ m(G1, k) ≥ m(G2, k) for all k. (2)
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If G1 � G2 and there exists some k such that m(G1, k) > m(G2, k), then we write

G1 � G2. According to Eq.(1) and Eq.(2), we get the following results directly

G1 � G2 =⇒ ME(G1) ≥ ME(G2) (3)

G1 � G2 =⇒ ME(G1) > ME(G2) (4)

In [18], Gutman and Wagner pointed out that the matching energy is a quantity of

relevance for chemical applications. They arrived at the simple relation:

TRE(G) = E(G)−ME(G).

Where TRE(G) is the so-called “topological resonance energy” of G. About the chemical

applications of matching energy, for more details see [17].

The matching energy of a graph is widely studied in recent years. In [18], Gutman and

Wagner gave some elementary results on the matching energy and obtained the unicyclic

graphs with minimal and maximal matching energy. For the bicyclic graphs, Ji et al. [22]

obtained the graphs with minimal and maximal matching energy. In [6], Chen and Shi

obtained tricyclic graph with maximum matching energy. For the unicyclic and bicyclic

graphs with a given diameter, Chen et al. [7] obtained the graphs with minimal matching

energies. For more results about matching energy, see [4, 5, 8, 24, 25, 28, 29], and see [15]

for a survey.

Recall that a matching in a graph is a set of pairwise nonadjacent edges. If M is a

matching, the two ends of each edge of M are said to be matched under M , and each

vertex incident with an edge of M is said to be covered by M . A maximum matching

is one which covers as many vertices as possible. The number of edges in a maximum

matching of a graph G is called the matching number of G and denoted by α′(G). Let

B(n, β) and UB(n, β) be the set of connected bipartite graphs and connected bipartite

unicyclic graphs with order n and matching number β, respectively. In this paper, we

characterize graphs with the first three largest matching energies in B(n, β). Also we

determine the extremal graph with minimal and the second minimal matching energy

among graphs in B(n, β), respectively. Furthermore, we study the graphs in UB(n, β),

and characterize the extremal graph obtaining minimal matching energy.
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2 Preliminary
We first introduce some elementary notations and terminology that will be used in the

sequel.

Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G),
the degree of v is the number of edges of G incident with v. A vertex is called a k-degree

vertex if its degree is k. In particular, a vertex is called an isolated vertex if its degree is

zero. A pendent vertex is a vertex whose degree is 1. Denote by NG(v) (or simply N(v))

the set of neighbors of v. For a graph G, let [G] be the graph obtained from G by deleting
all the isolated vertices of G. For an edge e = uv ∈ E(G), let V (e) be the set of ends of

e, i.e. V (e) = {u, v}.

A graph H is called a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The

subgraph of G whose vertex set is X and whose edge set is the set of those edges of G that

have both ends in X is called the subgraph of G induced by X and is denoted by G[X].

For two disjoint sets X, Y ⊆ V (G), let E(X,Y ) be the set of edges with one end in X and

the other end in Y . For a subset V ′ of V (G), let G−V ′ be the subgraph of G obtained by
deleting the vertices of V ′ together with their incident edges. If V ′ = {v}, we write G− v

instead of G − {v}. Similarly, for a subset E ′ of E(G), denote by G − E ′ the subgraph

of G obtained by deleting the edges of E ′. If E ′ = {e}, we write G− e for G− {e}. For

any two nonadjacent vertices x and y of graph G, let G+ xy be the graph obtained from

G by adding an edge xy. The union of two graphs G and H, denoted by G ∪ H, is the

graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). In particular, if G and

H are vertex-disjoint graphs, then denote by G ] H the union of G and H. Denote by

kG the union of k vertex-disjoint graphs isomorphic to G.

A bipartite graph is the graph whose vertex set can be partitioned into two subsets X

and Y such that every edge has one end in X and the other end in Y ; such a partition

(X,Y ) is called a bipartition of the graph, X and Y its parts. Denote by G[X,Y ] a

bipartite graph G with bipartition (X,Y ). If G[X,Y ] is simple and every vertex in X is

joined to every vertex in Y , then we call G a complete bipartite graph. A star is a complete

bipartite graph G[X,Y ] with |X| = 1 or |Y | = 1. Denote by Kn and Sn the complete

graph and the star on n vertices, respectively.

By convention, denote by Pn, Cn the path and the cycle of order n, respectively.
A connected graph with n vertices and n edges is called a unicyclic graph. For other
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undefined notations and terminology, we refer the standard textbooks of Bondy and Murty

[1, 2].

Before stating our main results, we will list or prove some lemmas, which will play an

important role in the next proofs.

Lemma 2.1 ( [11,14]) Let G be a simple graph. Then, for any edge e = uv and N(u) =

{v1(= v), v2, . . . , vt}, we have the following two identities:

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1), (1)

m(G, k) = m(G− u, k) +
t∑

i=1

m(G− u− vi, k − 1). (2)

Remark 1. According to Eq.(2), we can get m(P1 ]G, k) = m(G, k) directly, where

G is an arbitrary graph and P1 is an isolated vertex. Hence by applying Eq.(2) repeatly,

we can deduce that m(G, k) = m([G], k).

Lemma 2.2 ( [7]) Let G be a simple graph and H a subgraph (resp. proper subgraph)

of G. Then G � H (resp. � H).

Lemma 2.3 ( [16]) Let H1 and H2 be two graphs with H1 � H2. Then H1]G � H2]G,

where G is an arbitrary graph.

For two non-negative integers n and β with β ≤ n
2
, let T (n, β) be the set of trees with

order n and matching number β. Denote by S(n, β) the graph obtained from K1,β−1 by

attaching one pendent edge to each non-center vertex of K1,β−1 and attaching n− 2β +1

pendent edges to the center vertex of K1,β−1. We call the vertex with maximum degree

the center of S(n, β). Let R(n, β) be the graph obtained from S(n−2, β−1) by attaching

an end vertex of a P3 to a 2-degree vertex of S(n− 2, β − 1) (see Fig. 2.1). We can check

that α′(S(n, β)) = α′(R(n, β)) = β, which implies S(n, β), R(n, β) ∈ T (n, β). In [19],

Hou investigated the maching energy of graphs in T (n, β) and gave the following two

results.
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n− 2β + 1
︷ ︸︸ ︷

︷︸︸︷

β − 1

S(n, β)

︷ ︸︸ ︷

︷︸︸︷

β − 2

R(n, β)

n− 2β + 2

u

v

Figure 2.1. The trees with minimal and the second minimal matching energies in
T (n, β)

Lemma 2.4 ( [19]) Let T be a tree with matching number β, then T � S(n, β), with

equality holding if and only if T ∼= S(n, β).

Lemma 2.5 ( [19]) Let T be a tree with matching number β. If T � S(n, β), then

T � R(n, β), with equality holding if and only if T ∼= R(n, β).

3 The graphs with the first three largest matching
energies in B(n, β)

Note that B(n, 1) = {Sn}, and B(4, 2) = {C4, P4}, the problem of characterizing extremal

graphs with maximal matching energies is trivial in these two cases. Hence, we mainly

study graphs in B(n, β) for n ≥ 5 and β ≥ 2 in this section.

A covering of a graph G is a vertex subset K ⊆ V (G) such that each edge of G has

at least one end in the set K. The number of vertices in a minimum covering of a graph

G is called the covering number of G.

Lemma 3.1 (The König-Egerváry Theorem, [10,23]). In any bipartite graph, the number

of edges in a maximum matching is equal to the number of vertices in a minimum covering.

Let G = G[X,Y ] be a bipartite graph such that G ∈ B(n, β). If |X| 6= β and |Y | 6= β,

we then construct a new graph G∗ in the following. Firstly, we give some notations that

will be used. Let S be a minimum covering of G and X1 = S ∩ X, Y1 = S ∩ Y . From

Lemma 3.1, we know that |S| = |X1|+ |Y1| = β. Set X2 = X \X1, Y2 = Y \ Y1. Clearly,

we have E(X2, Y2) = ∅. Since |X| = |X1| + |X2| > β and |Y | = |Y1| + |Y2| > β, we have

that |Y2| > |X1| and |X2| > |Y1|. Then we construct the graph G∗ as follows:

G∗ = G− E(X1, Y1) + {uw : u ∈ X1, w ∈ X2}.
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X1 Y1 X1 Y1

Y2 X2 Y2 X2

G G
∗

Figure 3.2. The graphs G and G∗

Lemma 3.2 Let G and G∗ be the graphs defined above (see Figure 3.2). Then we have

G∗ � G.

Proof. Let Mk(G) denote the set of k-matchings of G, where 0 ≤ k ≤ β. Then m(G, k) =

|Mk(G)|. For any M ∈ Mk(G), let M1 = M ∩ E(X1, Y2), M2 = M ∩ E(X2, Y1), and

M3 = M ∩ E(X1, Y1). If M3 = ∅, set M ′ = M . We have that M ′ is a k-matching

of G∗. If M3 6= ∅, suppose that M3 = {xiyi : xi ∈ X1, yi ∈ Y1, 1 ≤ i ≤ t}, where

1 ≤ t ≤ k. set Y ′
1 = V (M2) ∩ Y1 and X ′

2 = V (M2) ∩ X2. Clearly, {y1, y2, . . . , yt} ⊆

Y1 \ Y ′
1 . Since |X2| ≥ |Y1|, we have that |X2 \ X ′

2| ≥ |Y1 \ Y ′
1 |. Hence, there exists

an injection φ from the set of t-subsets of Y1 \ Y ′
1 to the set of t-subsets of X2 \ X ′

2.

Suppose that {z1, z2, . . . , zt} is the image of {y1, y2, . . . , yt} under the injection φ. Let

M ′ = M ∪ {x1z1, x2z2, . . . , xtzt} \ {x1y1, x2y2, . . . , xtyt}. Then M ′ is a k-matching of

G∗. Thus we can define a map Φ from Mk(G) to Mk(G
∗) which maps M to M ′. From

the construction of M ′, we know that Φ is an injection. Hence, m(G∗, k) ≥ m(G, k).

Moreover, we know that m(G∗, 1) > m(G, 1). Thus, G∗ � G.

Lemma 3.2 is an efficient tool for the characterization of the graphs with the first

three largest matching energies among graphs in B(n, β). Although the maximum match-

ing energy among all bipartite graphs with a given matching number has already been

determined in [9], we will give our proof using Lemma 3.2 in the following.

Theorem 3.3 Among all the graphs in B(n, β), Kβ,n−β is the unique graph with maximal

matching energy.

Proof. Let G be a graph with matching number β and G � Kβ,n−β. The result Kβ,n−β � G

holds trivially for |X| = β or |Y | = β. Now we consider |X| > β and |Y | > β. From

Lemma 3.2, we know that G∗ � G, where G∗ is the graph obtained from G by the
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operation shown in Fig. 3.2. Since G∗ is a subgraph of Kβ,n−β, we have Kβ,n−β � G∗.

Hence, Kβ,n−β � G. The result follows.

From Lemma 3.2 and Theorem 3.3, we can get the following result.

Theorem 3.4 Among all the graphs in B(n, β), Kβ,n−β − e is the unique graph with the

second maximal matching energy, where e is an arbitrary edge of Kβ,n−β.

Proof. Suppose that G ∈ B(n, β) is the graph with the second maximal matching energy.

Let (X,Y ) be the bipartition of G. We claim that either |X| = β or |Y | = β. Otherwise,

let G∗ be the graph obtained from G by the operation shown in Fig. 3.2. From Lemma

3.2, we know that G∗ � G. Note that the bipartition of G∗ is (X1 ∪ Y1, X2 ∪ Y2) and

|X1| + |Y1| = β. Since |X| = |X1| + |X2| > β and |Y | = |Y1| + |Y2| > β, we have

that |X2| > |Y1| and |Y2| > |X1|. In addition, we can get that |X1| ≥ 1 and |Y1| ≥ 1

by the connectedness of G. So |X2| ≥ 2 and |Y2| ≥ 2. Hence, G∗ � Kβ,n−β, and so

Kβ,n−β � G∗ � G, a contradiction. The claim follows. From Lemma 2.2 and Theorem

3.3, one can see that the graph obtained from Kβ,n−β by deleting an arbitrary edge is the

unique graph with the second maximal matching energy among all the graphs in B(n, β).

Theorem 3.5 Among all the graphs in B(n, β), Kβ,n−β − e1− e2 is the unique graph with

the third maximal matching energy, where e1 and e2 are two arbitrary nonadjacent edges

of Kβ,n−β.

Proof. Suppose that G ∈ B(n, β) is the graph with the third maximal matching energy.

Let (X,Y ) be the bipartition of G. We claim that either |X| = β or |Y | = β. Otherwise,

let G∗ be the graph obtained from G by the operation shown in Fig. 3.2. Then by the

similar argument in the proof of Theorem 3.4, we can get that |Y2| ≥ 2 and |Y1| ≥ 1.

Hence, G∗ � Kβ,n−β, and G∗ � Kβ,n−β − e, where e is an arbitrary edge of Kβ,n−β. So we

have that Kβ,n−β � Kβ,n−β − e � G∗ � G, a contradiction. The claim follows.

From Lemma 2.2, Theorems 3.3 and 3.4, we can get that G can be obtained from

Kβ,n−β by deleting two edges. Let X = {x1, x2, . . . , xβ} and Y = {y1, y2, . . . , yn−β} be the

bipartition of Kβ,n−β. Let G′ = Kβ,n−β − x1y1 − x1y2 and G′′ = Kβ,n−β − x1y1 − x2y2.

Up to isomorphism, the graph obtained from Kβ,n−β by deleting two edges is G′ or G′′.

Clearly, G′′ − x1y2 ∼= G′ − x2y2 ∼= Kβ,n−β − x1y1 − x1y2 − x2y2, G′′ − x1 − y2 ∼= Kβ−1,n−β−1
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and G′ − x2 − y2 ∼= Kβ−1,n−β−1 − x1y1. Hence, for 2 ≤ k ≤ β,

m(G′′, k) = m(G′′ − x1y2, k) +m(G′′ − x1 − y2, k − 1)

> m(G′ − x2y2, k) +m(G′ − x2 − y2, k − 1)

= m(G′, k).

Together with m(G′′, 1) = m(G′, 1), we have that G′′ � G′. Hence, G ∼= G′′. The result

follows.

4 The extremal graphs with minimal and the second
minimal matching energy in B(n, β)

In this section, we study the graphs in B(n, β), and characterize the extremal graphs with

minimal and the second minimal matching energies, respectively.

Theorem 4.1 Let G be a graph in B(n, β). If G � S(n, β), then ME(G) > ME(S(n, β)).

Proof. Suppose that G is a graph in B(n, β), and G � S(n, β). If G contains no cycle,

then G ∈ T (n, β). Hence, G � S(n, β) by applying Lemma 2.4.

We then suppose that G contains cycles. There must exist an edge e1 ∈ E(G) such

that G− e1 is connected and α′(G− e1) = α′(G) = β. If G− e1 is a tree, by Lemmas 2.2

and 2.4, we can get G � G− e1 � S(n, β). If G− e1 also contains cycles, we can find an

edge e2 of G − e1 similarly to the above operation such that G − e1 − e2 ∈ B(n, β) and

G � G − e1 − e2. Repeat the operation, one can get a spanning subgraph T of G such

that T ∈ B(n, β) and G � T � S(n, β) finally.

We have proved that G � S(n, β) in both cases. Therefore, one can get ME(G) >

ME(S(n, β)) by Eq. (4).

From Theorem 4.1, we have that S(n, β) is the extremal graph with minimal matching

energy in B(n, β). Then we start to characterize the extremal graph with the second

minimal matching energy in B(n, β).

Denote by UB(n, β) the unicyclic graph shown in Figure 4.3.
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︷︸︸︷

︷
︸
︸
︷

β − 3

n− 2β + 1

e0

f0

Figure 4.3. The graph UB(n, β).

Theorem 4.2 Let G be a graph in B(n, β). If G � S(n, β) or R(n, β), then ME(G) >

ME(R(n, β)).

Proof. Suppose that G is a graph in B(n, β), and G /∈ {S(n, β), R(n, β)}. If G contains

no cycle, then G ∈ T (n, β). Hence, we have G � R(n, β) applying Lemmas 2.4 and 2.5.

Suppose that G contains cycles. Then we aim to find a unicyclic spanning subgraph

H of G such that H ∈ B(n, β). Clearly, H ∼= G if G is a unicyclic graph. If G contains

at least two cycles, then there must exist an edge e1 in G such that G− e1 ∈ B(n, β) and

G− e1 contains at least one cycle. If G− e1 also contains at least two cycles, we can find

an edge e2 of G− e1 similarly to the above operation such that G− e1 − e2 ∈ B(n, β) and

G � G− e1 − e2. Repeat the operation, one can get a unicyclic spanning subgraph H of

G such that H ∈ B(n, β) finally.

Since H is a unicyclic graph, there must exist an edge e of the cycle in H such

that H − e ∈ B(n, β). If H − e � S(n, β), then by Lemmas 2.2 and 2.5, we can get

G � H � H − e � R(n, β).

β − 2

︷︸︸︷

u0

v0

︷
︸
︸
︷

n− 2β

u1

v1

Figure 4.4. The graph G1.

If H − e ∼= S(n, β), then H is isomorphic to UB(n, β) or G1(see Figure 4.4). If

H ∼= UB(n, β), then H − e0 ∼= R(n, β). Thus we can get H � H − e0 ∼= R(n, β) from
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Lemma 2.2. If H ∼= G1, then H � H − u0v0 � R(n, β). Therefore, we can always obtain

that G � H � R(n, β). Hence, we complete the proof.

5 The extremal graph with minimal matching energy
in UB(n, β)

Recall that UB(n, β) is the set of unicyclic bipartite graphs with order n and matching

number β.

Note that the graphs G1 (see Fig. 4.4) and UB(n, β) play an important role in the

proof of Theorem 4.2 and both these two graphs belong to UB(n, β). Motivated by the

result G1 � UB(n, β) which is obtained from simple comparation, we begin to characterize

the extremal graph with minimal matching energy among the graph class UB(n, β).

Lemma 5.1 Let G ∈ UB(n, β) (β < n
2
) with the unique cycle C. If there exists an edge

e ∈ E(C) such that G−e ∼= S(n, β) or R(n, β), then G � UB(n, β) unless G ∼= UB(n, β).

Proof. Suppose that G � UB(n, β). Then it is sufficient to prove that G � UB(n, β). If

there exists an e ∈ E(C) such that G− e ∼= S(n, β), then G is isomorphic to G1 (see Fig.

4.4). Since G− u1v1 ∼= UB(n, β)− f0 and G− u1 − v1 ⊃ UB(n, β)− V (f0), we have

m(G, k) = m(G− u1v1, k) +m(G− u1 − v1, k − 1)

≥ m(UB(n, β)− f0, k) +m(UB(n, β)− V (f0), k − 1)

= m(UB(n, β), k).

Since G − u1 − v1 ⊃ UB(n, β) − V (f0), there exists k0 such that m(G − u1 − v1, k0) >

m(UB(n, β) − V (f0), k0), and so m(G, k0 + 1) > m(UB(n, β), k0 + 1). Hence, G �

UB(n, β).

If there exists an edge e ∈ E(C) such that G− e ∼= R(n, β), then G is isomorphic to

Gi, i = 2, 3, . . . , 9 (see Fig. 5.5).
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︷︸︸︷

β − 4

︷︸︸︷

β − 3

G2

G7

︷︸︸︷

β − 4

G3

u2 v2

u7 v7

u3 v3

︷︸︸︷

β − 4

G4

u4

v4

︷︸︸︷

β − 5

G5

u5

v5

︷︸︸︷

β − 4

G6

u6

v6

︷︸︸︷

β − 3

G8

u8 v8

︷︸︸︷

β − 4

G9

u9 v9

Figure 5.5. The graphs G2 to G9.

Clearly, UB(n, β) − e0 ∼= R(n, β). For 2 ≤ i ≤ 9, we can find that Gi − uivi ∈

T (n, β) \ S(n, β). Then Gi − uivi � UB(n, β) − e0 from Lemmas 2.4 and 2.5. Since

[UB(n, β)−V (e0)] ∼= (β−3)P2]P3 and G−ui−vi ⊃ (β−3)P2]P3, we have Gi−ui−vi �

UB(n, β)− V (e0). Therefore, we can get that

m(Gi, k) = m(Gi − uivi, k) +m(Gi − ui − vi, k − 1)

≥ m(UB(n, β)− e0, k) +m(UB(n, β)− V (e0), k − 1)

= m(UB(n, β), k).

Since G − ui − vi � UB(n, β) − V (e0), there exists k0 such that m(Gi − ui − vi, k0) >

m(UB(n, β) − V (e0), k0), and so m(Gi, k0 + 1) > m(UB(n, β), k0 + 1). Hence, G �

UB(n, β).

Lemma 5.2 Suppose that G ∈ UB(n, β) with the unique cycle C. If there exists a

maximum matching M of G such that M ∩E(C) 6= ∅, then we have G � UB(n, β) unless

G ∼= UB(n, β).

Proof. Suppose that C = v1v2 . . . vs and vivi+1 ∈ M ∩ E(C). Then G− vivi−1 ∈ T (n, β).

If G − vivi−1
∼= S(n, β) or R(n, β), then G � UB(n, β) by Lemma 5.1. We suppose in
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the following that G − vivi−1 � S(n, β) and R(n, β). By Lemmas 2.4 and 2.5, we have

G− vivi−1 � R(n, β) = UB(n, β)− e0.

If α′(G− vi − vi−1) = β − 1, then G− vi − vi−1 ⊇ (β − 1)P2. It is easy to check that

P2 ] P2 � P3. Thus from Lemma 2.3, (β − 1)P2 � (β − 3)P2 ] P3
∼= [UB(n, β)− V (e0)].

Hence G−vi−vi−1 � UB(n, β)−V (e0). If α′(G−vi−vi−1) = β−2, then M \{vi, vi−1} is a

(β−2)-matching of G−vi−vi−1. Since vi+1 is not matched in M \{vi, vi−1}, and vi+1 is not

isolated in G−vi−vi−1, we have that G−vi−vi−1 ⊇ (β−3)P2]P3
∼= [UB(n, β)−V (e0)]

which implies that G− vi − vi−1 � UB(n, β)− V (e0). Therefore, we can get

m(G, k) = m(G− vivi−1, k) +m(G− vi − vi−1, k − 1)

≥ m(UB(n, β)− e0, k) +m(UB(n, β)− V (e0), k − 1)

= m(UB(n, β), k).

Since G − vivi−1 � UB(n, β) − e0, there exists k0 such that m(G − vivi−1, k0) >

m(UB(n, β)− e0, k0). Then m(G, k0) > m(UB(n, β), k0). Hence G � UB(n, β).

Let G be an unicyclic graph with the unique cycle C. For a vertex v ∈ V (C), denote

by Tv the component of G− E(C) containing v.

G

u

v

w

Tu
Tw

G′

u
′

v
′

w
′

T
u
′ T

w
′

Figure 5.6. Replace Tv with S(n(Tv), α
′(Tv)).

Lemma 5.3 Suppose that G ∈ UB(n, β) with the unique cycle C such that M ∩E(C) = ∅

for any maximum matching M of G. Let G′ be the graph obtained from G by replacing Tv

with S(n(Tv), α
′(Tv)), and identifying vertex v with the center of S(n(Tv), α

′(Tv)), where

n(Tv) and α′(Tv) are the order and matching number of Tv (See Figure 5.6). Then we

have G′ ∈ UB(n, β) and G � G′ unless Tv
∼= S(n(Tv), α

′(Tv)).

Proof. Let u(u′) and w(w′) be two neighbors of v(v′) in the unique cycle of G(G′). Since

the maximum matching of G contains no edges of C, α′(G) = α′(G − Tv) + α′(Tv). Let
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M ′ be a maximum matching of G′. If M ′ contains edge u′v′ or v′w′, suppose without loss

of generality that u′v′ ∈ M ′, then M ′ − u′v′ + v′x is also a maximum matching of G′,

where x is a pendent vertex adjacent to v′ in Tv′ (such a vertex x must exist from the

definition of graph S(n(Tv), α
′(Tv))). Hence, there exists a maximum matching of G′ not

containing edges u′v′ and v′w′, which implies that α′(G′) = α′(G′ − Tv′) + α′(Tv′). Since

G− Tv
∼= G′ − Tv′ and α′(Tv) = α′(Tv′), one can deduce that

α′(G′) = α′(G′ − Tv′) + α′(Tv′) = α′(G− Tv) + α′(Tv) = α′(G) = β.

Therefore, G′ ∈ UB(n, β).

If Tv � S(n(Tv), α
′(Tv)), by Lemma 2.4, one can get that Tv � Tv′ . Hence for any

k ≥ 0, one can have the following result by Lemmas 2.1 and 2.3:

m(G, k) = m(G− vw, k) +m(G− v − w, k − 1)

= m(G− vw − uv, k) +m(G− vw − u− v, k − 1) +m(G− v − w, k − 1)

= m((G− Tv) ∪ Tv, k) +m((G− Tu − Tv) ∪ (Tu − u) ∪ (Tv − v), k − 1)

+m((G− Tv − Tw) ∪ (Tv − v) ∪ (Tw − w), k − 1)

≥ m((G′ − Tv′) ∪ Tv′ , k) +m((G′ − Tu′ − Tv′) ∪ (Tu′ − u′) ∪ (Tv′ − v′), k − 1)

+m((G′ − Tv′ − Tw′) ∪ (Tv′ − v′) ∪ (Tw′ − w′), k − 1)

= m(G′ − v′w′ − u′v′, k) +m(G′ − v′w′ − u′ − v′, k − 1)

+ m(G′ − v′ − w′, k − 1) = m(G′ − v′w′, k) +m(G′ − v′ − w′, k − 1)

= m(G′, k).

Since Tv � Tv′ , by Lemma 2.3, we have that (G− Tv)∪ Tv � (G′ − Tv′)∪ Tv′ . Then there

exists k0 such that m((G − Tv) ∪ Tv, k0) > m((G′ − Tv′) ∪ Tv′ , k0), and so m(G, k0) >

m(G′, k0). Hence, G � G′.

Theorem 5.4 Among all the graphs in UB(n, β) (β < n
2
), UB(n, β) is the unique graph

with minimal matching energy.

Proof. Suppose that G � UB(n, β) and C is the unique cycle of G. Then it is sufficient

to prove that G � UB(n, β). If there exists an edge e ∈ E(C) such that G − e ∈

{S(n, β), R(n, β)}, we have G � UB(n, β) from Lemma 5.1. Hence, we suppose that for

any edge e ∈ E(C), G− e /∈ {S(n, β), R(n, β)}.
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If there exists a maximum matching M of G such that M ∩E(C) 6= ∅, then the result

holds from Lemma 5.2. Then we consider the case that M ∩E(C) = ∅ for any maximum

matching M of G.

We claim that Tv is not trivial for any vertex v ∈ V (C). If not, there is a vertex

v0 ∈ V (C) such that Tv0 is trivial, that is, Tv0 contains only one vertex v0. Let u0 and

w0 be the neighbors of v0 on C. Then any maximum matching M of G does not contain

the edge u0v0 or v0w0. By the maximality of M , we have that at least one of the vertices

u0 and w0 is covered by M . Without loss of generality, suppose that u0 is covered by M

and u0p0 ∈ M . Let M ′ = M ∪ u0v0 \ u0p0. Then M ′ is a maximum matching of G and

M ′ ∩ E(C) 6= ∅, a contradiction. The claim follows.

For any vertex v ∈ V (C), replacing Tv with S(n(Tv), α
′(Tv)), and identifying vertex

v with the center of S(n(Tv), α
′(Tv)). Denoted the resulting graph by G′. From Lemma

5.3, we know that G′ ∈ UB(n, β) and G � G′. From the above claim, we know that

v is incident with at least one pendent edge in G′. Since β < n
2
, that is, G′ has no

perfect matching, there exists a vertex vi ∈ V (C) such that vi is adjacent to at least 2

pendent vertices, say w1 and w2. By the assumption, we have G − vi+1vi+2 ∈ T (n, β),

and G− vi+1vi+2 � R(n, β) ∼= UB(n, β)− e0.

If α′(G− vi+1− vi+2) = β− 1, then we can get G− vi+1− vi+2 � UB(n, β)−V (e0). If

α′(G−vi+1−vi+2) = β−2, we have G−vi+1−vi+2 ⊇ (β−3)P2]P3
∼= [UB(n, β)−V (e0)],

where P3 = w1viw2. Hence we can obtain that G − vi+1 − vi+2 � UB(n, β) − V (e0) in

both cases.

Therefore, we have

m(G, k) = m(G− vi+1vi+2, k) +m(G− vi+1 − vi+2, k − 1)

≥ m(UB(n, β)− e0, k) +m(UB(n, β)− V (e0), k − 1)

= m(UB(n, β), k).

Since G − vi+1vi+2 � UB(n, β) − e0, there exists k0 such that m(G − vi+1vi+2, k0) >

m(UB(n, β)− e0, k0). Then m(G, k0) > m(UB(n, β), k0). Hence G � UB(n, β).
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