Bipartite Graphs with Extremal Matching Energies with Given Matching Number

Fei Huang, Jinfeng Liu*
School of Mathematics and Statistics, Zhengzhou University Zhengzhou, Henan 450001, People's Republic of China
hf@zzu.edu.cn; ljf@zzu.edu.cn

(Received June 3, 2018)

Abstract

Let G be a simple graph with order n and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the roots of its matching polynomial. The matching energy of G is defined to be the sum of the absolute values of $\mu_{i}(i=1,2, \ldots, n)$, which was proposed by Gutman and Wagner. A maximum matching is one which covers as many vertices as possible. The number of edges in a maximum matching of a graph G is called the matching number of G and denoted by $\alpha^{\prime}(G)$. Let $\mathcal{B}(n, \beta)$ and $\mathcal{U B}(n, \beta)$ be the set of connected bipartite graphs and connected bipartite unicyclic graphs with order n and matching number β, respectively. In this paper, we characterize graphs with the first three largest matching energies in $\mathcal{B}(n, \beta)$. Also we determine the extremal graph with minimal and the second minimal matching energy among graphs in $\mathcal{B}(n, \beta)$, respectively. Furthermore, we determine the extremal graph from $\mathcal{U B}(n, \beta)$ minimizing the matching energy.

1 Introduction

In this paper, all graphs under our consideration are finite, connected, undirected and simple. Let G be a graph with n vertices and $A(G)$ be its adjacency matrix. The characteristic polynomial of G, denoted by $\phi(G)$, is defined as

$$
\phi(G)=\operatorname{det}(x I-A(G))=\sum_{i=0}^{n} a_{i}(G) x^{n-i}
$$

[^0]where I is the identity matrix of order n. The roots of the equation $\phi(G)=0$, denoted by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, are the eigenvalues of $A(G)$. The energy of G, denoted by $E(G)$, is defined as
$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The concept of graph energy was proposed by Gutman in [13] and now is well-studied. For details, we refer the book on graph energy [26] and some new recent references [20,21,27].

Let G be a graph with n vertices and m edges. A matching in G is a set of pairwise nonadjacent edges and its size is the number of edges in it. A matching M with size k is called a k-matching. Denote by $m(G, k)$ the number of k-matchings of G. In particular, $m(G, 1)=m$ and $m(G, k)=0$ for $k>\left\lfloor\frac{n}{2}\right\rfloor$ or $k<0$. In addition, define $m(G, 0)=1$. Then the matching polynomial of the graph G is defined as

$$
\alpha(G)=\alpha(G, \mu)=\sum_{k \geq 0}(-1)^{k} m(G, k) \mu^{n-2 k}
$$

For more details of the results on the matching polynomial of the graph, please refer to $[11,12,14]$.

In [18], Gutman and Wagner firstly proposed the concept of matching energy. They defined the matching energy of a graph G as follows:

$$
M E(G)=\sum_{i=1}^{n}\left|\mu_{i}\right|
$$

where $\mu_{i}(i=1,2, \ldots, n)$ are the roots of $\alpha(G, \mu)=0$. Besides, Gutman and Wagner also gave the following equivalent definition of matching energy.

Definition 1.1 ([18]) Let G be a simple graph, and let $m(G, k)$ be the number of its k-matchings, $k=0,1,2, \ldots$. The matching energy of G is

$$
\begin{equation*}
M E=M E(G)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \ln \left[\sum_{k \geq 0} m(G, k) x^{2 k}\right] d x \tag{1}
\end{equation*}
$$

Eq. (1) is called the Coulson integral formula of matching energy. Obviously, by the monotonicity of the logarithm function, Eq. (1) implies that the matching energy of a graph G is a monotonically increasing function of any $m(G, k)$. Then we can define a quasi-order " \succeq " as follows: for two graphs G_{1} and G_{2},

$$
\begin{equation*}
G_{1} \succeq G_{2} \Longleftrightarrow m\left(G_{1}, k\right) \geq m\left(G_{2}, k\right) \text { for all } k \tag{2}
\end{equation*}
$$

If $G_{1} \succeq G_{2}$ and there exists some k such that $m\left(G_{1}, k\right)>m\left(G_{2}, k\right)$, then we write $G_{1} \succ G_{2}$. According to Eq.(1) and Eq.(2), we get the following results directly

$$
\begin{align*}
& G_{1} \succeq G_{2} \Longrightarrow M E\left(G_{1}\right) \geq M E\left(G_{2}\right) \tag{3}\\
& G_{1} \succ G_{2} \Longrightarrow M E\left(G_{1}\right)>M E\left(G_{2}\right) \tag{4}
\end{align*}
$$

In [18], Gutman and Wagner pointed out that the matching energy is a quantity of relevance for chemical applications. They arrived at the simple relation:

$$
\operatorname{TRE}(G)=E(G)-M E(G)
$$

Where $\operatorname{TRE}(G)$ is the so-called "topological resonance energy" of G. About the chemical applications of matching energy, for more details see [17].

The matching energy of a graph is widely studied in recent years. In [18], Gutman and Wagner gave some elementary results on the matching energy and obtained the unicyclic graphs with minimal and maximal matching energy. For the bicyclic graphs, Ji et al. [22] obtained the graphs with minimal and maximal matching energy. In [6], Chen and Shi obtained tricyclic graph with maximum matching energy. For the unicyclic and bicyclic graphs with a given diameter, Chen et al. [7] obtained the graphs with minimal matching energies. For more results about matching energy, see [4, 5, 8, 24, 25, 28, 29], and see [15] for a survey.

Recall that a matching in a graph is a set of pairwise nonadjacent edges. If M is a matching, the two ends of each edge of M are said to be matched under M, and each vertex incident with an edge of M is said to be covered by M. A maximum matching is one which covers as many vertices as possible. The number of edges in a maximum matching of a graph G is called the matching number of G and denoted by $\alpha^{\prime}(G)$. Let $\mathcal{B}(n, \beta)$ and $\mathcal{U B}(n, \beta)$ be the set of connected bipartite graphs and connected bipartite unicyclic graphs with order n and matching number β, respectively. In this paper, we characterize graphs with the first three largest matching energies in $\mathcal{B}(n, \beta)$. Also we determine the extremal graph with minimal and the second minimal matching energy among graphs in $\mathcal{B}(n, \beta)$, respectively. Furthermore, we study the graphs in $\mathcal{U} \mathcal{B}(n, \beta)$, and characterize the extremal graph obtaining minimal matching energy.

2 Preliminary

We first introduce some elementary notations and terminology that will be used in the sequel.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G)$, the degree of v is the number of edges of G incident with v. A vertex is called a k-degree vertex if its degree is k. In particular, a vertex is called an isolated vertex if its degree is zero. A pendent vertex is a vertex whose degree is 1 . Denote by $N_{G}(v)$ (or simply $N(v)$) the set of neighbors of v. For a graph G, let $[G]$ be the graph obtained from G by deleting all the isolated vertices of G. For an edge $e=u v \in E(G)$, let $V(e)$ be the set of ends of e, i.e. $V(e)=\{u, v\}$.

A graph H is called a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. The subgraph of G whose vertex set is X and whose edge set is the set of those edges of G that have both ends in X is called the subgraph of G induced by X and is denoted by $G[X]$. For two disjoint sets $X, Y \subseteq V(G)$, let $E(X, Y)$ be the set of edges with one end in X and the other end in Y. For a subset V^{\prime} of $V(G)$, let $G-V^{\prime}$ be the subgraph of G obtained by deleting the vertices of V^{\prime} together with their incident edges. If $V^{\prime}=\{v\}$, we write $G-v$ instead of $G-\{v\}$. Similarly, for a subset E^{\prime} of $E(G)$, denote by $G-E^{\prime}$ the subgraph of G obtained by deleting the edges of E^{\prime}. If $E^{\prime}=\{e\}$, we write $G-e$ for $G-\{e\}$. For any two nonadjacent vertices x and y of graph G, let $G+x y$ be the graph obtained from G by adding an edge $x y$. The union of two graphs G and H, denoted by $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. In particular, if G and H are vertex-disjoint graphs, then denote by $G \uplus H$ the union of G and H. Denote by $k G$ the union of k vertex-disjoint graphs isomorphic to G.

A bipartite graph is the graph whose vertex set can be partitioned into two subsets X and Y such that every edge has one end in X and the other end in Y; such a partition (X, Y) is called a bipartition of the graph, X and Y its parts. Denote by $G[X, Y]$ a bipartite graph G with bipartition (X, Y). If $G[X, Y]$ is simple and every vertex in X is joined to every vertex in Y, then we call G a complete bipartite graph. A star is a complete bipartite graph $G[X, Y]$ with $|X|=1$ or $|Y|=1$. Denote by K_{n} and S_{n} the complete graph and the star on n vertices, respectively.

By convention, denote by P_{n}, C_{n} the path and the cycle of order n, respectively. A connected graph with n vertices and n edges is called a unicyclic graph. For other
undefined notations and terminology, we refer the standard textbooks of Bondy and Murty [1,2].

Before stating our main results, we will list or prove some lemmas, which will play an important role in the next proofs.

Lemma 2.1 ($[\mathbf{1 1}, \mathbf{1 4}])$ Let G be a simple graph. Then, for any edge $e=u v$ and $N(u)=$ $\left\{v_{1}(=v), v_{2}, \ldots, v_{t}\right\}$, we have the following two identities:

$$
\begin{gather*}
m(G, k)=m(G-u v, k)+m(G-u-v, k-1) \tag{1}\\
m(G, k)=m(G-u, k)+\sum_{i=1}^{t} m\left(G-u-v_{i}, k-1\right) \tag{2}
\end{gather*}
$$

Remark 1. According to Eq.(2), we can get $m\left(P_{1} \uplus G, k\right)=m(G, k)$ directly, where G is an arbitrary graph and P_{1} is an isolated vertex. Hence by applying Eq.(2) repeatly, we can deduce that $m(G, k)=m([G], k)$.

Lemma 2.2 ([7]) Let G be a simple graph and H a subgraph (resp. proper subgraph) of G. Then $G \succeq H$ (resp. $\succ H$).

Lemma 2.3 ([16]) Let H_{1} and H_{2} be two graphs with $H_{1} \succ H_{2}$. Then $H_{1} \uplus G \succ H_{2} \uplus G$, where G is an arbitrary graph.

For two non-negative integers n and β with $\beta \leq \frac{n}{2}$, let $\mathcal{T}(n, \beta)$ be the set of trees with order n and matching number β. Denote by $S(n, \beta)$ the graph obtained from $K_{1, \beta-1}$ by attaching one pendent edge to each non-center vertex of $K_{1, \beta-1}$ and attaching $n-2 \beta+1$ pendent edges to the center vertex of $K_{1, \beta-1}$. We call the vertex with maximum degree the center of $S(n, \beta)$. Let $R(n, \beta)$ be the graph obtained from $S(n-2, \beta-1)$ by attaching an end vertex of a P_{3} to a 2-degree vertex of $S(n-2, \beta-1$) (see Fig. 2.1). We can check that $\alpha^{\prime}(S(n, \beta))=\alpha^{\prime}(R(n, \beta))=\beta$, which implies $S(n, \beta), R(n, \beta) \in \mathcal{T}(n, \beta)$. In [19], Hou investigated the maching energy of graphs in $\mathcal{T}(n, \beta)$ and gave the following two results.

Figure 2.1. The trees with minimal and the second minimal matching energies in

$$
\mathcal{T}(n, \beta)
$$

Lemma 2.4 ([19]) Let T be a tree with matching number β, then $T \succeq S(n, \beta)$, with equality holding if and only if $T \cong S(n, \beta)$.

Lemma 2.5 ([19]) Let T be a tree with matching number β. If $T \not \equiv S(n, \beta)$, then $T \succeq R(n, \beta)$, with equality holding if and only if $T \cong R(n, \beta)$.

3 The graphs with the first three largest matching energies in $\mathcal{B}(\boldsymbol{n}, \boldsymbol{\beta})$

Note that $\mathcal{B}(n, 1)=\left\{S_{n}\right\}$, and $\mathcal{B}(4,2)=\left\{C_{4}, P_{4}\right\}$, the problem of characterizing extremal graphs with maximal matching energies is trivial in these two cases. Hence, we mainly study graphs in $\mathcal{B}(n, \beta)$ for $n \geq 5$ and $\beta \geq 2$ in this section.

A covering of a graph G is a vertex subset $K \subseteq V(G)$ such that each edge of G has at least one end in the set K. The number of vertices in a minimum covering of a graph G is called the covering number of G.

Lemma 3.1 (The König-Egerváry Theorem, [10,23]). In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.

Let $G=G[X, Y]$ be a bipartite graph such that $G \in \mathcal{B}(n, \beta)$. If $|X| \neq \beta$ and $|Y| \neq \beta$, we then construct a new graph G^{*} in the following. Firstly, we give some notations that will be used. Let S be a minimum covering of G and $X_{1}=S \cap X, Y_{1}=S \cap Y$. From Lemma 3.1, we know that $|S|=\left|X_{1}\right|+\left|Y_{1}\right|=\beta$. Set $X_{2}=X \backslash X_{1}, Y_{2}=Y \backslash Y_{1}$. Clearly, we have $E\left(X_{2}, Y_{2}\right)=\emptyset$. Since $|X|=\left|X_{1}\right|+\left|X_{2}\right|>\beta$ and $|Y|=\left|Y_{1}\right|+\left|Y_{2}\right|>\beta$, we have that $\left|Y_{2}\right|>\left|X_{1}\right|$ and $\left|X_{2}\right|>\left|Y_{1}\right|$. Then we construct the graph G^{*} as follows:

$$
G^{*}=G-E\left(X_{1}, Y_{1}\right)+\left\{u w: u \in X_{1}, w \in X_{2}\right\} .
$$

Figure 3.2. The graphs G and G^{*}
Lemma 3.2 Let G and G^{*} be the graphs defined above (see Figure 3.2). Then we have

$$
G^{*} \succ G .
$$

Proof. Let $M_{k}(G)$ denote the set of k-matchings of G, where $0 \leq k \leq \beta$. Then $m(G, k)=$ $\left|M_{k}(G)\right|$. For any $M \in M_{k}(G)$, let $M_{1}=M \cap E\left(X_{1}, Y_{2}\right), M_{2}=M \cap E\left(X_{2}, Y_{1}\right)$, and $M_{3}=M \cap E\left(X_{1}, Y_{1}\right)$. If $M_{3}=\emptyset$, set $M^{\prime}=M$. We have that M^{\prime} is a k-matching of G^{*}. If $M_{3} \neq \emptyset$, suppose that $M_{3}=\left\{x_{i} y_{i}: x_{i} \in X_{1}, y_{i} \in Y_{1}, 1 \leq i \leq t\right\}$, where $1 \leq t \leq k$. set $Y_{1}^{\prime}=V\left(M_{2}\right) \cap Y_{1}$ and $X_{2}^{\prime}=V\left(M_{2}\right) \cap X_{2}$. Clearly, $\left\{y_{1}, y_{2}, \ldots, y_{t}\right\} \subseteq$ $Y_{1} \backslash Y_{1}^{\prime}$. Since $\left|X_{2}\right| \geq\left|Y_{1}\right|$, we have that $\left|X_{2} \backslash X_{2}^{\prime}\right| \geq\left|Y_{1} \backslash Y_{1}^{\prime}\right|$. Hence, there exists an injection ϕ from the set of t-subsets of $Y_{1} \backslash Y_{1}^{\prime}$ to the set of t-subsets of $X_{2} \backslash X_{2}^{\prime}$. Suppose that $\left\{z_{1}, z_{2}, \ldots, z_{t}\right\}$ is the image of $\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$ under the injection ϕ. Let $M^{\prime}=M \cup\left\{x_{1} z_{1}, x_{2} z_{2}, \ldots, x_{t} z_{t}\right\} \backslash\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{t} y_{t}\right\}$. Then M^{\prime} is a k-matching of G^{*}. Thus we can define a map Φ from $M_{k}(G)$ to $M_{k}\left(G^{*}\right)$ which maps M to M^{\prime}. From the construction of M^{\prime}, we know that Φ is an injection. Hence, $m\left(G^{*}, k\right) \geq m(G, k)$. Moreover, we know that $m\left(G^{*}, 1\right)>m(G, 1)$. Thus, $G^{*} \succ G$.

Lemma 3.2 is an efficient tool for the characterization of the graphs with the first three largest matching energies among graphs in $\mathcal{B}(n, \beta)$. Although the maximum matching energy among all bipartite graphs with a given matching number has already been determined in [9], we will give our proof using Lemma 3.2 in the following.

Theorem 3.3 Among all the graphs in $\mathcal{B}(n, \beta), K_{\beta, n-\beta}$ is the unique graph with maximal matching energy.

Proof. Let G be a graph with matching number β and $G \nsubseteq K_{\beta, n-\beta}$. The result $K_{\beta, n-\beta} \succ G$ holds trivially for $|X|=\beta$ or $|Y|=\beta$. Now we consider $|X|>\beta$ and $|Y|>\beta$. From Lemma 3.2, we know that $G^{*} \succ G$, where G^{*} is the graph obtained from G by the
operation shown in Fig. 3.2. Since G^{*} is a subgraph of $K_{\beta, n-\beta}$, we have $K_{\beta, n-\beta} \succeq G^{*}$. Hence, $K_{\beta, n-\beta} \succ G$. The result follows.

From Lemma 3.2 and Theorem 3.3, we can get the following result.
Theorem 3.4 Among all the graphs in $\mathcal{B}(n, \beta), K_{\beta, n-\beta}-e$ is the unique graph with the second maximal matching energy, where e is an arbitrary edge of $K_{\beta, n-\beta}$.

Proof. Suppose that $G \in \mathcal{B}(n, \beta)$ is the graph with the second maximal matching energy. Let (X, Y) be the bipartition of G. We claim that either $|X|=\beta$ or $|Y|=\beta$. Otherwise, let G^{*} be the graph obtained from G by the operation shown in Fig. 3.2. From Lemma 3.2, we know that $G^{*} \succ G$. Note that the bipartition of G^{*} is $\left(X_{1} \cup Y_{1}, X_{2} \cup Y_{2}\right)$ and $\left|X_{1}\right|+\left|Y_{1}\right|=\beta$. Since $|X|=\left|X_{1}\right|+\left|X_{2}\right|>\beta$ and $|Y|=\left|Y_{1}\right|+\left|Y_{2}\right|>\beta$, we have that $\left|X_{2}\right|>\left|Y_{1}\right|$ and $\left|Y_{2}\right|>\left|X_{1}\right|$. In addition, we can get that $\left|X_{1}\right| \geq 1$ and $\left|Y_{1}\right| \geq 1$ by the connectedness of G. So $\left|X_{2}\right| \geq 2$ and $\left|Y_{2}\right| \geq 2$. Hence, $G^{*} \nsupseteq K_{\beta, n-\beta}$, and so $K_{\beta, n-\beta} \succ G^{*} \succ G$, a contradiction. The claim follows. From Lemma 2.2 and Theorem 3.3, one can see that the graph obtained from $K_{\beta, n-\beta}$ by deleting an arbitrary edge is the unique graph with the second maximal matching energy among all the graphs in $\mathcal{B}(n, \beta)$.

Theorem 3.5 Among all the graphs in $\mathcal{B}(n, \beta), K_{\beta, n-\beta}-e_{1}-e_{2}$ is the unique graph with the third maximal matching energy, where e_{1} and e_{2} are two arbitrary nonadjacent edges of $K_{\beta, n-\beta}$.

Proof. Suppose that $G \in \mathcal{B}(n, \beta)$ is the graph with the third maximal matching energy. Let (X, Y) be the bipartition of G. We claim that either $|X|=\beta$ or $|Y|=\beta$. Otherwise, let G^{*} be the graph obtained from G by the operation shown in Fig. 3.2. Then by the similar argument in the proof of Theorem 3.4, we can get that $\left|Y_{2}\right| \geq 2$ and $\left|Y_{1}\right| \geq 1$. Hence, $G^{*} \not \not K_{\beta, n-\beta}$, and $G^{*} \not \not K_{\beta, n-\beta}-e$, where e is an arbitrary edge of $K_{\beta, n-\beta}$. So we have that $K_{\beta, n-\beta} \succ K_{\beta, n-\beta}-e \succ G^{*} \succ G$, a contradiction. The claim follows.

From Lemma 2.2, Theorems 3.3 and 3.4, we can get that G can be obtained from $K_{\beta, n-\beta}$ by deleting two edges. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{\beta}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n-\beta}\right\}$ be the bipartition of $K_{\beta, n-\beta}$. Let $G^{\prime}=K_{\beta, n-\beta}-x_{1} y_{1}-x_{1} y_{2}$ and $G^{\prime \prime}=K_{\beta, n-\beta}-x_{1} y_{1}-x_{2} y_{2}$. Up to isomorphism, the graph obtained from $K_{\beta, n-\beta}$ by deleting two edges is G^{\prime} or $G^{\prime \prime}$. Clearly, $G^{\prime \prime}-x_{1} y_{2} \cong G^{\prime}-x_{2} y_{2} \cong K_{\beta, n-\beta}-x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{2}, G^{\prime \prime}-x_{1}-y_{2} \cong K_{\beta-1, n-\beta-1}$
and $G^{\prime}-x_{2}-y_{2} \cong K_{\beta-1, n-\beta-1}-x_{1} y_{1}$. Hence, for $2 \leq k \leq \beta$,

$$
\begin{aligned}
m\left(G^{\prime \prime}, k\right) & =m\left(G^{\prime \prime}-x_{1} y_{2}, k\right)+m\left(G^{\prime \prime}-x_{1}-y_{2}, k-1\right) \\
& >m\left(G^{\prime}-x_{2} y_{2}, k\right)+m\left(G^{\prime}-x_{2}-y_{2}, k-1\right) \\
& =m\left(G^{\prime}, k\right) .
\end{aligned}
$$

Together with $m\left(G^{\prime \prime}, 1\right)=m\left(G^{\prime}, 1\right)$, we have that $G^{\prime \prime} \succ G^{\prime}$. Hence, $G \cong G^{\prime \prime}$. The result follows.

4 The extremal graphs with minimal and the second minimal matching energy in $\mathcal{B}(n, \beta)$

In this section, we study the graphs in $\mathcal{B}(n, \beta)$, and characterize the extremal graphs with minimal and the second minimal matching energies, respectively.

Theorem 4.1 Let G be a graph in $\mathcal{B}(n, \beta)$. If $G \not \equiv S(n, \beta)$, then $M E(G)>M E(S(n, \beta))$.
Proof. Suppose that G is a graph in $\mathcal{B}(n, \beta)$, and $G \nsubseteq S(n, \beta)$. If G contains no cycle, then $G \in \mathcal{T}(n, \beta)$. Hence, $G \succ S(n, \beta)$ by applying Lemma 2.4.

We then suppose that G contains cycles. There must exist an edge $e_{1} \in E(G)$ such that $G-e_{1}$ is connected and $\alpha^{\prime}\left(G-e_{1}\right)=\alpha^{\prime}(G)=\beta$. If $G-e_{1}$ is a tree, by Lemmas 2.2 and 2.4, we can get $G \succ G-e_{1} \succeq S(n, \beta)$. If $G-e_{1}$ also contains cycles, we can find an edge e_{2} of $G-e_{1}$ similarly to the above operation such that $G-e_{1}-e_{2} \in \mathcal{B}(n, \beta)$ and $G \succ G-e_{1}-e_{2}$. Repeat the operation, one can get a spanning subgraph T of G such that $T \in \mathcal{B}(n, \beta)$ and $G \succ T \succeq S(n, \beta)$ finally.

We have proved that $G \succ S(n, \beta)$ in both cases. Therefore, one can get $M E(G)>$ $M E(S(n, \beta))$ by Eq. (4).

From Theorem 4.1, we have that $S(n, \beta)$ is the extremal graph with minimal matching energy in $\mathcal{B}(n, \beta)$. Then we start to characterize the extremal graph with the second minimal matching energy in $\mathcal{B}(n, \beta)$.

Denote by $U B(n, \beta)$ the unicyclic graph shown in Figure 4.3.

Figure 4.3. The graph $U B(n, \beta)$.
Theorem 4.2 Let G be a graph in $\mathcal{B}(n, \beta)$. If $G \not \equiv S(n, \beta)$ or $R(n, \beta)$, then $M E(G)>$ $M E(R(n, \beta))$.

Proof. Suppose that G is a graph in $\mathcal{B}(n, \beta)$, and $G \notin\{S(n, \beta), R(n, \beta)\}$. If G contains no cycle, then $G \in \mathcal{T}(n, \beta)$. Hence, we have $G \succ R(n, \beta)$ applying Lemmas 2.4 and 2.5.

Suppose that G contains cycles. Then we aim to find a unicyclic spanning subgraph H of G such that $H \in \mathcal{B}(n, \beta)$. Clearly, $H \cong G$ if G is a unicyclic graph. If G contains at least two cycles, then there must exist an edge e_{1} in G such that $G-e_{1} \in \mathcal{B}(n, \beta)$ and $G-e_{1}$ contains at least one cycle. If $G-e_{1}$ also contains at least two cycles, we can find an edge e_{2} of $G-e_{1}$ similarly to the above operation such that $G-e_{1}-e_{2} \in \mathcal{B}(n, \beta)$ and $G \succ G-e_{1}-e_{2}$. Repeat the operation, one can get a unicyclic spanning subgraph H of G such that $H \in \mathcal{B}(n, \beta)$ finally.

Since H is a unicyclic graph, there must exist an edge e of the cycle in H such that $H-e \in \mathcal{B}(n, \beta)$. If $H-e \not \equiv S(n, \beta)$, then by Lemmas 2.2 and 2.5, we can get $G \succeq H \succ H-e \succeq R(n, \beta)$.

Figure 4.4. The graph G_{1}.
If $H-e \cong S(n, \beta)$, then H is isomorphic to $U B(n, \beta)$ or G_{1} (see Figure 4.4). If $H \cong U B(n, \beta)$, then $H-e_{0} \cong R(n, \beta)$. Thus we can get $H \succ H-e_{0} \cong R(n, \beta)$ from

Lemma 2.2. If $H \cong G_{1}$, then $H \succ H-u_{0} v_{0} \succ R(n, \beta)$. Therefore, we can always obtain that $G \succeq H \succ R(n, \beta)$. Hence, we complete the proof.

5 The extremal graph with minimal matching energy in $\mathcal{U B}(n, \beta)$

Recall that $\mathcal{U B}(n, \beta)$ is the set of unicyclic bipartite graphs with order n and matching number β.

Note that the graphs G_{1} (see Fig. 4.4) and $U B(n, \beta)$ play an important role in the proof of Theorem 4.2 and both these two graphs belong to $\mathcal{U B}(n, \beta)$. Motivated by the result $G_{1} \succ U B(n, \beta)$ which is obtained from simple comparation, we begin to characterize the extremal graph with minimal matching energy among the graph class $\mathcal{U B}(n, \beta)$.

Lemma 5.1 Let $G \in \mathcal{U B}(n, \beta)\left(\beta<\frac{n}{2}\right)$ with the unique cycle C. If there exists an edge $e \in E(C)$ such that $G-e \cong S(n, \beta)$ or $R(n, \beta)$, then $G \succ U B(n, \beta)$ unless $G \cong U B(n, \beta)$.

Proof. Suppose that $G \nsupseteq U B(n, \beta)$. Then it is sufficient to prove that $G \succ U B(n, \beta)$. If there exists an $e \in E(C)$ such that $G-e \cong S(n, \beta)$, then G is isomorphic to G_{1} (see Fig. 4.4). Since $G-u_{1} v_{1} \cong U B(n, \beta)-f_{0}$ and $G-u_{1}-v_{1} \supset U B(n, \beta)-V\left(f_{0}\right)$, we have

$$
\begin{aligned}
m(G, k) & =m\left(G-u_{1} v_{1}, k\right)+m\left(G-u_{1}-v_{1}, k-1\right) \\
& \geq m\left(U B(n, \beta)-f_{0}, k\right)+m\left(U B(n, \beta)-V\left(f_{0}\right), k-1\right) \\
& =m(U B(n, \beta), k) .
\end{aligned}
$$

Since $G-u_{1}-v_{1} \supset U B(n, \beta)-V\left(f_{0}\right)$, there exists k_{0} such that $m\left(G-u_{1}-v_{1}, k_{0}\right)>$ $m\left(U B(n, \beta)-V\left(f_{0}\right), k_{0}\right)$, and so $m\left(G, k_{0}+1\right)>m\left(U B(n, \beta), k_{0}+1\right)$. Hence, $G \succ$ $U B(n, \beta)$.

If there exists an edge $e \in E(C)$ such that $G-e \cong R(n, \beta)$, then G is isomorphic to $G_{i}, i=2,3, \ldots, 9$ (see Fig. 5.5).

Figure 5.5. The graphs G_{2} to G_{9}.

Clearly, $U B(n, \beta)-e_{0} \cong R(n, \beta)$. For $2 \leq i \leq 9$, we can find that $G_{i}-u_{i} v_{i} \in$ $\mathcal{T}(n, \beta) \backslash S(n, \beta)$. Then $G_{i}-u_{i} v_{i} \succeq U B(n, \beta)-e_{0}$ from Lemmas 2.4 and 2.5. Since $\left[U B(n, \beta)-V\left(e_{0}\right)\right] \cong(\beta-3) P_{2} \uplus P_{3}$ and $G-u_{i}-v_{i} \supset(\beta-3) P_{2} \uplus P_{3}$, we have $G_{i}-u_{i}-v_{i} \succ$ $U B(n, \beta)-V\left(e_{0}\right)$. Therefore, we can get that

$$
\begin{aligned}
m\left(G_{i}, k\right) & =m\left(G_{i}-u_{i} v_{i}, k\right)+m\left(G_{i}-u_{i}-v_{i}, k-1\right) \\
& \geq m\left(U B(n, \beta)-e_{0}, k\right)+m\left(U B(n, \beta)-V\left(e_{0}\right), k-1\right) \\
& =m(U B(n, \beta), k)
\end{aligned}
$$

Since $G-u_{i}-v_{i} \succ U B(n, \beta)-V\left(e_{0}\right)$, there exists k_{0} such that $m\left(G_{i}-u_{i}-v_{i}, k_{0}\right)>$ $m\left(U B(n, \beta)-V\left(e_{0}\right), k_{0}\right)$, and so $m\left(G_{i}, k_{0}+1\right)>m\left(U B(n, \beta), k_{0}+1\right)$. Hence, $G \succ$ $U B(n, \beta)$.

Lemma 5.2 Suppose that $G \in \mathcal{U B}(n, \beta)$ with the unique cycle C. If there exists a maximum matching M of G such that $M \cap E(C) \neq \emptyset$, then we have $G \succ U B(n, \beta)$ unless $G \cong U B(n, \beta)$.

Proof. Suppose that $C=v_{1} v_{2} \ldots v_{s}$ and $v_{i} v_{i+1} \in M \cap E(C)$. Then $G-v_{i} v_{i-1} \in \mathcal{T}(n, \beta)$. If $G-v_{i} v_{i-1} \cong S(n, \beta)$ or $R(n, \beta)$, then $G \succ U B(n, \beta)$ by Lemma 5.1. We suppose in
the following that $G-v_{i} v_{i-1} \not \equiv S(n, \beta)$ and $R(n, \beta)$. By Lemmas 2.4 and 2.5, we have $G-v_{i} v_{i-1} \succ R(n, \beta)=U B(n, \beta)-e_{0}$.

If $\alpha^{\prime}\left(G-v_{i}-v_{i-1}\right)=\beta-1$, then $G-v_{i}-v_{i-1} \supseteq(\beta-1) P_{2}$. It is easy to check that $P_{2} \uplus P_{2} \succ P_{3}$. Thus from Lemma 2.3, $(\beta-1) P_{2} \succ(\beta-3) P_{2} \uplus P_{3} \cong\left[U B(n, \beta)-V\left(e_{0}\right)\right]$. Hence $G-v_{i}-v_{i-1} \succ U B(n, \beta)-V\left(e_{0}\right)$. If $\alpha^{\prime}\left(G-v_{i}-v_{i-1}\right)=\beta-2$, then $M \backslash\left\{v_{i}, v_{i-1}\right\}$ is a ($\beta-2$)-matching of $G-v_{i}-v_{i-1}$. Since v_{i+1} is not matched in $M \backslash\left\{v_{i}, v_{i-1}\right\}$, and v_{i+1} is not isolated in $G-v_{i}-v_{i-1}$, we have that $G-v_{i}-v_{i-1} \supseteq(\beta-3) P_{2} \uplus P_{3} \cong\left[U B(n, \beta)-V\left(e_{0}\right)\right]$ which implies that $G-v_{i}-v_{i-1} \succeq U B(n, \beta)-V\left(e_{0}\right)$. Therefore, we can get

$$
\begin{aligned}
m(G, k) & =m\left(G-v_{i} v_{i-1}, k\right)+m\left(G-v_{i}-v_{i-1}, k-1\right) \\
& \geq m\left(U B(n, \beta)-e_{0}, k\right)+m\left(U B(n, \beta)-V\left(e_{0}\right), k-1\right) \\
& =m(U B(n, \beta), k)
\end{aligned}
$$

Since $G-v_{i} v_{i-1} \succ U B(n, \beta)-e_{0}$, there exists k_{0} such that $m\left(G-v_{i} v_{i-1}, k_{0}\right)>$ $m\left(U B(n, \beta)-e_{0}, k_{0}\right)$. Then $m\left(G, k_{0}\right)>m\left(U B(n, \beta), k_{0}\right)$. Hence $G \succ U B(n, \beta)$.

Let G be an unicyclic graph with the unique cycle C. For a vertex $v \in V(C)$, denote by T_{v} the component of $G-E(C)$ containing v.

Figure 5.6. Replace T_{v} with $S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$.
Lemma 5.3 Suppose that $G \in \mathcal{U B}(n, \beta)$ with the unique cycle C such that $M \cap E(C)=\emptyset$ for any maximum matching M of G. Let G^{\prime} be the graph obtained from G by replacing T_{v} with $S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$, and identifying vertex v with the center of $S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$, where $n\left(T_{v}\right)$ and $\alpha^{\prime}\left(T_{v}\right)$ are the order and matching number of T_{v} (See Figure 5.6). Then we have $G^{\prime} \in \mathcal{U B}(n, \beta)$ and $G \succ G^{\prime}$ unless $T_{v} \cong S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$.

Proof. Let $u\left(u^{\prime}\right)$ and $w\left(w^{\prime}\right)$ be two neighbors of $v\left(v^{\prime}\right)$ in the unique cycle of $G\left(G^{\prime}\right)$. Since the maximum matching of G contains no edges of $C, \alpha^{\prime}(G)=\alpha^{\prime}\left(G-T_{v}\right)+\alpha^{\prime}\left(T_{v}\right)$. Let
M^{\prime} be a maximum matching of G^{\prime}. If M^{\prime} contains edge $u^{\prime} v^{\prime}$ or $v^{\prime} w^{\prime}$, suppose without loss of generality that $u^{\prime} v^{\prime} \in M^{\prime}$, then $M^{\prime}-u^{\prime} v^{\prime}+v^{\prime} x$ is also a maximum matching of G^{\prime}, where x is a pendent vertex adjacent to v^{\prime} in $T_{v^{\prime}}$ (such a vertex x must exist from the definition of graph $S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$). Hence, there exists a maximum matching of G^{\prime} not containing edges $u^{\prime} v^{\prime}$ and $v^{\prime} w^{\prime}$, which implies that $\alpha^{\prime}\left(G^{\prime}\right)=\alpha^{\prime}\left(G^{\prime}-T_{v^{\prime}}\right)+\alpha^{\prime}\left(T_{v^{\prime}}\right)$. Since $G-T_{v} \cong G^{\prime}-T_{v^{\prime}}$ and $\alpha^{\prime}\left(T_{v}\right)=\alpha^{\prime}\left(T_{v^{\prime}}\right)$, one can deduce that

$$
\alpha^{\prime}\left(G^{\prime}\right)=\alpha^{\prime}\left(G^{\prime}-T_{v^{\prime}}\right)+\alpha^{\prime}\left(T_{v^{\prime}}\right)=\alpha^{\prime}\left(G-T_{v}\right)+\alpha^{\prime}\left(T_{v}\right)=\alpha^{\prime}(G)=\beta .
$$

Therefore, $G^{\prime} \in \mathcal{U B}(n, \beta)$.
If $T_{v} \nexists S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right.$), by Lemma 2.4 , one can get that $T_{v} \succ T_{v^{\prime}}$. Hence for any $k \geq 0$, one can have the following result by Lemmas 2.1 and 2.3:

$$
\begin{aligned}
m(G, k)= & m(G-v w, k)+m(G-v-w, k-1) \\
= & m(G-v w-u v, k)+m(G-v w-u-v, k-1)+m(G-v-w, k-1) \\
= & m\left(\left(G-T_{v}\right) \cup T_{v}, k\right)+m\left(\left(G-T_{u}-T_{v}\right) \cup\left(T_{u}-u\right) \cup\left(T_{v}-v\right), k-1\right) \\
& +m\left(\left(G-T_{v}-T_{w}\right) \cup\left(T_{v}-v\right) \cup\left(T_{w}-w\right), k-1\right) \\
\geq & m\left(\left(G^{\prime}-T_{v^{\prime}}\right) \cup T_{v^{\prime}}, k\right)+m\left(\left(G^{\prime}-T_{u^{\prime}}-T_{v^{\prime}}\right) \cup\left(T_{u^{\prime}}-u^{\prime}\right) \cup\left(T_{v^{\prime}}-v^{\prime}\right), k-1\right) \\
& +m\left(\left(G^{\prime}-T_{v^{\prime}}-T_{w^{\prime}}\right) \cup\left(T_{v^{\prime}}-v^{\prime}\right) \cup\left(T_{w^{\prime}}-w^{\prime}\right), k-1\right) \\
= & m\left(G^{\prime}-v^{\prime} w^{\prime}-u^{\prime} v^{\prime}, k\right)+m\left(G^{\prime}-v^{\prime} w^{\prime}-u^{\prime}-v^{\prime}, k-1\right) \\
+ & m\left(G^{\prime}-v^{\prime}-w^{\prime}, k-1\right)=m\left(G^{\prime}-v^{\prime} w^{\prime}, k\right)+m\left(G^{\prime}-v^{\prime}-w^{\prime}, k-1\right) \\
= & m\left(G^{\prime}, k\right) .
\end{aligned}
$$

Since $T_{v} \succ T_{v^{\prime}}$, by Lemma 2.3, we have that $\left(G-T_{v}\right) \cup T_{v} \succ\left(G^{\prime}-T_{v^{\prime}}\right) \cup T_{v^{\prime}}$. Then there exists k_{0} such that $m\left(\left(G-T_{v}\right) \cup T_{v}, k_{0}\right)>m\left(\left(G^{\prime}-T_{v^{\prime}}\right) \cup T_{v^{\prime}}, k_{0}\right)$, and so $m\left(G, k_{0}\right)>$ $m\left(G^{\prime}, k_{0}\right)$. Hence, $G \succ G^{\prime}$.

Theorem 5.4 Among all the graphs in $\mathcal{U B}(n, \beta)\left(\beta<\frac{n}{2}\right), U B(n, \beta)$ is the unique graph with minimal matching energy.

Proof. Suppose that $G \nsupseteq U B(n, \beta)$ and C is the unique cycle of G. Then it is sufficient to prove that $G \succ U B(n, \beta)$. If there exists an edge $e \in E(C)$ such that $G-e \in$ $\{S(n, \beta), R(n, \beta)\}$, we have $G \succ U B(n, \beta)$ from Lemma 5.1. Hence, we suppose that for any edge $e \in E(C), G-e \notin\{S(n, \beta), R(n, \beta)\}$.

If there exists a maximum matching M of G such that $M \cap E(C) \neq \emptyset$, then the result holds from Lemma 5.2. Then we consider the case that $M \cap E(C)=\emptyset$ for any maximum matching M of G.

We claim that T_{v} is not trivial for any vertex $v \in V(C)$. If not, there is a vertex $v_{0} \in V(C)$ such that $T_{v_{0}}$ is trivial, that is, $T_{v_{0}}$ contains only one vertex v_{0}. Let u_{0} and w_{0} be the neighbors of v_{0} on C. Then any maximum matching M of G does not contain the edge $u_{0} v_{0}$ or $v_{0} w_{0}$. By the maximality of M, we have that at least one of the vertices u_{0} and w_{0} is covered by M. Without loss of generality, suppose that u_{0} is covered by M and $u_{0} p_{0} \in M$. Let $M^{\prime}=M \cup u_{0} v_{0} \backslash u_{0} p_{0}$. Then M^{\prime} is a maximum matching of G and $M^{\prime} \cap E(C) \neq \emptyset$, a contradiction. The claim follows.

For any vertex $v \in V(C)$, replacing T_{v} with $S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$, and identifying vertex v with the center of $S\left(n\left(T_{v}\right), \alpha^{\prime}\left(T_{v}\right)\right)$. Denoted the resulting graph by G^{\prime}. From Lemma 5.3, we know that $G^{\prime} \in \mathcal{U} \mathcal{B}(n, \beta)$ and $G \succeq G^{\prime}$. From the above claim, we know that v is incident with at least one pendent edge in G^{\prime}. Since $\beta<\frac{n}{2}$, that is, G^{\prime} has no perfect matching, there exists a vertex $v_{i} \in V(C)$ such that v_{i} is adjacent to at least 2 pendent vertices, say w_{1} and w_{2}. By the assumption, we have $G-v_{i+1} v_{i+2} \in \mathcal{T}(n, \beta)$, and $G-v_{i+1} v_{i+2} \succ R(n, \beta) \cong U B(n, \beta)-e_{0}$.

If $\alpha^{\prime}\left(G-v_{i+1}-v_{i+2}\right)=\beta-1$, then we can get $G-v_{i+1}-v_{i+2} \succ U B(n, \beta)-V\left(e_{0}\right)$. If $\alpha^{\prime}\left(G-v_{i+1}-v_{i+2}\right)=\beta-2$, we have $G-v_{i+1}-v_{i+2} \supseteq(\beta-3) P_{2} \uplus P_{3} \cong\left[U B(n, \beta)-V\left(e_{0}\right)\right]$, where $P_{3}=w_{1} v_{i} w_{2}$. Hence we can obtain that $G-v_{i+1}-v_{i+2} \succeq U B(n, \beta)-V\left(e_{0}\right)$ in both cases.

Therefore, we have

$$
\begin{aligned}
m(G, k) & =m\left(G-v_{i+1} v_{i+2}, k\right)+m\left(G-v_{i+1}-v_{i+2}, k-1\right) \\
& \geq m\left(U B(n, \beta)-e_{0}, k\right)+m\left(U B(n, \beta)-V\left(e_{0}\right), k-1\right) \\
& =m(U B(n, \beta), k) .
\end{aligned}
$$

Since $G-v_{i+1} v_{i+2} \succ U B(n, \beta)-e_{0}$, there exists k_{0} such that $m\left(G-v_{i+1} v_{i+2}, k_{0}\right)>$ $m\left(U B(n, \beta)-e_{0}, k_{0}\right)$. Then $m\left(G, k_{0}\right)>m\left(U B(n, \beta), k_{0}\right)$. Hence $G \succ U B(n, \beta)$.

Acknowledgment: This work was supported by China Postdoctoral Science Foundation (2016M602253).

References

[1] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications, Macmllan, London, 1976.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, Berlin, 2008.
[3] S. B. Bozkurt, D. Bozkurt, Sharp upper bounds for energy and Randić energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 669-680.
[4] H. Chen, H. Deng, Extremal bipartite graphs of given connectivity with respect to matching energy, Discr. Appl. Math. 239 (2018) 200-205.
[5] L. Chen, J. Liu, Extremal values of matching energies of one class of graphs, Appl. Math. Comput. 273 (2016) 976-992.
[6] L. Chen, Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 73 (2015) 105-119.
[7] L. Chen, J. Liu, Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity 21 (2015) 224-238.
[8] L. Chen, J. Liu, Y. Shi, Bounds on the matching energy of unicyclic odd-cycle graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 315-330.
[9] H. Chen, R. Wu, H. Deng, The extremal values of some topological indices in bipartite graphs with a given matching number, Appl. Math. Comput. 280 (2016) 103-109.
[10] E. Egerváry, On combinatorial properties of matrices, Mat. Fiz. Lapok. 38 (1931) 16-28. (Hungarian with German summary)
[11] E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B 27 (1979) 75-86.
[12] C. D. Godsil, I. Gutman, On the theory of the matching polynomials, J. Graph Theory 5 (1981) 137-144.
[13] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
[14] I. Gutman, The matching polynomial, MATCH Commun. Math. Comput. Chem. 6 (1979) 75-91.
[15] I. Gutman, Matching energy, in: I. Gutman, X. Li (Eds.), Graph Energies Theory and Applications, Univ. Kragujevac, Kragujevac, 2016, pp. 167-190.
[16] I. Gutman, D. Cvetković, Finding tricyclic graphs with a maximal number of matchings - another example of computer aided research in graph theory, Publ. Inst. Math. (Beograd) 35 (1984) 33-40.
[17] I. Gutman, M. Milun, N. Trinajstić, Topological definition of delocalization energy, MATCH Commun. Math. Comput. Chem. 1 (1975) 171-175.
[18] I. Gutman, S. Wagner, The matching energy of a graph, Discr. Appl. Math. 160 (2012) 2177-2187.
[19] Y. Hou, On trees with the least energy and a given size of matching, J. Syst. Sci. Math. Sci. 23 (2003) 491-494. (in Chinese)
[20] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66 (2011) 903-912.
[21] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of bicyclic bipartite graphs, Lin. Algebra Appl. 435 (2011) 804-810.
[22] S. Ji, X. Li, Y. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 697-706.
[23] D. König, Graphs and matrices, Mat. Fiz. Lapok 38 (1931) 116-119. (in Hungarian)
[24] H. Li, Y. Zhou, L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239-248.
[25] S. Li, W. Yan, The matching energy of graphs with given parameters, Discr. Appl. Math. 162 (2014) 415-420.
[26] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[27] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183-214.
[28] K. Xu, K.C. Das, Z. Zheng, The minimal matching energy of (n, m)-graphs with a given matching number, MATCH Commun. Math. Comput. Chem. 73 (2015) 93-104.
[29] K. Xu, Z. Zheng, K. C. Das, Extremal t-apex trees with respect to matching energy, Complexity 21 (2016) 238-247.

[^0]: *The corresponding author: Jinfeng Liu. Email: ljf@zzu.edu.cn

