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Abstract

Let G be a connected graph of order n and size m with Laplacian eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The Laplacian energy and the Kirchhoff index of G

are defined as LE =
n∑

i=1

∣∣µi − 2m
n

∣∣ and Kf = n
n−1∑
i=1

1
µi

, respectively. We show that

Kf < LE holds for one class of graphs, and find another class for which Kf > LE.

1 Introduction
Let G = (V,E) be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G), where |V (G)| = n, |E(G)| = m. Let A(G) be the (0, 1)-adjacency matrix

of G and D(G) be the diagonal matrix of vertex degrees. The Laplacian matrix of G is

L(G) = D(G)−A(G). Denote by Spec(G) = (µ1, µ2, . . . , µn) the spectrum of L(G), i.e.,

the Laplacian spectrum of G, and recall that n ≥ µ1 ≥ µ2 ≥ · · · ≥ µn = 0.

The Laplacian energy of the graph G is defined as [16]

LE = LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ . (1)

For its basic mathematical properties, including various lower and upper bounds, see

[7, 8, 16, 22, 24] and especially the most recent works [4, 9–11] and the book [15].
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Let σ (1 ≤ σ ≤ n) be the largest positive integer such that µσ ≥ 2m
n

. Then from (1),

we have

LE(G) = 2Sσ(G)− 4mσ

n
(2)

where

Sσ(G) =
σ∑

i=1

µi .

In the 1990s, Klein and Randić [17] considered the resistance distance between two

vertices of a (connected) graph, defined as the electric resistance in a network correspond-

ing to that graph, in which the resistance between any two adjacent nodes is unity. Then,

in analogy to the classical Wiener index, the sum of resistance distances between all pairs

of vertices was considered [1, 17] and was named Kirchhoff index.

The Kirchhoff index has a very nice connection with Laplacian eigenvalues, namely

[14, 25]

Kf = Kf(G) = n

n−1∑
k=1

1

µk

.

The Kirchhoff index found noteworthy applications in chemistry, as a molecular structure

descriptor [1, 5], and many of its mathematical properties have been established [2, 12,

19–21,23].

Interestingly, until now the relation between the two Laplacian–spectrum based graph

invariants LE and Kf did not attract much attention [6, 13, 18]. In this paper we prove

that LE > Kf for some classes of graphs and LE < Kf for some other classes.†

2 Main Result

In this section we compare the Laplacian energy and the Kirchhoff index. For this we

need the following two auxiliary lemmas:

Lemma 1. [3] Let G be a simple graph with at least one edge. Then µ1 = µ2 = · · · = µn−1

if and only if G ∼= Kn.

Lemma 2. [6] Let G be a graph of order n with m edges. Then µ1(G) ≤ m+ 1.
†The results presented here were originally part of Ref. [6]. After the paper [6] received positive referee

reports, based on a suggestion of the Editor, the results on the comparison of LE and Kf were edited
out. Namely, the Editor “did not want to promote more papers on this topic”, maintaining that there
already were too many publications on graph spectra and energy, whereas our results would stimulate
the production of more such articles.
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For G ∼= Kn (n ≥ 2), LE(G) = 2(n− 1) > n− 1 = Kf(G).

For G ∼= K1,n−1 (n > 2), LE(G) = 2n− 4 + 4
n
< n(n− 2) + 1 = Kf(G).

Therefore LE(G) and Kf(G) are incomparable on the class of general graphs. On

the other hand, we have the following result:

Theorem 1. Let G be a graph obtained by deleting p edges from the complete graph Kn

(n ≥ 11). If 0 ≤ p ≤ n/2, then Kf(G) < LE(G).

Proof. Let G denote the complement of the graph G. Let m be the number of edges of

G. Then 0 ≤ m = p ≤ n/2.

Let k be the number of connected components of G. Let ni and mi (i = 1, 2, . . . , k) be

the number of vertices and edges in the i-th connected component of G. Then mi ≥ ni−1,

i = 1, 2, . . . , k. Thus

p =
k∑

i=1

mi ≥
k∑

i=1

(ni − 1) = n− k, that is, k ≥ n− p .

Since k is the number of connected components of G, it follows that n is a Laplacian

eigenvalue of G with multiplicity k − 1, that is, n is a Laplacian eigenvalue of G with

multiplicity at least n− p− 1.

By Lemma 2, µ1(G) ≤ p + 1, that is, µn−1(G) ≥ n − p − 1 ≥ n/2 − 1. Using these

results, we arrive at

Kf(G) =

n−p−1∑
i=1

n

µi(G)
+

n−1∑
i=n−p

n

µi(G)

< (n− p− 1) +
n−1∑

i=n−p

n

n− p− 1
= n− p− 1 +

n p

n− p− 1
.

Since 2m+ 2m = n(n− 1), we have 2m+ 2p = n(n− 1). Using this, we get

LE(G) = µ1 +
n−1∑
i=2

∣∣∣∣µi −
2m

n

∣∣∣∣ = µ1 +
n−1∑
i=2

∣∣∣∣µi − (n− 1) +
2p

n

∣∣∣∣
= n+

(
1 +

2p

n

)
(n− p− 2) +

n−1∑
i=n−p

∣∣∣∣µi − (n− 1) +
2p

n

∣∣∣∣
≥ n+

(
1 +

2p

n

)
(n− p− 2) .

Consider the function

h(p) = n− 1 +
2p

n
(n− p− 2)− np

n− p− 1
, 1 ≤ p ≤ n/2 .
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Then

h′′(p) = − 4

n
− 2n(n− 1)

(n− p− 1)3
< 0 .

Therefore h(p) is a decreasing function on 1 ≤ p ≤ n/2 and thus

h(p) ≥ h(n/2) =
n (n− 6)

2 (n− 2)
− 3 > 0 as n ≥ 11.

From the above results, it follows LE(G)−Kf(G) > h(p) > 0, that is, Kf(G) < LE(G).

Theorem 2. Let G be a connected graph of order n. If m ≤ n
√

n−1
8

, then Kf(G) >

LE(G).

Proof. Recalling the definition of Sσ, observe that

Sσ =
σ∑

i=1

µi ≤
n−1∑
i=1

µi = 2m.

By (2) and σ ≥ 1, the above result yields

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ = 2Sσ −
4mσ

n
≤ 4m (n− 1)

n
.

By the arithmetic–harmonic–mean inequality, for m ≤ n
√

n−1
8

we have

Kf(G) =
n−1∑
i=1

n

µi

≥ n (n− 1)2

2m
(3)

≥ 4m

n
(n− 1) ≥ LE(G) .

By the arithmetic–harmonic–mean inequality, the equality holds in (3) if and only if

µ1 = µ2 = · · · = µn−1, that is, if G ∼= Kn, by Lemma 1. Since m ≤ n
√

n−1
8

, we conclude

that Kf(G) > LE(G).
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