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Abstract

The energy E(G) of a graph G is the sum of the absolute values of all eigenvalues
of G. This article is motivated by [25] (MATCH Commun. Math. Comput. Chem.
55 (2006) 91-94), where Zhou initiated the study of bounding the energy of a graph
in terms of the minimum degree together with other parameters and he obtained
an interesting inequality. However, his result only holds for quadrangle-free graphs.
Thus we are encouraged to bound the graph energy (from below) in terms of the
minimum degree for an arbitrary graph. For a connected graph G with minimum
degree δ, it is proved that E(G) ≥ 2δ, and the equality holds if and only if G is
a complete multipartite graphs with equal size of chromatic sets. By applying the
main result, we prove that Kq+1 and Kq,q are the only q-regular graphs with energy
2q if and only if q is a prime number or q = 1.

1 Introduction

Let G be an undirected graph without multiple edges and loops. The energy E(G) of

G is defined to be the sum of the absolute values of all eigenvalues of A(G), where A(G)

denotes the adjacency matrix of G. The motivation for the definition of E(G) comes

from chemistry, where the first results on E(G) were obtained as early as the 1940s [5].

However, in the last two decades research on graph energy has much intensified, resulting

in a large number of publications. For detailed results on graph energy we refer the reader

to book [16], where the authors summarized important results involving graph energy.
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Here, we only introduce some known results related to bounds of graph energy. Ca-

porossi et. al. [4] proved that E(G) ≥ 2
√
m for all graphs G with m edges. Rada [19]

extended the above result to a diagraph D by proving that if a digraph D has c2 closed

walks of length 2 then the energy of D is not less than
√
2c2. Rada and Tineo [20] proved

that E(G) ≥ 2m
√

m
q

for a bipartite graph G with m edges and with q being half of the

spectra moment of fourth order. Akbari, Ghorbani and Zare [1] established some lower

bounds for E(G) by using the rank and chromatic number of G. Gutman [12] studied

conditions under which biregular graphs G of order n satisfy E(G) ≥ n. McClelland [17]

proved that E(G) ≤
√
2mn ≤ 2m for a graph with n vertices and m edges. Koolen

and Moulton [15] bounded the graph energy in terms of vertex number and edge num-

ber. Zhou [26] gave an upper bound by using the vertex number, the edge number and

the vertex degree sequence. Yu, Lu and Tian [24] improved Zhou’s bound by adding

2-degree sequence. Further, Hou, Teng and Woo [13] bounded the graph energy in terms

of k-degree of the graph. Recently, L. Wang, X. Ma [22] established an upper bound and

a lower bound on graph energy in terms of vertex cover number. For additional bounds

for graph energy or skew energy of oriented graphs see the recent papers [2,3,8–11,14,18],

and the references cited therein.

This article is motivated by [25], where Zhou initiated the study of bounding the graph

energy in terms of the minimum degree (together with other parameters) and he obtained

an interesting inequality as follows.

Proposition 1.1 (Zhou, [25]) Let G be a quadrangle-free (n,m)-graph with minimum

degree δ ≥ 1 and maximum degree ∆. Then

E(G) ≥ 2
√
2δ∆

2(δ +∆)− 1

√
2mn.

However, his result only holds for quadrangle-free graphs. The problem of bounding

the graph energy (from below) in terms of the minimum degree for an arbitrary graph is

left open for more than ten years. In this paper, we are interested in solving this problem,

obtain a result as follows.

Theorem 1.2 Let G be a connected graph with minimum degree δ. Then E(G) ≥ 2δ

and the equality holds if and only if G is a complete multipartite graph with equal size of

chromatic sets.
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Remark 1.3 Theorem 1.2 seems somewhat trivial if the minimum degree of the graph is

small. However, if the minimum degree is large enough, especially when 2δ is larger than

the order of the graph, the result turns out to be nontrival. See the energy of K3,3,3 for

an example, our lower bound for this graph is 12, which is better than all lower bounds

established in [1], [4], [19], [20], or [22].

It is well known that Kq+1 and Kq,q are q-regular graphs with energy 2q. Another inter-

esting problem is:

Problem: For a positive integer q, are Kq+1 and Kq,q the only q-regular graphs with

energy 2q? If not, how many such graphs exist and what graphs are them?

By applying the main result we can give this problem a positive answer.

Notation and some known results applied in our proof are introduced in Section 2, the

proof for Theorem 1.2 is given in Section 3 and the answer for the above problem is given

at the end of this article.

2 Notation and some known results related to our
main result

Throughout, we consider simple graphs, i.e., undirected graphs without loops and

multiple edges. Let G be a simple graph with vertex set V (G) and adjacency matrix A(G).

By n(G) and m(G) we respectively denote the vertex number and the edge number of G.

If x, y ∈ V (G) are adjacent we write x ∼ y and denote by xy the edge joining x and y.

A subgraph H of G is called an induced subgraph if two vertices of V (H) are adjacent in

H if and only if they are adjacent in G. The set of neighbors of a vertex x in G, written

as N(x), is defined as

N(x) = {y ∈ V (G) : y ∼ x}.

The number of vertices in N(x) is called the degree of x in G, which is written as d(x).

By δ(G) (resp., ∆(G)) we denote the minimum degree (resp., maximum degree) of G, i.e.,

δ(G) = min{d(x) : x ∈ V (G)}; ∆(G) = max{d(x) : x ∈ V (G)}.

For a subset U of V (G), denote by G − U the induced subgraph obtained from G by

deleting the vertices of U together with all edges incident to them. When H is an induced

subgraph of G, we denote by G−H the induced subgraph with vertex set V (G)− V (H),
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which is also called the complement of H in G. If F is a subset of the edge set of G,

then G− F will denote the spanning subgraph which is obtained from G by deleting the

edges in F . If F is a set of edges of G such that G − F is the disjoint union of two

complementary induced subgraphs H and K, then F is called an edge cut of G and we

write G− F = H ∪K.

By Pn, Cn, Kn we respectively denote the path, the cycle and the complete graph

on n vertices. An r-partite graph is a graph whose vertices can be partitioned into r

different independent (or chromatic) sets. Equivalently, it is a graph that can be colored

with r colors, so that no two endpoints of an edge have the same color. A complete

r-partite graph is an r-partite graph in which there is an edge between every pair of

vertices from different independent sets. A complete multipartite graph is a graph that

is complete r-partite for some r. A complete multipartite graph is described by notation

with a capital letter K subscripted by a sequence of the sizes of each set in the partition.

For instance, K2,2,2 is the complete tripartite graph of a regular octahedron, which can

be partitioned into three independent sets each consisting of two vertices.

The following lemma (see [6] or [23]) will be applied when we establish the inequality

and characterize the extremal graphs whose energy is precisely double of its minimum

degree.

Lemma 2.1 (Lemma 2.1, [23]) For the complete r-partite graph Kp1,p2,...,pr on n vertices,

the characteristic polynomial of this graph is

P (x) = xn−r(1−
r∑

i=1

pi
x+ pi

)
r∏

i=1

(x+ pi).

Day and So studied how the energy of a graph changes when edges are deleted and

they obtained an interesting result, which is of key importance when we establish the

lower bound for graph energy.

Lemma 2.2 (Theorem 3.4, [7]) If F is an edge cut of a simple graph G then E(G−F ) ≤

E(G).

3 Proof of Theorem 1.2

In this section, we give a proof for Theorem 1.2. Before doing that we consider the

energy of a complete multipartite graph.
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Lemma 3.1 Let G be the complete r-partite graph Kp1,p2,...,pr , where r ≥ 2 and the size of

each partite set is arranged such that p1 ≥ p2 ≥ . . . ≥ pr ≥ 1. Then we have

E(G) ≥ 2δ(G) = 2
r∑

i=2

pi

and the equality holds if and only if p1 = p2 = . . . = pr.

Proof. We proceed by induction on the order of the graph to prove the inequality. If the

order of G is 2, then G = P2 and thus E(G) = 2 = 2δ(G), as required. Suppose the

inequality holds for complete multipartite graphs of order at most n− 1 and consider the

complete r-partite graph G = Kp1,p2,...,pr with order n =
∑r

i=1 pi. Let W be a set of r

vertices of V (G) coming from r different partite sets and let K = G[W ] be the induced

subgraph with vertex set W . Then K is a complete graph on r vertices. If p1 = 1, then

G = K with energy E(G) = 2(r−1), double of its minimum degree, and thus the assertion

holds for G. If p1 ≥ 2 and p2 = . . . = pr = 1, then the characteristic polynomial of this

graph is

P (x) = xn−r(x+ 1)r−2[x2 − (r − 2)x− p1(r − 1)],

which has nonzero eigenvalues

−1,−1, . . . ,−1,
(r − 2) +

√
(r − 2)2 + 4p1(r − 1)

2
,
(r − 2)−

√
(r − 2)2 + 4p1(r − 1)

2
,

where the multiplicity of eigenvalue −1 is r − 2. Consequently,

E(G) = (r − 2) +
√

(r − 2)2 + 4p1(r − 1),

which is strictly larger than double of the minimum degree r − 1.

Assume that pi ≥ 2 for i = 1, 2, . . . , s and ps+1 = . . . = pr = 1, where 2 ≤ s ≤ r, and

let H = G − K. Then H is a complete s-partite graph isomorphic to Kp1−1,p2−1,...,ps−1.

Let F be the set of edges between K and H. Then F is an edge cut of G such that

G− F = K ∪H. By Lemma 2.2 we have

E(G) ≥ E(K) + E(H) (1)

Since K is a complete graph on r vertices,

E(K) = 2(r − 1). (2)
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The induction hypothesis to H implies that

E(H) ≥ 2
s∑

i=2

(pi − 1) = 2
r∑

i=2

(pi − 1). (3)

Substituting (2) and (3) to (1), we have

E(G) ≥ E(K) + E(H) ≥ 2(r − 1) + 2
r∑

i=2

(pi − 1) = 2
r∑

i=2

pi = 2δ(G), (4)

which proves the inequality for G.

If p1 = p2 = . . . = pr for G = Kp1,p2,...,pr , then the characteristic polynomial of G is

P (x) = xn−r(x+ p1)
r−1(x+ p1 − rp1),

with nonzero eigenvalues

−p1,−p1, . . . ,−p1, p1(r − 1),

where the multiplicity of −p1 is r− 1. In this case, E(G) = 2p1(r− 1), which is precisely

double of its minimum degree.

Conversely, suppose that G = Kp1,p2,...,pr , with p1 ≥ p2 ≥ . . . pr ≥ 1, is a complete

r-partite graph with energy double of its minimum degree, i.e., E(G) = 2δ(G) = 2
∑r

i=2 pi.

We proceed by induction on the order of G to prove that p1 = p2 = . . . = pr. If the order of

G is 2, the assertion holds trivially. Assume the assertion holds for complete multipartite

graphs of order at most n − 1 and consider G = Kp1,p2,...,pr with order n =
∑r

i=1 pi. If

p1 = 1, then p1 = p2 = . . . = pr = 1 and we are done. If p1 > p2 = p3 = . . . = pr = 1, we

have proved that E(G) = (r − 2) +
√

(r − 2)2 + 4p1(r − 1), which is strictly larger than

double of the minimum degree r−1, a contradiction. Assume that pi ≥ 2 for i = 1, 2, . . . , s

and ps+1 = . . . = pr = 1, where 2 ≤ s ≤ r. As above, let K = G[W ] be the induced

subgraph on an r-vertices set W , in which every vertex comes from r different partite sets

of G. Set H = G −K, and let F be the set of edges between K and H. The condition

E(G) = 2δ(G) will forces all inequality involved in (4) to turn into equalities. Thus we

have

E(H) = 2
s∑

i=2

(pi − 1) = 2δ(H). (5)

The induction hypothesis to H implies p1−1 = . . . = ps−1, or equivalently, p1 = . . . = ps.

To complete the proof, it suffices to prove s = r. The characteristic polynomial of

G = Kp1,p2,...,pr , in which p1 = p2 = . . . = ps > 1 and ps+1 = . . . = pr = 1, is

P (x) = xn−r(x+ p1)
s−1(x+ 1)r−s−1[x2 − (sp1 + r − p1 − s− 1)x+ p1(1− r)],
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which has nonzero eigenvalues

−p1, . . . ,−p1,−1, . . . ,−1,
b+

√
b2 + 4(r − 1)p1

2
,
b−

√
b2 + 4(r − 1)p1

2
,

where the multiplicity of −p1 is s − 1, the multiplicity of −1 is r − s − 1 and b =

sp1 + r − p1 − s− 1. The energy of this graph is

E(G) = b+
√

b2 + 4(r − 1)p1.

From E(G) = 2δ(G) it follows

b+
√

b2 + 4(r − 1)p1 = 2(b+ 1),

which further leads to

(p1 − 1)(r − s) = 0.

As p1 > 1, we have r = s, as required. This completes the proof for Lemma 3.1. �

Now, we are ready to give a proof for Theorem 1.2

Proof of Theorem 1.2

If G is a complete multipartite graph, the result has been proved by Lemma 3.1. Let

G be an arbitrary connected graph. We proceed by induction on the order of G to prove

the inequality E(G) ≥ 2δ(G) and to characterize the extremal graphs with energy double

of δ(G). If the order of G is 2, then E(G) = 2 = 2δ(G). Suppose the result holds for all

connected graphs with order at most n − 1 and let G be a connected graph with order

n ≥ 3.

If G is a tree with m ≥ 1 edges, then δ(G) = 1. As E(G) ≥ 2
√
m ≥ 2, we have

E(G) ≥ 2δ(G) and the equality holds if and only if G = K2.

Suppose G is not a tree. Let g be the girth of G and let C be a cycle in G of size g.

Then C is an induced subgraph of G. If G = C, we have E(G) = 4 = 2δ(G) for g = 3 or

4 and E(G) ≥ 2
√
g > 4 = 2δ(G) for g ≥ 5. Suppose G is not a cycle. Let H = G − C

and let F be the set of edges between C and H. Then F is an edge cut of G such that

G− F = C ∪H. By Lemma 2.2, we have

E(G) ≥ E(C) + E(H). (6)

If g ≥ 5, each vertex of H has at most one neighbor in C. Thus

δ(H) ≥ δ(G)− 1. (7)
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The induction hypothesis to every component of H implies that

E(H) ≥ 2δ(H). (8)

Substituting (7) and (8) to (6) and recalling that E(C) ≥ 2
√
g > 4 we have

E(G) ≥ E(C) + E(H) > 4 + 2δ(H) > 2δ(G).

Now we consider the case when g = 4. Let P be a path on two adjacent vertices x0, y0

and let Q = G− P . Then G− F1 = P ∪Q, where F1 is the set of edges between P and

Q. Lemma 2.2 says

E(G) ≥ E(P ) + E(Q). (9)

Since each vertex of Q has at most one neighbor in P (recalling that g = 4). Thus

δ(Q) ≥ δ(G)− 1. (10)

The induction hypothesis applying to every component of Q implies that

E(Q) ≥ 2δ(Q). (11)

Substituting (10) and (11) to (9) and recalling that E(P ) = 2 we have

E(G) ≥ E(P ) + E(Q) ≥ 2 + 2δ(Q) ≥ 2δ(G), (12)

which proves the inequality. If E(G) = 2δ(G), then all inequalities involved in (12) turn

into equalities and thus we have δ(Q) = δ(G)−1 and E(Q) = 2δ(Q). From E(Q) = 2δ(Q)

it is easy to see that Q is connected. The induction hypothesis to Q implies that Q is a

complete bipartite graph with equal chromatic sets. Assume Q = Kq,q with two partite

sets X,Y , each has q vertices. Then δ(Q) = q and thus δ(G) = q + 1. Consequently,

d(x0) ≥ q + 1. Noting that x0 cannot be adjacent to two vertices in X ∪ Y from different

partite sets, we have d(x0) ≤ q + 1. Thus d(x0) = q + 1. Similarly, d(y0) = q + 1.

Consequently, x0 is adjacent to all vertices in Y (or X) and y0 is adjacent to all vertices

in X (or Y ). Hence, G = Kq+1,q+1 is a complete bipartite graph with equal chromatic

sets.

Next, we consider the case when g = 3. Let Y be a maximal clique in G with r

vertices. As g = 3, we have r ≥ 3. If G = Y then we have E(G) = 2(r− 1) = 2δ(G), and
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we are done. Suppose G 6= Y . Let Z = G− Y and let F2 be the set of edges between Y

and Z. Then F2 is an edge cut of G such that G− F2 = Y ∪ Z. Lemma 2.2 implies

E(G) ≥ E(Y ) + E(Z). (13)

Noting each vertex of Z has at most r − 1 neighbors in Kr. Thus

δ(Z) ≥ δ(G)− r + 1. (14)

The induction hypothesis to every component of Z gives that

E(Z) ≥ 2δ(Z). (15)

Substituting (14) and (15) to (13) and recalling that E(Y ) = 2(r − 1) we have

E(G) ≥ E(Y ) + E(Z) ≥ 2(r − 1) + 2δ(Z) ≥ 2δ(G), (16)

which proves the inequality. If E(G) = 2δ(G), then all inequalities involved in (16)

turn into equalities and thus we have δ(Z) = δ(G) − r + 1 and E(Z) = 2δ(Z). By

E(Z) = 2δ(Z) we easily see that Z is connected. The induction hypothesis to Z implies

that Z is a complete multipartite graph with equal chromatic sets. Assume that Z is

isomorphic to Ks,s,...,s, a complete k-partite graph in which each partite set has s vertices.

Then δ(Z) = s(k − 1) and thus δ(G) = s(k − 1) + r − 1. Consequently, every z ∈ Z has

precisely r − 1 neighbors in Y and misses exactly one vertex in Y . It is easy to see that

two vertices from distinct partite set of Z miss two distinct vertices in Y (otherwise, such

two vertices together with their r−1 common neighbors in Y form a clique of order r+1,

a contradiction to the choice of Y ).

To complete the proof, we need to prove r = k. Suppose on the contrary that r > k.

Let W = {z1, z2, . . . , zk} be a subset of V (Z) inducing a complete subgraph of Z. Then the

induced subgraph with vertex set V (Y )∪W , written as K ′, is isomorphic to K2,2,...,2,1,...,1,

where the multiplicities of 2 and 1 are respectively k and r − k. Let H ′ = G−K ′. Then

H ′ is isomorphic to the complete k-partite graph Ks−1,s−1,...,s−1. Let F3 be the set of edges

between K ′ and H ′. Then G− F3 = K ′ ∪H ′ and thus

E(G) ≥ E(K ′) + E(H ′). (17)

By Lemma 3.1, we have

E(K ′) > 2δ(K ′) = 2(r + k − 2), (18)
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and

E(H ′) = 2δ(H ′) = 2(s− 1)(k − 1). (19)

Substituting (18) and (19) to (17), we have

E(G) > 2(r + k − 2) + 2(s− 1)(k − 1) = 2[s(k − 1) + r − 1] = 2δ(G),

which is a contradiction and thus we have r = k.

Now, partition V (Z) into disjoint union of r chromatic sets as

V (Z) = W1 ∪W2 ∪ . . . ∪Wr,

and suppose

Wi = {zi1, zi2, . . . , zis} for i = 1, 2, . . . , r.

Then zij ∼ zkl if and only if i 6= k. Let

Uj = {z1j, z2j, . . . , zrj} for j = 1, 2, . . . , s.

Then every Uj induces a complete graph, written as Zj, on r vertices. We have shown

that every vertex in U1 has r − 1 neighbors in Y and misses exactly one vertex in Y .

In addition distinct vertex in U1 misses distinct vertex of Y . Label the vertices of Y as

V (Y ) = {y1, y2, . . . , yr} such that yi � zi1 and yi ∼ zj1 for j 6= i. Since yi ∼ zj1 for all

j 6= i, we have yi � zil for any l (otherwise we obtain a clique of order r + 1). Consider

the degree of yi, we confirm that yi ∼ zjl for any j 6= i and any l. Finally, we conclude

that G is isomorphic to the complete r-partite graph Ks+1,s+1,...s+1. �

With Theorem 1.2 in hand, we can solve the question posted at the first section. Let

q be a positive integer and xy− y = q an equation on x, y. For a positive integer solution

(r, s) of xy − y = q, i.e., rs − s = q, we have a corresponding complete r-partite graph

Ks,s,...,s, which is q-regular and has energy 2q (thanks to Lemma 3.1). By Theorem 1.2,

every q-regular graph with energy 2q must be such 0form. Thus we have:

Corollary 3.2 Let q ≥ 2 be an integer. An q-regular graph G has energy 2q if and only

if G is isomorphic to a complete r-partite graph Ks,s,...,s, where a pair of positive integers

(r, s) is a solution of the equation xy − y = q. Particularly, Kq+1 and Kq,q are the only

q-regular graphs with energy 2q if and only q is a prime number.
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Example: When q = 6, the equation xy − y = q has four positive integer solutions:

(7, 1), (2, 6), (3, 3), (4, 2).

Thus there are four 6-regular graphs with energy 12. They are K7, K6,6, K3,3,3, K2,2,2,2.

We believe that the lower bound on graph energy of a connected graph G can be

improved from 2δ to 2δ, where δ is the average degree of G, and we believe the equality

holds if and only if G is a complete multipartite graphs with equal size of chromatic sets.

This conjecture is left as a further research problem.
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