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Abstract

In this paper, we first show that the results of Lemma 1, Theorem 4 and Theorem
6 in Zagreb Energy and Zagreb Estrada Index of graphs by N. J. Rad et al. [MATCH
Commun. Math. Comput. Chem. 79(2018), 371-386] are not correct. We modify
these conclusions and give the corresponding results. In addition, we present several
inequality relations between spectral moments of the first Zagreb matrix and the
first Zagreb index of graphs, and characterize the corresponding extremal graphs.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). If the vertices u

and v are adjacent, we write u ∼ v. Let du be the degree of vertex u in G. A vertex u

is called isolated if du = 0. To avoid the triviality, we assume that all graphs have no

isolated vertices. We denoted minimum and maximum degree of vertices of graph G by

δ = δ(G) and ∆ = ∆(G), respectively. A graph is called k-regular if each of its vertices

has same degree k. For other underfined notations and terminology from graph theory,

the reader are referred to [1].
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The first and second Zagreb indices, proposed by Gutman and Trinajstić [2] in 1972,

are defined as

M1(G) =
∑

v∈V (G)

d2v, M2(G) =
∑

uv∈E(G)

dudv .

The first Zagreb index can be also expressed as

M1(G) =
∑

uv∈E(G)

(du + dv).

Among topological indices, Zagreb indices are very old and very important molecular

structure-descriptor. There are many useful properties in chemistry and especially in

mathematical chemistry. Two surveys of properties of Zagreb indices are found in [3, 4].

Some new results on the Zagreb index can be found in [5-7].

The hyper-Zagreb index HW (G) was recently proposed by Shirdel et al. in [8] and

defined as

HM(G) =
∑

uv∈E(G)

(du + dv)
2.

The first Zagreb Matrix Z [9] of the graph G is defined as the matrix with entries

zij =

{
di + dj if i ∼ j
0 otherwise.

Since Z is a real symmetric matrix, all its eigenvalues are real. There are denoted by

µ1 ≥ µ2 ≥ ... ≥ µn. For a nonnegative integer k, the k-th spectral moment of the Zagreb

matrix Z is defined

Nk = Nk(G) =
n∑

i=1

µk
i .

We will denote by tr(z) the trace of the matrix Z.

2 Errors in [9]

In [9], the authors presented the following result for the spectral moments of the first

Zagreb matrix.

Lemma 2.1. (Lemma 1 of [9]) Let G be a graph with n vertices and Zagreb matrix Z.
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Then

(1) N1 = tr(Z) = 0;

(2) N2 = tr(Z2) = 2HM ;

(3) N3 = tr(Z3) = 2HM
∑

i,j,k∈{1,2,...,n}
i∼j∼k,i∼k

d2k;

(4) N4 = tr(Z4) = n(HM)2 +
∑

i,j∈{1,2,...,n}
i∼j

(di + dj)
2

 ∑
k∈{1,2,...,n}

i∼k∼j

d2k


2

,

where i ∼ j indicates pairs of adjacent vertices vi and vj.

We will show that (3) and (4) of Lemma 2.1 are not correct. For example, Let C3 be

the cycle of order 3. It is easy to calculate that µ1(C3) = 8 and µ2(C3) = µ3(C3) = −4.

Then we may obtain N3 =
3∑

i=1

µ3
i (C3) = 384 and N4 =

3∑
i=1

µ4
i (C3) = 4608. From the

definition of hyper-Zagreb index and Lemma 2.1, we have HM =
∑
i∼j

(di + dj)
2 = 48, then

N3 = 2HM
∑

i,j,k∈{1,2,...,n}
i∼j∼k,i∼k

d2k = 2× 48× 22 × 3 = 1152

and

N4 = n(HM)2 +
∑

i,j∈{1,2,...,n}
i∼j

(di + dj)
2

 ∑
k∈{1,2,...,n}

i∼k∼j

d2k


2

= 3× 482 + 42 × 42 × 3 = 7680.

Hence equality (3) and (4) in Lemma 2.1 do not hold. We have the following modified

version of Lemma 2.1:

Lemma 2.2. Let G be a graph with n vertices. Then

(1) N1 = tr(Z) = 0;

(2) N2 = tr(Z2) = 2HM ;

(3) N3 = tr(Z3) = 2
∑
i∼j

(di + dj)
∑

k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj);

(4) N4 = tr(Z4) =
∑

i∈V (G)

(∑
i∼j

(di + dj)
2

)2

+
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)


2

.
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Proof. We calculate the matrix Z2. For i = j

(Z2)ii =
n∑

j=1

zijzji =
∑
i∼j

(di + dj)
2.

For i 6= j

(Z2)ij =
n∑

j=1

zijzji = ziizij + zijzjj +
∑

k∈V (G)
i∼k,k∼j

zikzkj =
∑

k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj).

Since the diagonal elements of Z3 are

(Z3)ii =
n∑

j=1

zij(Z2)ji =
∑
i∼j

(di + dj)
∑

k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj),

we have

N3 =
∑

i∈V (G)

∑
i∼j

(di + dj)
∑

k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)

= 2
∑
i∼j

(di + dj)
∑

k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj).

We next calculate N4. The diagonal elements of Z4 are

(Z4)ii =
∑

j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)


2

+

(∑
i∼j

(di + dj)
2

)2

.

Then we obtain

N4 =
∑

i∈V (G)

∑
j∈V (G)

i 6=j

( ∑
i∼k,k∼j

(di + dk)(dk + dj)

)2

+
∑

i∈V (G)

(∑
i∼j

(di + dj)
2

)2

=
∑

i,j∈V (G)
i 6=j

( ∑
i∼k,k∼j

(di + dk)(dk + dj)

)2

+
∑

i∈V (G)

(∑
i∼j

(di + dj)
2

)2

.

In [9], the authors gave the following two lower bounds for the Zagreb Estrada index

ZEE(G) of G.

Theorem 2.3. (Theorem 4 of [9]) Let G be a graph with n vertices. Then

ZEE(G) ≥n+ 2HM + 2HM(sinh(1)− 1)
∑

i,j,k∈{1,2,...,n}
i∼k∼j,i∼j

(dk)
2

+ (cosh(1)− 1)

n(HM)2 +
∑

i,j∈{1,2,...,n}
i∼j

(di + dj)
2

 ∑
k∈{1,2,...,n}

i∼k∼j

(dk)
2


2 .
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Theorem 2.4. (Theorem 6 of [9]) Let G be a graph with n vertices and hyper-Zagreb

index HM . Then

ZEE(G) ≥

√√√√√n2(1 +HM) + 2nHM +
2

3
HM

∑
i,j,k∈{1,2,...,n}

i∼k∼j,i∼j

(dk)2 +
1

12
nN4.

By Lemma 2.2, we will modify Theorem 2.3 and Theorem 2.4 to get the following

results.

Theorem 2.5. Let G be a graph with n vertices. Then

ZEE(G)≥n+2HM+2(sinh(1)−1)
∑
i∼j

(di+dj)
∑

i∼k,k∼j

(di+dk)(dk+dj)

+(cosh(1)−1)

 ∑
i∈V (G)

(∑
i∼j

(di+dj)
2

)2

+
∑

i,j∈V (G)
i 6=j

( ∑
i∼k,k∼j

(di+dk)(dk+dj)

)2

 .

Theorem 2.6. Let G be a graph with n vertices and hyper-Zagreb index HM . Then

ZEE(G)≥
√

n2(1+HM)+2nHM+
2n

3

∑
i∼j

(di+dj)
∑

i∼k,k∼j

(di+dk)(dk+dj)+
nN4

12
.

3 Connections between M1(G) and the spectral mo-
ments

Relation between various topological indices and spectral moment of a graph G is in the

focus of interest of the researchers for quite many years and this topic is vital nowadays. In

this part, we give some relations between the first Zagreb index and the spectral moments.

Theorem 3.1. Let G be a graph with m edges. Then

N2

4∆
≤ M1(G) ≤

√
1

2
N2 + 4m(m− 1)∆2,

where equality hold if and only if G is a regular graph.
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Proof. By the definition of M1(G), along with part (2) of Lemma 2.2, we have

M2
1 (G) =

 ∑
ij∈E(G)

(di + dj)

2

=
∑

ij∈E(G)

(di + dj)
2 +

∑
ij∈E(G)
xy∈E(G)
ij 6=xy

(di + dj)(dx + dy)

=
1

2
N2 +

∑
ij∈E(G)
xy∈E(G)
ij 6=xy

(di + dj)(dx + dy)

≤ 1

2
N2 + 4m(m− 1)∆2

Consequently, M1(G) ≤
√

1
2
N2 + 4m(m− 1)∆2.

Lemma 2.2, gives

N2 = tr(Z2) = 2
∑

ij∈E(G)

(di + dj)
2

= 2
∑

ij∈E(G)

(di + dj)(di + dj)

≤ 4∆
∑

ij∈E(G)

(di + dj) = 4∆M1(G).

Then

M1(G) ≥ N2

4∆
.

The equality in each inequality holds if and only if di = dj = ∆ for each ij ∈ E(G).

This happens if and only if G is a ∆-regular graph.

Given a graph G, denote by N(v) the set of neighbors of the vertex v, and by a =

max
uv∈E(G)

|N(u)
⋂

N(v)|, b = min
uv∈E(G)

|N(u)
⋂

N(v)|.

Theorem 3.2. Let G be a graph with a, b > 0. Then

N3

8a∆2
≤ M1(G) ≤ N3

8bδ2
.

The equality in each inequality holds if and only if G is regular and a = b.
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Proof. By Lemma 2.2, we have

N3 = tr(Z3) = 2
∑
i∼j

(di + dj)
∑

i∼k,k∼j

(di + dk)(dk + dj)

≥ 2
∑
i∼j

(di + dj)
∑

i∼k,k∼j

4δ2

= 8δ2
∑
i∼j

(di + dj)
∑

i∼k,k∼j

1

≥ 8δ2b
∑
i∼j

(di + dj)

= 8δ2bM1(G).

Furthermore,

N3 = tr(Z3) = 2
∑
i∼j

(di + dj)
∑

i∼k,k∼j

(di + dk)(dk + dj)

≤ 2
∑
i∼j

(di + dj)
∑

i∼k,k∼j

4∆2

= 8∆2
∑
i∼j

(di + dj)
∑

i∼k,k∼j

1

≤ 8∆2a
∑
i∼j

(di + dj)

= 8∆2aM1(G).

Suppose now that equality holds in the lower bound of M1(G). Then the above

inequality must be equalities. This implies that di + dj = 2δ for every ij ∈ E(G), that is,

di = δ for every i ∈ V (G). Besides, |N(i)
⋂

N(j)| = b for every ij ∈ E(G), that is, a = b.

Suppose that equality holds in the upper bound of M1(G). Then di+dj = 2∆ for every

ij ∈ E(G), that is, di = ∆ for every i ∈ V (G). Furthermore, we have |N(i)
⋂

N(j)| = a

for every ij ∈ E(G), that is, a = b.

Conversely, by direct checking we verify they are equal to M1(G).

Theorem 3.3. Let G be a graph of order n with m edges. Then
N4 + 32∆5m

16∆4(∆ + 1)
≤ M1(G) ≤ N4 + 32δ4m

32δ4
.

The equality in the lower bound is attained if and only if G ∼= K∆,∆; the equality in the

upper bound is attained if and only if G is δ-regular graph without cycles of length 4.

Proof. Denote by |P3| the cardinality of the set of paths of length 2 in G that are not

cycles.

|P3| =
∑

i∈V (G)

1

2
di(di − 1) =

1

2

∑
i∈V (G)

d2i −
1

2

∑
i∈V (G)

di =
1

2
M1(G)−m.
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Hence ∑
i,j∈V (G)

i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1

 = 2|P3| = M1(G)− 2m.

Since

∑
i,j∈V (G)

i 6=j

 ∑
k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)


2

=
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)


 ∑

k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)



≤
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

4∆2


 ∑

k∈V (G)
i∼k,k∼j

4∆2



= 16∆4
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1


 ∑

k∈V (G)
i∼k,k∼j

1



= 16∆4
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1

 |N(i)
⋂

N(j)|

≤ 16∆5
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1


= 16∆5 · 2|P3|

= 16∆5(M1(G)− 2m). (3.1)

∑
i∈V (G)

(∑
i∼j

(di + dj)
2

)2

≤
∑

i∈V (G)

(∑
i∼j

(di + dj) · 2∆

)2

= 4∆2
∑

i∈V (G)

(∑
i∼j

(di + dj)

)(∑
i∼j

(di + dj)

)

≤ 8∆3
∑

i∈V (G)

(∑
i∼j

(di + dj)

)(∑
i∼j

1

)
= 8∆3

∑
i∈V (G)

∑
i∼j

(di + dj)di
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≤ 8∆4
∑

i∈V (G)

∑
i∼j

(di + dj)

= 16∆4
∑
i∼j

(di + dj)

= 16∆4M1(G). (3.2)

According to Lemma 2.2 and (3.1), (3.2) we have that

N4 =
∑

i∈V (G)

(∑
i∼j

(di + dj)
2

)2

+
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)


2

≤ 16∆4M1(G) + 16∆5(M1(G)− 2m),

that is

M1(G) ≥ N4 + 32∆5m

16∆4(∆ + 1)
.

Similarly, as

N4 =
∑

i∈V (G)

(∑
i∼j

(di + dj)
2

)2

+
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

(di + dk)(dk + dj)


2

≥ 4δ2
∑

i∈V (G)

(∑
i∼j

(di + dj)

)2

+ 16δ4
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1


 ∑

k∈V (G)
i∼k,k∼j

1



= 4δ2
∑

i∈V (G)

(∑
i∼j

(di + dj)

)2

+ 16δ4
∑

i,j∈V (G)
i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1

 |N(i)
⋂

N(j)|

≥ 8δ3
∑

i∈V (G)

(∑
i∼j

(di + dj)

)(∑
i∼j

1

)
+ 16δ4

∑
i,j∈V (G)

i 6=j

 ∑
k∈V (G)
i∼k,k∼j

1


= 8δ3

∑
i∈V (G)

∑
i∼j

(di + dj) · di + 16δ4(M1(G)− 2m)

≥ 8δ4
∑

i∈V (G)

∑
i∼j

(di + dj) + 16δ4(M1(G)− 2m)

= 16δ4M1(G) + 16δ4(M1(G)− 2m),

it follows

M1(G) ≤ N4 + 32δ4m

32δ4
.
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Suppose that equality holds in the lower bound, then di = ∆ for every i ∈ V (G)

and |N(i)
⋂

N(j)| = ∆ for every i, j, k ∈ V (G) with i ∼ k and k ∼ j. Therefore

N(i) = N(j). Let N(i) = N(j) = {k1, k2, ..., k∆}, then N(k1) = N(k2) = · · · = N(k∆) =

{i, j, w1, w2, ..., w∆−2}. Hence, N(w1) = N(w2) = · · · = N(w∆−2}) = N(i) = N(j). So G

is isomorphic to the complete bipartite graph K∆,∆.

The equality in the upper bound holds, then di = δ for every i ∈ V (G). Therefore,

we have |N(i)
⋂

N(j)| = 1 with i ∼ k and k ∼ j. Hence, |N(i)
⋂

N(j)| = 1. So G is

δ-regular graph without cycles of length 4.

Conversely, one can easily see that the equality holds.
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