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Abstract

Suppose G is a simple graph with vertex set and edge set V (G) and E(G),
respectively. Define B(G) to be the set of all {x, y} such that {x, y} ⊆ V (G)∪E(G)
and members of {x, y} are adjacent or incident to each other. Alwardi et al. in a
recent paper, [A. Alwardi, A. Alqesmah, R. Rangarajan and I. N. Cangul, Entire
Zagreb indices of graphs, Discrete Math. Algorithm. Appl. 10(3) (2018) 1850037
(16 pages)] introduced the first and second entire Zagreb indices of G as ME

1 (G) =∑
x∈V (G)∪E(G) degG(x)

2 and ME
2 (G) =

∑
{x,y}∈B(G) degG(x)degG(y), where degG(u)

denotes the degree of a vertex or edge u in G. In this paper, we continue this
work to obtain the relationship between entire Zagreb indices with the Zagreb and
reformulated Zagreb indices of graphs. Some bounds for the first and second entire
Zagreb indices are obtained. Moreover, the first through the fifth smallest first entire
Zagreb index among all connected graphs and the first through the eleventh smallest
first entire Zagreb index among all trees are computed. Finally, the connected
graphs with the first through the fifth smallest first entire Zagreb index and the
trees with the first through the eleventh smallest first entire Zagreb index are all
graphs with maximum degree at most four.

1 Introduction

Throughout this paper, only the finite, undirected and simple graphs will be considered.

Let G be such a graph with vertex set and edge set V (G) and E(G), respectively. The

degree of a vertex v in G, degG(v), is the number of edges incident to v. The notation

N [v,G] is used for the set of all vertices adjacent to v. A pendant vertex is a vertex
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of degree one and we use ∆ = ∆(G) and δ = δ(G) to denote the maximum degree

and minimum degree of vertices in G, respectively. The number of vertices of degree i

will be denoted by ni or ni(G). It is easy to see that
∑∆(G)

i=0 ni = |V (G)|. In addition,

the number of edges of degree i will be denoted by εi or εi(G). It is easy to see that∑2∆(G)−2
i=0 εi = |E(G)|. Also, mi,j(G) is the number of edges of G connecting a vertex of

degree i with a vertex of degree j. The set of all n-vertex trees will be denoted by τ(n)

and as usual, the path and cycle with n vertices are denoted by Pn and Cn, respectively.

The first Zagreb index M1(G), and the second Zagreb index M2(G), can be

defined as follows:

M1(G) =
∑

uv∈E(G)

[deg(u) + deg(v)] =
∑

v∈V (G)

deg2(v),

M2(G) =
∑

uv∈E(G)

deg(u)deg(v).

These graph invariant were introduced by Ivan Gutman and Nenad Trinajstić [9]. Furtula

and Gutman [6], introduced the forgotten index of G, F (G), as the sum of cubes of

vertex degrees. It is easy to see that

F (G) =
∑

v∈V (G)

deg(v)3 =
∑

e=uv∈E(G)

[deg(u)2 + deg(v)2].

Milićević et al. [10] introduced the first and second reformulated Zagreb indices of
a graph G as edge counterpart of the first and second Zagreb indices, respectively. These

numbers are defined as

EM1(G) =
∑
e∼f

[degG(e) + degG(f)] =
∑

e∈E(G)

degG(e)
2,

EM2(G) =
∑
e∼f

degG(e)degG(f),

where for e = uv, degG(e) = degG(u) + degG(v) − 2 denotes the degree of the edge e,

and e ∼ f means that the edges e and f are incident. Very recently Alwardi et al. [2]

introduced the first and second entire Zagreb indices of a graph G, as

ME
1 (G) =

∑
x∈V (G)∪E(G)

degG(x)
2 and ME

2 (G) =
∑

{x,y}∈B(G)

degG(x)degG(y),

where B(G) denotes the set of all 2−element subsets {x, y} such that {x, y} ⊆ V (G) ∪

E(G) and members of {x, y} are adjacent or incident to each other. They proved that for

any k−regular graph on p vertices,

ME
1 (G) = pk(2k2 − 3k + 2) and ME

2 (G) = pk(2k3 − 7

2
k2 + 4k − 2).
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Moreover, the authors proved that the first and second entire Zagreb indices can be

computed by the following formulas:

ME
1 (G) = 4|E(G)| − 3M1(G) + 2M2(G) +

1

2

∑
u∈V (G)

(degG(u))
3,

ME
2 (G) = 4|E(G)| − 2ME

1 (G)− 2M1(G) +M2(G) +
1

2

∑
u∈V (G)

(degG(u))
4

+
∑

u∈V (G)

(degG(u))
2

∑
v∈N [u,G]

degG(v) +
1

2

∑
u∈V (G)

( ∑
v∈N [u,G]

degG(u)
)2

.

The aim of this paper is to continue this work by extending last equalities and apply

them to find extremal graphs with respect to these graph parameters. We refer to a recent

paper of Ali et al. [1] for more information on related topics.

2 Main Results

In this paper, the relationship between entire Zagreb indices with the Zagreb and refor-

mulated Zagreb indices of graphs are investigated. Some bounds for the first and second

entire Zagreb indices are obtained. Moreover, the first through the fifth smallest first en-

tire Zagreb index among all connected graphs and the first through the eleventh smallest

first entire Zagreb index among all trees are computed. Finally, the connected graphs

with the first through the fifth smallest first entire Zagreb index and the trees with the

first through the eleventh smallest first entire Zagreb index are all graphs with maximum

degree at most four.

Theorem 2.1. Let G be a connected graph with n vertices and m edges. Then

1. ME
1 (G) = M1(G) + EM1(G).

2. ME
2 (G) = 3M2(G) + EM2(G) + F (G)− 2M1(G).

Proof. To prove (1), we note that by our definitions,

ME
1 (G) =

∑
x∈V (G)∪E(G)

degG(x)
2

=
∑

x∈V (G)

degG(x)
2 +

∑
x∈E(G)

degG(x)
2

= M1(G) + EM1(G),
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as desired. To prove (2), we note that by definition:

ME
2 (G) =

∑
{x,y}∈B(G)

degG(x)degG(y)

=
∑

xy∈E(G)

degG(x)degG(y) +
∑

e,f∈E(G),e∼f

degG(e)degG(f)

+
∑

x∈V (G)

∑
xy∈E(G)

degG(x)degG(xy).

Therefore,

ME
2 (G) = M2(G) + EM2(G) +

∑
x∈V (G)

∑
xy∈E(G)

degG(x)[degG(x) + degG(y)− 2]

= M2(G) + EM2(G) +
∑

x∈V (G)

∑
xy∈E(G)

degG(x)
2

+
∑

x∈V (G)

∑
xy∈E(G)

degG(x)degG(y)−
∑

x∈V (G)

∑
xy∈E(G)

2degG(x)

= M2(G) + EM2(G) +
∑

x∈V (G)

degG(x)
3

+ 2
∑

xy∈E(G)

degG(x)degG(y)−
∑

x∈V (G)

2degG(x)
2

= 3M2(G) + EM2(G) + F (G)− 2M1(G).

This completes our argument.

Theorem 2.2. For every simple graph G, ME
1 (G) is an even integer. Moreover, for all

non-negative integers k, there exists at least one graph G with ME
1 (G) = 2k.

Proof. It is well-known that the number of vertices of odd degree in G and L(G) are even.

Hence a simple calculation shows that M1(G) and EM1(G) are even, and by Theorem

2.1, ME
1 (G) is also even. Finally, if G has k isolated edges, i.e. ε0(G) = |E(G)|, then

ME
1 (G) = 2k, which proves that each non-negative even integer is the first entire Zagreb

index of at least one graph.

Theorem 2.3. Let G be a connected graph with n vertices and m edges. Then ME
1 (G) ≥

(M1(G))2

n+m
. The equality holds if and only if G is isomorphic to Cn.

Proof. By the Cauchy-Schwarz inequality,( ∑
x∈V (G)∪E(G)

degG(x)
)2

≤ (n+m)
∑

x∈V (G)∪E(G)

degG(x)
2 = (n+m)ME

1 (G).

On the other hand,
∑

x∈V (G)∪E(G) degG(x) = M1(G). Therefore, ME
1 (G) ≥ (M1(G))2

n+m
, and

the equality holds if and only if G is isomorphic to Cn.
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Corollary 2.4. Let G be a connected graph with n vertices and m edges. Then ME
1 (G) ≥

16m4

n2(n+m)
with equality if and only if G is isomorphic to Cn.

Proof. By a result of Yoon and Kim [11], we can see that,

M1(G) ≥ 4m2

n
, (2.1)

with equality if and only if G is a regular graph. Therefore, by Theorem 2.3, ME
1 (G) ≥

16m4

n2(n+m)
with equality if and only if G is isomorphic to Cn.

Lemma 2.5. If G is a graph with n vertices, m edges, and without isolated edges, i.e.

ε0(G) = 0, then ε1(G) = 4m − M1(G) +
∑2n−4

i=3 εi(G)(i− 2) and ε2(G) = M1(G) − 3m

−
∑2n−4

i=3 εi(G)(i− 1).

Proof. The result follows from ε1(G) + ε2(G) +
∑2n−4

i=3 εi(G) = m and ε1(G) + 2ε2(G)

+
∑2n−4

i=3 iεi(G) = M1(G)− 2m.

Theorem 2.6. ( See [8]) Let G be a graph with n vertices, m edges and without isolated

vertices, i.e. n0(G) = 0. Then M1(G) ≥ 6m − 2n. The equality holds if and only if

ni(G) = 0, for each i with 3 ≤ i ≤ n− 1.

Lemma 2.7. Let G be a graph with n vertices, m edges and without isolated edges (i. e.

ε0(G) = 0). Then EM1(G) = 3M1(G) − 8m +
∑2n−4

i=3 (i− 1)(i− 2)εi(G).

Proof. By Definition and Lemma 2.5, we have

EM1(G) =
∑

e∈E(G)

degG(e)
2 =

2n−4∑
i=0

i2εi(G)

= ε0(G) + ε1(G) + 4ε2(G) +
2n−4∑
i=3

i2εi(G)

= 4m−M1(G) + ε0(G) +
2n−4∑
i=3

εi(G)(i− 2)

+ 4M1(G)− 12m−
2n−4∑
i=3

4εi(G)(i− 1) +
2n−4∑
i=3

i2εi(G)

= 3M1(G)− 8m+
2n−4∑
i=3

(i− 1)(i− 2)εi(G),

proving the lemma.

Corollary 2.8. Let G be a graph with n vertices and m edges.

-375-



1. If ε0(G) = 0, then EM1(G) ≥ 3M1(G) − 8m. The equality holds if and only if

εi(G) = 0 for 3 ≤ i ≤ 2n− 4.

2. If ε0(G) = 0 and n0(G) = 0, then EM1(G) ≥ 10m − 6n. The equality holds if and

only if εi(G) = 0 and ni(G) = 0 for 3 ≤ i ≤ 2n− 4.

Proof. Theorem 2.6 and Lemma 2.7, give us the results.

Corollary 2.9. Let G be a graph with n vertices and m edges.

1. If ε0(G) = 0, then ME
1 (G) ≥ 4M1(G) − 8m. The equality holds if and only if

εi(G) = 0 for 3 ≤ i ≤ 2n− 4.

2. If ε0(G) = 0 and n0(G) = 0, then ME
1 (G) ≥ 16m − 8n. The equality holds if and

only if εi(G) = ni(G) = 0, for 3 ≤ i ≤ 2n− 4.

Proof. Theorems 2.1(1), 2.6, and Corollary 2.8, give us the results.

The following result is a direct consequence of Corollary 2.9.

Corollary 2.10. Let G be a connected graph with n vertices and m edges.

1. If G is a tree, then EM1(G) ≥ 4n− 10 and ME
1 (G) ≥ 8n− 16, with equality if and

only if G ∼= Pn.

2. EM1(G) ≥ 10m − 6n ≥ 4n and ME
1 (G) ≥ 16m − 8n ≥ 8n, the equalities holds if

and only if G ∼= Cn.

Let n be a positive integer number. Define α(n) = nd n
2
e(1− 1

n
d n

2
e).

Theorem 2.11. (See [4]) Suppose ai and bi, 1 ≤ i ≤ n, are positive real numbers. Then∣∣∣n n∑
i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣ ≤ α(n)(A− a)(B − b),

where a, b, A, and B are real constants, that for each i, 1 ≤ i ≤ n, a ≤ ai ≤ A, and

b ≤ bi ≤ B.

Theorem 2.12. Let G be a nontrivial graph with n vertices and m edges. Then

ME
1 (G) ≤ 4α(m)(∆− δ)2

m
+

α(n)(∆− δ)4

mn2
+

8α(n)(∆− δ)2m+ 16m3

n2

− 3α(n)(∆− δ)2 − 12m2

n
+ 4m,

with equality if and only if G is a regular graph.
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Proof. Suppose V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. For each i, 1 ≤ i ≤

n, δ ≤ degG(vi) ≤ ∆ and for each i, 1 ≤ i ≤ m, 2δ − 2 ≤ degG(ei) ≤ 2∆− 2. Therefore,

by Theorem 2.11, ∣∣∣n n∑
i=1

degG(vi)
2 −

( n∑
i=1

degG(vi)
)2∣∣∣ ≤ α(n)(∆− δ)2,

∣∣∣m m∑
i=1

degG(ei)
2 −

( m∑
i=1

degG(ei)
)2∣∣∣ ≤ 4α(m)(∆− δ)2.

By Cauchy-Schwarz inequality, n
∑n

i=1 degG(vi)
2 ≥

(∑n
i=1 degG(vi)

)2

and m
∑m

i=1 degG(ei)
2

≥
(∑m

i=1 degG(ei)
)2

. Hence, M1(G) ≤ 4m2+α(n)(∆−δ)2

n
and we have:

EM1(G) ≤ (M1(G)− 2m)2 + 4α(m)(∆− δ)2

m

≤ 1

mn2

[
α(n)(∆− δ)4 + (8m2 − 4mn)α(n)(∆− δ)2

+ 4α(m)(∆− δ)2n2 + 4(2m− n)2m2
]
.

The equalities holds if and only if G is a regular graph. Finally, by Theorem 2.1(1),

ME
1 (G) ≤ 4α(m)(∆−δ)2

m
+ α(n)(∆−δ)4

mn2 + 8α(n)(∆−δ)2m+16m3

n2 − 3α(n)(∆−δ)2−12m2

n
+4m and the

equality holds if and only if G is a regular graph.

Theorem 2.13. (See [5]) Suppose ai and bi, 1 ≤ i ≤ n are positive real numbers, then

n∑
i=1

b2i + rR

n∑
i=1

ai ≤ (r +R)
n∑

i=1

aibi,

where r, and R are real constants, that for each i, 1 ≤ i ≤ n, rai ≤ bi ≤ Rai.

Theorem 2.14. Let G be a nontrivial graph with n vertices and m edges. Then

ME
1 (G) ≤ 2(δ +∆− 2)

(
2m(δ +∆− 1)− δ∆n

)
− 2m

(
2δ∆− 3(δ +∆) + 2

)
− δ∆n,

the equality holds if and only if G is a regular graph.

Proof. Suppose V (G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. For each i, 1 ≤ i ≤

n, δ · 1 ≤ degG(vi) ≤ ∆ · 1 and for each i, 1 ≤ i ≤ m, 2(δ− 1) · 1 ≤ degG(ei) ≤ 2(∆− 1) · 1.

Therefore, by Theorem 2.13,
∑n

i=1 degG(vi)
2 + δ∆

∑n
i=1 1 ≤ (δ+∆)

∑n
i=1 1 · degG(vi) and∑m

i=1 degG(ei)
2 + 4(δ − 1)(∆ − 1)

∑m
i=1 1 ≤ 2(δ + ∆ − 2)

∑m
i=1 1 · degG(ei). So, M1(G)

≤ (δ + ∆)2m − δ∆n, EM1(G) ≤ 2(δ + ∆ − 2)(M1(G) − 2m) − 4m(δ − 1)(∆ − 1) ≤
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2(δ+∆−2)
(
2m(δ+∆−1)−δ∆n

)
− 4m(δ−1)(∆−1). The equalities hold if and only if G is

a regular graph. Finally, by Theorem 2.1(1), ME
1 (G) ≤ 2(δ+∆−2)

(
2m(δ+∆−1)−δ∆n

)
− 2m

(
2δ∆ − 3(δ+∆)+2

)
− δ∆n, with equality hold if and only if G is a regular graph.

Theorem 2.15. Let G be a connected graph with n vertices and m edges. Then

1. ME
2 (G) ≥ 4

n
(δ − 1)2(2m2 −mn) +m(5δ2 − 4δ),

2. ME
2 (G) ≤ 2(∆− 1)2(n∆2 − 2m) +m(5∆2 − 4∆).

The equalities holds if and only if G is a regular graph.

Proof. (1) By definition,

ME
2 (G) =

∑
xy∈E(G)

degG(x)degG(y) +
∑

x,y∈E(G),x∼y

degG(x)degG(y)

+
∑

x∈V (G)

∑
xy∈E(G)

degG(x)degG(xy)

≥
∑

xy∈E(G)

δ2 +
∑

x,y∈E(G),x∼y

(2δ − 2)2

+
∑

x∈V (G)

∑
xy∈E(G)

δ(2δ − 2)

= mδ2 + (2δ − 2)2
∑

x∈V (G)

( degG(x)
2

)
+

∑
x∈V (G)

degG(x)δ(2δ − 2)

= mδ2 + 2(δ − 1)2(M1(G)− 2m) + 4mδ(δ − 1).

By inequality (2.1),

ME
2 (G) ≥ 4

n
(δ − 1)2(2m2 −mn) +m(5δ2 − 4δ),

and the equality holds if and only if G is a regular graph.

(2) By a similar argument as (1),

ME
2 (G) ≤ m∆2 + 2(∆− 1)2(M1(G)− 2m) + 4m∆(∆− 1).

Since, M1(G) ≤ n∆2, we have

ME
2 (G) ≤ 2(∆− 1)2(n∆2 − 2m) +m(5∆2 − 4∆),

and the equality holds if and only if G is a regular graph.
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For positive integers x1, . . . , xm, and y1, . . . , ym, let T (xy1
1 , . . . , xym

m ) be the class of all

trees in which the vertex yi has degree xi, i = 1, . . . ,m.

Theorem 2.16. ( See [3]) Suppose n ≥ 12. Choose T1, · · · , T11 in such a way that T1 :=

Pn, T2 ∈ T (31, 2n−4, 13), T3 ∈ T (32, 2n−6, 14), T4 ∈ T (41, 2n−5, 14), T5 ∈ T (33, 2n−8, 15),

T6 ∈ T (41, 31, 2n−7, 15), T7 ∈ T (34, 2n−10, 16), T9 ∈ T (41, 32, 2n−9, 16), T11 ∈ T (35, 2n−12, 17)

and T ∈ τ(n) \ {T1, T2, · · · , T7, T9, T11}. Then M1(T1) < M1(T2) < M1(T3) < M1(T4) =

M1(T5) < M1(T6) = M1(T7) < M1(T9) = M1(T11) < M1(T ).

Theorem 2.17. (See [7]) If n ≥ 11, the sets of trees Ti ∈ Ai, i = 1, 2, . . . 14, are defined

in Table 1 and T ∈ τ(n)�{T1, T2, ..., T14}, then EM1(T1) < EM1(T2) < EM1(T3) <

EM1(T4) < EM1(T5) < EM1(T6) < EM1(T7) = EM1(T8) < EM1(T9) = EM1(T10) <

EM1(T11) = EM1(T12) < EM1(T13) = EM1(T14) < EM1(T ).

Corollary 2.18. If n ≥ 11, T1 ∈ A1, T2 ∈ A2, T3 ∈ A3, T4 ∈ A4, T5 ∈ A5, T6 ∈ A6,

T7 ∈ A7, T8 ∈ A8, T9 ∈ A9, T10 ∈ A10, T11 ∈ A11, T12 ∈ A12, T13 ∈ A13, T14 ∈ A14 and

T ∈ τ(n)�{T1, T2, ..., T14}, then ME
1 (T1) < ME

1 (T2) < ME
1 (T3) < ME

1 (T4) < ME
1 (T5) <

ME
1 (T6) < ME

1 (T7) = ME
1 (T8) < ME

1 (T9) = ME
1 (T10) < ME

1 (T11) = ME
1 (T12) < ME

1 (T13)

< ME
1 (T14) < ME

1 (T ).

Proof. The proof follows from Theorems 2.1(1), 2.16, and 2.17.

Corollary 2.19. Suppose T2 ∈ A2, T3 ∈ A3, T4 ∈ A4, and T5 ∈ A5.

1. Let G be a connected graph with n ≥ 6 vertices and G /∈ {T2, T3, Pn, Cn}. Then

EM1(Pn) < EM1(T2) < EM1(T3) = EM1(Cn) < EM1(G).

2. Let G be a connected graph with n ≥ 7 vertices and G /∈ {T2, T3, T4, Pn, Cn}. Then

ME
1 (Pn) < ME

1 (T2) < ME
1 (T3) < ME

1 (T4) < ME
1 (Cn) < ME

1 (G).

Proof. Since EM1(T4) = 4n + 2 and ME
1 (T5) = 8n + 2, the proof follows from Corollary

2.10 and Theorems 2.17, 2.18.
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Table 1. Trees in Theorems 2.17 and 2.18.

Notation DD m3,3 m2,3 m1,2 m1,3 m2,2

A1 T (2n−2, 12) 0 0 2 0 n-3
A2 T (31, 2n−4, 13) 0 1 1 2 n-5
A3 T (31, 2n−4, 13) 0 2 2 1 n-6
A4 T (31, 2n−4, 13) 0 3 3 0 n-7
A5 T (32, 2n−6, 14) 0 2 0 4 n-7
A6 T (32, 2n−6, 14) 0 3 1 3 n-8
A7 T (32, 2n−6, 14) 0 4 2 2 n-9
A8 T (32, 2n−6, 14) 1 1 1 3 n-7
A9 T (32, 2n−6, 14) 0 5 3 1 n-10
A10 T (32, 2n−6, 14) 1 2 2 2 n-8
A11 T (32, 2n−6, 14) 0 6 4 0 n-11
A12 T (32, 2n−6, 14) 1 3 3 1 n-9
A13 T (32, 2n−6, 14) 1 4 4 0 n-10
A14 T (33, 2n−8, 15) 0 4 0 5 n-10

T1 T2 T3 T4 T5

T6 T7 T8 T9

T10 T11 T12

T13 T14

Figure 1. The Trees in Theorem 2.17 and Corollary 2.18.
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