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Abstract

We obtain some relations and sharp bounds for the general first Zagreb index.
Also, we provide some linear recurrence relations with constant coefficients for the
sequence of the general first Zagreb indices which are modifications of a result
appeared in [L. Bedratyuk, O. Savenko, The star sequence and the general first
Zagreb index, MATCH Commun. Math. Comput. Chem. 79 (2018) 407-414].
Moreover, we show that by using the Stirling numbers of the first kind, for each
integer p ≥ ∆(G), the general first Zagreb index Zp(G) can be expressed as a linear
combination of Z0(G), Z1(G), ..., Z∆−1(G).

1 Introduction

Let G be a simple graph (without isolated vertex) with vertex set V (G) and edge set E(G)

such that |V (G)| = n and |E(G)| = m. Two vertices of G which are connected by an edge

are called adjacent and the number of vertices adjacent to a given vertex v ∈ V (G) is the

degree of v and is denoted by deg(v). In [13] and [14] Li et al. considered the general first

Zagreb index of a graph G as

Zp(G) =
∑

uv∈E(G)

(
deg(u)p−1 + deg(v)p−1

)
=

∑
u∈V (G)

deg(u)p

in which p is a real number. Specially, we see that Z0(G) = n, Z1(G) = 2m, Z2(G) =

M1(G) which is the first Zagreb index and Z3(G) = F (G) which is known as the forgotten

topological index, see [1–5, 9, 12, 15, 16] for more details.
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In [7] some combinatorial identities, relating Zp(G) with counts of various subgraphs

contained in the graph G are presented. The Stirling number of the first kind, denoted

by s(n, k), is defined by the rule that (−1)n−ks(n, k) is the number of permutations of

{1, 2, ..., n} with k cycles, and the Stirling number S(n, k) of the second kind counts the

number of ways to partition a set of n elements into k nonempty subsets, see [8] for more

details. Gutman et. al. in [10] and [11], among some other nice results, obtained the

following result which is a generalized form of the Goubko’s theorem.

Theorem 1. Let G be a connected graph with n vertices, m edges and n1 pendant vertices.

Then M1(G) ≥ 16m − 16n + 9n1 and the equality holds if and only if all non-pendant

vertices of G are of degree 4.

We use their method applied for the proof of this theorem to obtail some other relations

and bounds for the general first Zagreb index. Also, it is shown in [6] that

Zp(G) = 2S1(G) +

p∑
i=2

i!S(p, i)Si(G)

in which p ≥ 1 and Si(G) is the number of subgraphs of G that are isomorphic to the

star Si = K1,i. Moreover, in [6] by using the ordinary generating function for the integer

sequence {Zp(G)}p≥0, i.e.

∞∑
p=0

Zp(G)tp =

∑n−1
k=0

(∑k
i=0 s(n+ 1, n+ 1− (k − i)) Zi(G)

)
tk

(1− t)(1− 2t) · · · (1− nt)

it is deduced that

Zp(G) +
n∑

i=1

s(p+ 1, p+ 1− i) Zp−i(G) = 0, p ≥ n.

This is a linear recurrence relation of order n (the number of vertices of G) for the

sequence of the general first Zagreb indices. This relation shows that for each integer

p ≥ n we can express Zp(G) as a linear combinatin of n previous general first Zagreb

indices Zp−1(G), Zp−2(G), ..., Zp−n(G).

In this paper, we give some modifications of these results and among some other

resulats, we specially show that (see Theorem 5 and Corollary 7)

p+1∑
i=1

s(p+ 1, i) Zi−1(G) = 0, p ≥ ∆(G),
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`+1∑
i=1

s(`+ 1, i) Zi−1(G) =
∑
k≥`

k!

(k − `)!
nk+1, ` ≥ 1,

Zp(G)=
∆∑
i=1

p−∆+1∑
j=1

∑
∆+1≤x1<x2<···<xj=p+1

(−1)js(xj, xj−1)s(xj−1, xj−2) · · · s(x2, x1)s(x1, i)

Zi−1(G).

2 Main results

For each integer k ≥ 1 denote the number of vertices of degree k in G by nk. Specially,

n1 is the number of pendant vertices. Therefore,∑
k≥1

nk = n,
∑
k≥1

knk = 2m,
∑
k≥1

k2nk = M1(G),
∑
k≥1

k3nk = F (G),

and ∑
k≥1

kpnk = Zp(G), p ∈ R.

Theorem 2. Let G be an n-vertex graph of size m. Then,

i) M1(G) ≥ 18m− 20n+ 12n1 + 6n2 + 2n3 with equality just when ∆(G) ≤ 5,

ii) M1(G) ≥ 16m− 15n+ 8n1 + 3n2 − n4 with equality just when ∆(G) ≤ 5,

iii) M1(G) ≥ 16m− 16n+ 9n1 + 4n2 + n3 with equality just when ∆(G) ≤ 4,

iv) M1(G) ≥ 14m− 12n+ 6n1 + 2n2 with equality just when ∆(G) ≤ 4,

v) M1(G) ≥ 12m− 8n+ 3n1 − n3 with equality just when ∆(G) ≤ 4,

vi) M1(G) ≥ 12m− 9n+ 4n1 + n2 with equality just when ∆(G) ≤ 3.

vii) M1(G) ≥ 10m− 6n+ 2n1 with equality just when ∆(G) ≤ 3,

viii) M1(G) ≥ 8m− 4n+ n1 with equality just when ∆(G) ≤ 2,

ix) M1(G) ≥ 6m− 2n with equality just when ∆(G) ≤ 2,

Proof. For each pair of real numbers a, b we have∑
k≥1

(k − a)(k − b)nk =
∑
k≥1

(k2 − (a+ b)k + ab)nk = M1(G)− 2m(a+ b) + abn.
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Hence,

M1(G) = 2m(a+ b)− abn+
∑
k≥1

(k − a)(k − b)nk.

Now with the assumption a = 4, b = 5 we see that

M1(G) = 18m− 20n+
∑
k≥1

(k − 4)(k − 5)nk

= 18m− 20n+ 12n1 + 6n2 + 2n3 +
∑
k≥6

(k − 4)(k − 5)nk

≥ 18m− 20n+ 12n1 + 6n2 + 2n3.

Obviously in the last relation, the equality holds if and only if ∆(G) < 6. Similarly, for

the cases (ii) to (ix) let (a, b) be (3, 5), (4, 4), (3, 4), (2, 4), (3, 3), (2, 3), (2, 2) and (1, 2),

respectively.

Corollary 1. If ∆(G) ≤ 5, then

n4 = 5n− 2m− 4n1 − 3n2 − 2n3, n5 = 2m− 4n+ 3n1 + 2n2 + n3.

Proof. by Theorem 2 parts (i) and (ii) we have

18m− 20n+ 12n1 + 6n2 + 2n3 = M1(G) = 16m− 15n+ 8n1 + 3n2 − n4.

This implies that n4 = 5n− 2m− 4n1 − 3n2 − 2n3. Now we have

n5 = n− n1 − n2 − n3 − n4

= n− n1 − n2 − n3 − (5n− 2m− 4n1 − 3n2 − 2n3)

= 2m− 4n+ 3n1 + 2n2 + n3.

Similarly, by comparing part (iii) with (iv), and part (vi) with (vii) in Theorem 2 we

can obtain the following two results, respectively.

Corollary 2. If G is a molecular graph (i.e. ∆(G) ≤ 4), then

n3 = 4n− 2m− 3n1 − 2n2, n4 = 2m− 3n+ 2n1 + n2.

Corollary 3. If ∆(G) ≤ 3, then

n2 = 3n− 2m− 2n1, n3 = 2m− 2n+ n1.
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Theorem 3. For each n-vertex graph G of size m we have

i) F (G) ≥ 12M1(G)− 94m+ 60n− 24n1 − 6n2 with equality just when ∆(G) ≤ 5.

ii) F (G) ≥ 9M1(G) − 52m + 24n − 6n1 and the equality holds if and only if G is a

molecular graph, i.e. ∆(G) ≤ 4.

iii) F (G) ≥ 6(M1(G) + n)− 22m with equality just when ∆(G) ≤ 3.

Proof. Note that for real numbers a, b, c we have∑
k≥1

(k − a)(k − b)(k − c)nk = F (G)− (a+ b+ c)M1(G) + 2(ab+ ac+ bc)m− abcn,

which implies that

F (G) = (a+ b+ c)M1(G)− 2(ab+ ac+ bc)m+ abcn+
∑
k≥1

(k − a)(k − b)(k − c)nk.

Now, if we let a = 3, b = 4, c = 5, then we have

F (G) = 12M1(G)− 94m+ 60n+
∑
k≥1

(k − 3)(k − 4)(k − 5)nk

= 12M1(G)− 94m+ 60n− 24n1 − 6n2 +
∑
k≥6

(k − 3)(k − 4)(k − 5)nk,

and (i) follows directly from it.

For the case (ii) it is sufficient to let a = 2, b = 3, c = 4 and for (iii) let a = 1, b =

2, c = 3.

Corollary 4. If G is a molecular graph (i.e. ∆(G) ≤ 4), then

M1(G) = 14m− 12n+ 6n1 + 2n2

and hence,

14m− 12n ≤ M1(G) ≤ 14m− 4n.

Proof. By Theorem 3 parts (i) and (ii) we see that

9M1(G)− 52m+ 24n− 6n1 = F (G) = 12M1(G)− 94m+ 60n− 24n1 − 6n2.

Now the results follow because 0 ≤ ni ≤ n for i ∈ {1, 2}.

Corollary 5. If ∆(G) ≤ 3, then M1(G) = 10m− 6n+ 2n1.
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Theorem 4. For each n-vertex graph G of size m we have

Z4(G) ≥ 10F (G)− 35M1(G) + 100m− 24n.

The equality holds if and only if G is a molecular graph, i.e. ∆(G) ≤ 4.

Proof. By considering the relation∑
k≥1

(k − 1)(k − 2)(k − 3)(k − 4)nk =
∑
k≥1

(k4 − 10k3 + 35k2 − 50k + 24)nk

= Z4(G)− 10F (G) + 35M1(G)− 100m+ 24n,

the result follows directly.

By using this method and by choosing other suitable values for a, b, c, d, ... we can

obtain many different relations and bounds for the general first Zagreb indices. We drop

it here but we want to consider another general case as below.

For each integer ` ≥ 1 let (x)` = x(x− 1)(x− 2) · · · (x− (`− 1)). The following result

is well known (for example see Proposition 5.3.3 in [8]).

Lemma 1. (x)` =
∑`

i=1 s(`, i)x
i.

The following result provides a linear recurrence relation with constant coefficients for

the sequence of the general first Zagreb indices.

Theorem 5. Let G be a graph (which has no isolated vertex). Then, for each integer

` ≥ 1 we have

`+1∑
i=1

s(`+ 1, i) Zi−1(G) =
∑
k≥`

k!

(k − `)!
nk+1

Proof. For each integer ` ≥ 1, from Lemma 1, we can easily see that

(x− 1)(x− 2) · · · (x− `) =
`+1∑
i=1

s(`+ 1, i) xi−1.
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Therefore,
`+1∑
i=1

s(`+ 1, i) Zi−1(G) =
`+1∑
i=1

(
s(`+ 1, i)

∑
k≥1

ki−1nk

)

=
`+1∑
i=1

∑
k≥1

s(`+ 1, i) ki−1nk

=
∑
k≥1

(
`+1∑
i=1

s(`+ 1, i) ki−1

)
nk

=
∑
k≥1

(
(k − 1)(k − 2) · · · (k − `)

)
nk

=
∑
k≥`

k!

(k − `)!
nk+1.

By considering the special cases ` = 1, ` = 2 and ` = 3 in Theorem 5 we obtain the

following result.

Corollary 6. If G is a graph with n vertices and m edges, then

i)
∑

k≥1 k nk+1 = 2m− n,

ii)
∑

k≥2 k(k − 1) nk+1 = 2n− 6m+M1(G),

iii)
∑

k≥3 k(k − 1)(k − 2) nk+1 = F (G)− 6M1(G) + 22m− 6n.

Note that if ∆(G) ≤ 3, then part (iii) of Corollay 6 implies that 0 = F (G)−6M1(G)+

22m−6n which coincides with part (iii) of Theorem 3. Since nk = 0 for each k ≥ 1+∆(G),

using Theorem 5 the following result directly follows.

Corollary 7. For each integer p ≥ ∆(G) we have

p+1∑
i=1

s(p+ 1, i) Zi−1(G) = 0.

Specially,

Zp(G) = −
p∑

i=1

s(p+ 1, i) Zi−1(G).

For example, when ∆(G) = 3 then using the facts s(4, 1) = −6, s(4, 2) = 11, s(4, 3) =

−6, s(4, 4) = 1 and by inserting p = 3 we can write Z3(G)−6M1(G)+22m−6n = 0, which
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confirms part (iii) of Theorem 3, and similarly when ∆ = 4 then (with p = 4) we have
Z4(G)− 10Z3(G) + 35M1(G)− 100m+24n = 0 which confirms Theorem 4. Note that by

Corollary 7 (with p = ∆+1) and by using the Stirling numbers of the first kind, Z∆+1(G)

can be expressed as a linear combination of Z0(G), Z1(G), ..., Z∆(G). Since Z∆(G), with

p = ∆ in Corollary 7, can also be expressed as a linear combination of Z0(G), Z1(G), ...,

Z∆−1(G), it is possible to express Z∆+1(G) as a linear combination of Z0(G), Z1(G), ...,

Z∆−1(G). Inductively, this can be done for each Zp(G) with p ≥ ∆.

Theorem 6. Let G be graph with the maximum degree ∆. Then, for each integer p ≥ ∆

we have

Zp(G)=
∆∑
i=1

p−∆+1∑
j=1

∑
∆+1≤x1<x2<···<xj=p+1

(−1)js(xj, xj−1)s(xj−1, xj−2) · · · s(x2, x1)s(x1, i)

Zi−1(G)

Proof. We proceed by induction on p. For the base case p = ∆, by using Corollary 7, we

have

Z∆(G) =
∆∑
i=1

[
− s(∆ + 1, i)

]
Zi−1(G)

=
∆∑
i=1

[
∆−∆+1∑

j=1

∑
∆+1≤x1=∆+1

(−1)js(x1, i)

]
Zi−1(G).

Also, for p = ∆+ 1 by Corollary 7 we see that

Z∆+1(G) =

(
−

∆∑
i=1

s(∆ + 2, i) Zi−1

)
− s(∆ + 2,∆+ 1) Z∆(G)

=
∆∑
i=1

[
− s(∆ + 2, i) + s(∆ + 2,∆+ 1)s(∆ + 1, i)

]
Zi−1(G)

=
∆∑
i=1

∆+1−∆+1∑
j=1

∑
∆+1≤x1<···<xj=∆+2

(−1)js(xj, xj−1) · · · s(x1, i)

Zi−1(G).

Now assume that the statement holds for each integer p′ with ∆ ≤ p′ < p and we want
to show that it holds for p. By Corollary 7 we have

Zp(G) = −
p∑

i=1

s(p+ 1, i) Zi−1(G)

= −
∆∑
i=1

s(p+ 1, i) Zi−1(G)−
p∑

i=∆+1

s(p+ 1, i) Zi−1(G)

= −
∆∑
i=1

s(p+ 1, i) Zi−1(G)−
p∑

k=∆+1

s(p+ 1, k) Zk−1(G)
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The induction hypothesis implies that

Zk−1(G) =
∆∑
i=1

k−∆∑
j=1

∑
∆+1≤x1<···<xj=k

(−1)js(xj, xj−1) · · · s(x1, i)

Zi−1(G)

Therefore,

Zp(G) =
∆∑
i=1

[
− s(p+ 1, i)

−
p∑

k=∆+1

k−∆∑
j=1

∑
∆+1≤x1<···<xj=k

(−1)js(p+ 1, k)s(xj, xj−1) · · · s(x1, i)

]
Zi−1(G)

=
∆∑
i=1

[
− s(p+ 1, i)

+

p∑
k=∆+1

k−∆∑
j=1

∑
∆+1≤x1<···<xj=k

(−1)j+1s(p+ 1, xj)s(xj, xj−1) · · · s(x1, i)

]
Zi−1(G)

=
∆∑
i=1

[
− s(p+ 1, i)

+

p−∆∑
j=1

∑
∆+1≤x1<···<xj+1=p+1

(−1)j+1s(xj+1, xj)s(xj, xj−1) · · · s(x1, i)

]
Zi−1(G)

=
∆∑
i=1

[
− s(p+ 1, i)

+

p−∆+1∑
j′=2

∑
∆+1≤x1<···<xj′=p+1

(−1)j
′
s(xj′ , xj′−1)s(xj′−1, xj′−2) · · · s(x1, i)

]
Zi−1(G)

=
∆∑
i=1

[
p−∆+1∑
j′=1

∑
∆+1≤x1<···<xj′=p+1

(−1)j
′
s(xj′ , xj′−1)s(xj′−1, xj′−2) · · · s(x1, i)

]
Zi−1(G).
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