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Abstract

The general atom–bond connectivity index (ABCα) of a graph G = (V,E) is

defined as ABCα(G) =
∑

uv∈E(G)

(du + dv − 2

dudv

)α
, where uv is an edge of G, du is

the degree of the vertex u, α is an arbitrary nonzero real number, and G has no
isolated K2 if α < 0. In this paper, we determine the n-vertex (n ≥ 4) unicyclic
graphs with maximal and second-maximal (resp. minimal and second-minimal)
ABCα indices for α > 0 (resp. −3 ≤ α < 0). And the n-vertex (n ≥ 4) bicyclic
graphs in which the ABCα index attains maximal (resp. minimal) value for α > 0
(resp. −1 ≤ α < 0) are also obtained.

1 Introduction
Let G = (V,E) be a simple connected graph with vertex set V and edge set E, many

topological indices defined in terms of the vertex degrees have been considered in the
∗ The Project Supported by the National Natural Science Foundation of China (Nos.11471077,
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literature [9, 13, 16, 22, 23]. The general form of vertex-degree-based topological indices

is TI(G) =
∑
uv∈E

Ψ(du, dv), where Ψ is a non-negative and real two-variables function, dv

denotes the degree of the vertex v. Molecular descriptors are playing a significant role in
mathematical chemistry, pharmacology, etc. Among all molecular structure descriptors,

topological indices have important applications. One of the most crucial topological

indices is the Randić index [16], which is defined by Ψ(du, dv) =
1√
dudv

. The Randić index

is aimed at the modelling of the branching of the carbon-atom skeleton of alkanes [16].

Bollobás and Erdös [13] generalized the Randić index by replacing −1

2
with arbitrary

nonzero real number α, called the general Randić index, defined as Ψ(du, dv) = (dudv)
α.

In 1998, Estrada, Torres, Rodríguez and Gutman [6] proposed the atom–bond connec-

tivity (ABC) index, defined as Ψ(du, dv) =

√
du + dv − 2

dudv
. They showed that the ABC

index correlates well with the heats of formation of alkanes and can therefore serve the

purpose of predicting their thermodynamic properties. Its mathematical properties were

also extensively investigated, see the recent literature [1–5, 10–12, 14, 15, 17–19] and the

references cited therein. Furtula et al. [9] made a generalization of ABC index, defined

as Ψ(du, dv) =
(du + dv − 2

dudv

)α

, where α > 0 is a real number. They also defined the

augmented Zagreb index (AZI) by Ψ(du, dv) =
(du + dv − 2

dudv

)−3

. More generally, Xing

and Zhou [20] generalized the ABC index for arbitrary nonzero real number α, called the

general atom–bond index and denoted by ABCα index:

ABCα(G) =
∑
uv∈E

(du + dv − 2

dudv

)α

,

where G has no isolated K2 (the complete graph with two vertices) if α < 0.

Furtula et al [9] also showed that the AZI index has a better prediction power than the
ABC index when studying the heat of formation of octanes and heptanes. Estrada [7, 8]

provided a quantum-chemical explanation of the capacity of ABC-like indices and a prob-

abilistic interpretation that fits very well with the chemical intuition for understanding

the capacity of ABC-like indices to describe the energetics of alkanes.

Recall that Zhou et al. [21] determined the n-vertex unicyclic and bicyclic graphs
with the maximal and second-maximal ABC indices. Zhan et al. [24] considered the

n-vertex unicyclic graphs with the minimal and second-minimal AZI indices and the
n-vertex bicyclic graphs with the minimal AZI indices. In this paper, we will determine

the n-vertex unicyclic graphs with the maximal and second-maximal (resp. minimal
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and second-minimal) ABCα indices for α > 0 (resp. −3 ≤ α < 0), and characterize

corresponding graphs. Also, the n-vertex bicyclic graphs in which the ABCα index attains

its maximal (resp. minimal) value for α > 0 (resp. −1 ≤ α < 0) are obtained.

2 On the extremal ABCα indices of unicyclic graphs
In this section, we consider the n-vertex unicyclic graphs with the maximal and second-

maximal (resp. minimal and second-minimal) ABCα index for α > 0 (resp. −3 ≤ α < 0).

For any nonzero real number α and x, y ≥ 1, let f(x, y, α) =
(x+ y − 2

xy

)α

. Note that

f(1, 1, α) = 0, and for x ≥ 1, f(x, 2, α) =
(1
2

)α

.

Lemma 2.1 Let f(x, 1, α) =
(x− 1

x

)α

.

(i) Given α > 0, if x > 1 then f(x, 1, α) is strictly increasing in x; if y > 2 and x ≥ 1,

then f(x, y, α) is strictly decreasing in x.

(ii) Given −3 ≤ α < 0, if x > 1 then f(x, 1, α) is strictly decreasing in x; if y > 2 and

x ≥ 1, then f(x, y, α) is strictly increasing in x.

Proof. (i) Note that for α > 0, x > 1, fx(x, 1, α) =
α(x− 1)α−1

xα+1
> 0. Hence, f(x, 1, α) =(x− 1

x

)α

is strictly increasing in x.

Given y > 2, if x ≥ 1 then fx(x, y, α) =
α(2− y)(x+ y − 2)α−1

xα+1yα
< 0, implying that

f(x, y, α) is strictly decreasing in x.

(ii) If −3 ≤ α < 0, in a similar manner as in the proof of α > 0, we can show that (ii)

holds.

The proof is now complete. �

Let Un be the set of n-vertex unicyclic graphs, Un,p be the set of unicyclic graphs with

n vertices and p pendent vertices, and Sn,p be the unicyclic graph formed by attaching p

pendent vertices to a vertex of the cycle Cn−p, where 0 ≤ p ≤ n− 3.

For any vertex v ∈ V (Cn−p), dv ≥ 2, by Lemma 2.1, we get the graph Sn,p has the

maximal (resp. minimal) ABCα index in Un,p for α > 0 (resp. −3 ≤ α < 0). So we have
the following Lemma 2.2.

Lemma 2.2 Let G ∈ Un,p, 0 ≤ p ≤ n− 3.

(i) If α > 0, then ABCα(G) ≤ ABCα(Sn,p).

(ii) If −3 ≤ α < 0, then ABCα(G) ≥ ABCα(Sn,p), where ABCα(Sn,p) = p
(p+ 1

p+ 2

)α

+

(n− p)
(1
2

)α

.

Theorem 2.1 Among all graphs in Un with n ≥ 3,
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(i) if α > 0, then Sn,n−3 is the unique graph with the maximal ABCα index;

(ii) if −3 ≤ α < 0, then Sn,n−3 is the unique graph with the minimal ABCα index.

Proof. Let

l(n, p) = p
(p+ 1

p+ 2

)α

+ (n− p)
(1
2

)α

,

we obtain

lp(n, p) =
(p+ 1

p+ 2

)α

+ pα
(p+ 1

p+ 2

)α−1 1

(p+ 2)2
−

(1
2

)α

> 0 , for α > 0.

Then ABCα(Sn,p) is strictly increasing in p, by Lemma 2.2 (i), Theorem 2.1 (i) holds.

Similarly, we have lp(n, p) < 0 for −3 ≤ α < 0.

So Theorem 2.1 holds. �

Lemma 2.3 Let d(x, α) = xf(x+ 2, 1, α)− (x− 1)f(x+ 1, 1, α), then

(i) given α > 0, if x ≥ 1 then d(x, α) is strictly increasing in x;

(ii) given −3 ≤ α < 0, if x ≥ 1 then d(x, α) is strictly decreasing in x.

Proof. Let t(x, α) = xf(x + 2, 1, α) = x
(x+ 1

x+ 2

)α

, then d(x, α) = t(x, α) − t(x − 1, α).

By direct calculation, we have

tx(x, α) =
(x+ 1

x+ 2

)α

+ xα
(x+ 1

x+ 2

)α−1 1

(x+ 2)2
=

(x+ 1

x+ 2

)α[
1 +

xα

(x+ 1)(x+ 2)

]
,

and

txx(x, α) = α
(x+ 1

x+ 2

)α−1 1

(x+ 2)2

[
1 +

xα

(x+ 1)(x+ 2)

]
+
(x+ 1

x+ 2

)αα(x+ 1)(x+ 2)− αx(2x+ 3)

(x+ 1)2(x+ 2)2

= α
(x+ 1

x+ 2

)α−1 1

(x+ 1)(x+ 2)3
[(3 + α)x+ 4].

Then, (i) for α > 0 and x ≥ 1, txx(x, α) > 0. It follows that dx(x, α) = tx(x, α)− tx(x−

1, α) > 0. Thus d(x, α) is strictly increasing in x.

(ii) If −3 ≤ α < 0 and x ≥ 1 then txx(x, α) < 0. Hence d(x, α) is strictly decreasing

in x. �

Lemma 2.4 Let x ≥ 1 and h(x, y, α) = f(x+ 1, y, α)− f(x, y, α).

(i) If α > 0 and y > 2 then h(x, y, α) is strictly increasing in x.

(ii) If −1 ≤ α < 0 and y > 2 or if −3 ≤ α < −1 and 2 < y < x+ 2, then h(x, y, α) is

strictly decreasing in x.

Proof. By direct calculation, we have

fx(x, y, α) = α
(x+ y − 2

xy

)α−1xy − y(x+ y − 2)

(xy)2
= α

(x+ y − 2

xy

)α−12− y

x2y
,

and

fxx(x, y, α) = α(α− 1)
(x+ y − 2

xy

)α−2(2− y

x2y

)2

+ α
(x+ y − 2

xy

)α−1 (−2)(2− y)

x3y

= α
(x+ y − 2

xy

)α−2y − 2

x4y2

[
(α− 1)(y − 2) + 2(x+ y − 2)

]
.

-348-



Then, (i) for α > 0, fxx(x, y, α) > α
(x+ y − 2

xy

)α−2y − 2

x4y2

[
−(y−2)+2(x+y−2)

]
> 0.

We obtain

hx(x, y, α) = fx(x+ 1, y, α)− fx(x, y, α) > 0.

(ii) For −1 ≤ α < 0, (α−1)(y−2)+2(x+y−2) ≥ −2(y−2)+2(x+y−2) = 2x > 0,

then fxx(x, y, α) < 0. We get hx(x, y, α) = fx(x+ 1, y, α)− fx(x, y, α) < 0.

For −3 ≤ α < −1, (α−1)(y−2)+2(x+y−2) ≥ −4(y−2)+2(x+y−2) = 2x−2y+4.

Hence, if 2 < y < x + 2, then fxx(x, y, α) < 0. Thus hx(x, y, α) = fx(x + 1, y, α) −

fx(x, y, α) < 0.

So Lemma 2.4 holds. �

Label by v1, v2, ..., vr the vertices of Cr consecutively. Let Sn(n1, n2, ..., nr) be the

unicyclic graph formed by attaching ni − 1 pendent vertices to vi, where n1 ≥ n2 ≥ ... ≥

nr ≥ 1 and
r∑

i=1

ni = n.

Lemma 2.5 (i) If α > 0, then ABCα(Sn(n1, n2, n3)) < ABCα(Sn(n1 + 1, n2 − 1, n3));

(ii) If −3 ≤ α < 0, then ABCα(Sn(n1, n2, n3)) > ABCα(Sn(n1 + 1, n2 − 1, n3)).
Proof. By elementary calculation,

ABCα(Sn(n1, n2, n3))− ABCα(Sn(n1 + 1, n2 − 1, n3))

= [(n1−1)f(1, n1+1, α)−n1f(1, n1+2, α)]+ [(n2−1)f(1, n2+1, α)− (n2−2)f(1, n2, α)]

+[f(n1 + 1, n3 + 1, α)− f(n1 + 2, n3 + 1, α)] + [f(n2 + 1, n3 + 1, α)− f(n2, n3 + 1, α)]

+[f(n1 + 1, n2 + 1, α)− f(n1 + 2, n2, α)]

= −d(n1, α) + d(n2 − 1, α)− h(n1 +1, n3 +1, α) + h(n2, n3 +1, α) + f(n1 +1, n2 +1, α)−

f(n1 + 2, n2, α).

If n3 + 1 = 2, then −h(n1 + 1, n3 + 1, α) + h(n2, n3 + 1, α) = 0. Now, for (i), given

α > 0, note that n1 > n2−1 and n3+1 > 2, by Lemmas 2.3 and 2.4, we have −d(n1, α)+

d(n2 − 1, α) < 0 and −h(n1 + 1, n3 + 1, α) + h(n2, n3 + 1, α) < 0.

Since n2(n1 + 2) < (n1 + 1)(n2 + 1)

and f(n1 + 1, n2 + 1, α)− f(n1 + 2, n2, α) =
[ n1 + n2

(n1 + 1)(n2 + 1)

]α
−

[ n1 + n2

n2(n1 + 2)

]α
,

we have f(n1 + 1, n2 + 1, α)− f(n1 + 2, n2, α) < 0.

Thus ABCα(Sn(n1, n2, n3))− ABCα(Sn(n1 + 1, n2 − 1, n3)) < 0.

(ii) When −3 ≤ α < 0, the result can be obtained similarly as (i). �

Lemma 2.6 Given α > 1, let k(x, α) = xα + (1 − x)α. If 0 < x <
1

2
, then k(x, α) is

decreasing in x. If x >
1

2
, then k(x, α) is increasing in x.

Proof. Note that kx(x, α) = α[xα−1 − (1 − x)α−1]. For α > 1, if 0 < x <
1

2
, then
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kx(x, α) < 0. If x >
1

2
, then kx(x, α) > 0.

The Lemma follows. �

Now, we determine the graphs in Un with the second-maximal ABCα index for n ≥ 4

and α > 0. Clearly, S4,0 is the unique graph with the second-maximal ABCα index in U4

for α > 0. For n ≥ 5, we have the following theorem.

Theorem 2.2 For graphs in Un with n ≥ 5, we have the following result.

(i) For α ≥ 1, Sn(n − 3, 2, 1) is the unique graph with the second-maximal ABCα

index.

(ii) For 1

2
≤ α < 1, if 5 ≤ n ≤ 15, then Sn(n − 3, 2, 1) is the unique graph with

the second-maximal ABCα index. While for n ≥ 16, the graph with the second-maximal

ABCα index is either Sn(n− 3, 2, 1) or Sn,n−4.

(iii) For 0 < α <
1

2
, if 5 ≤ n ≤ 10, then Sn(n − 3, 2, 1) is the unique graph with

the second-maximal ABCα index. If n ≥ 16, then Sn,n−4 is the unique graph with the

second-maximal ABCα index. While for 11 ≤ n ≤ 15, the graph with the second-maximal

ABCα index is either Sn(n− 3, 2, 1) or Sn,n−4.

Proof. For α > 0 and n ≥ 5, let Gsm be the graph with the second-maximal ABCα index

in Un. By Theorem 2.1, Gsm will be achieved in Un\{Sn,n−3}. By the monotonicity of

ABCα(Sn,p) with 0 ≤ p ≤ n− 3, we conclude that Gsm is either Sn,n−4 or the graph with

the maximal ABCα index in Un,n−3\{Sn,n−3}.

Note that the unicyclic graphs in Un,n−3 are of the form Sn(n1, n2, n3) with n1 + n2 +

n3 = n. By Lemma 2.5, Sn(n−3, 2, 1) is the unique graph with the maximal ABCα index

among all graphs in Un,n−3\{Sn,n−3}. Let Z(n, α) = ABCα(Sn,n−4) − ABCα(Sn(n −

3, 2, 1)) = 2
(1
2

)α

−
(2
3

)α

−
[ n− 1

3(n− 2)

]α
.

For (i), if α = 1, then 2
(1
2

)
− 2

3
− n− 1

3(n− 2)
< 1− 2

3
− 1

3
= 0. We have Z(n, 1) < 0.

If α > 1, then Z(n, α) < 2
(1
2

)α

−
(2
3

)α

−
(1
3

)α

. By Lemma 2.6, we have 2
(1
2

)α

−(2
3

)α

−
(1
3

)α

< 0, which gives Z(n, α) < 0.

For (ii), if 1

2
≤ α < 1, then Z(15, α) < 0 (shown in Fig.1). Notice that for any real

number α > 0, Z(n, α) is increasing in n. We have Z(n, α) < 0, for 5 ≤ n ≤ 15.

Now given n = 16, since Z(16,
1

2
) = 2

√
1

2
−

√
2

3
−

√
5

14
≈ 1.03× 10−4 > 0. We have

Z(n,
1

2
) > 0 for any n ≥ 16. But from (i), Z(n, 1) < 0 for any n ≥ 16. Clearly, Z(n, α) is

continuous for any α and n ≥ 5. Hence, for 1

2
≤ α < 1 and n ≥ 16, the relation between

ABCα(Sn,n−4) and ABCα(Sn(n− 3, 2, 1)) is left undecided.
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For (iii), if 0 < α <
1

2
, then Z(16, α) > 0 (shown in Fig.2). Similarly as above, we

have Z(n, α) > 0 for n ≥ 16. From Figs.3-4, we get that Z(n, α) < 0 with 5 ≤ n ≤ 10.

From Figs.5-6, we get that for 11 ≤ n ≤ 15, Z(n, α) > 0 or Z(n, α) < 0 is decided by the

value of α and n .

This completes the proof of Theorem 2.2. �

0.5 0.6 0.7 0.8 0.9 1

-0.03

-0.02

-0.01

0

Fig.1. The value of Z(15,α) for α ∈
[0.5, 1].

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6
×10

-3

Fig.2. The value of Z(16,α) for α ∈
[0, 0.5].

0 0.1 0.2 0.3 0.4 0.5

-0.08

-0.06

-0.04

-0.02

0

Fig.3. The value of Z(5,α) for α ∈
[0, 0.5].

0 0.1 0.2 0.3 0.4 0.5

-0.015

-0.01

-0.005

0

Fig.4. The value of Z(10,α) for α ∈
[0, 0.5].

0 0.1 0.2 0.3 0.4 0.5

-15

-10

-5

0

5
×10

-3

Fig.5. The value of Z(11,α) for α ∈
[0, 0.5].

0 0.1 0.2 0.3 0.4 0.5

-2

0

2

4

6
×10

-3

Fig.6. The value of Z(15,α) for α ∈
[0, 0.5].

In the following, we consider the graphs in Un with the second-minimal ABCα index

for n ≥ 4 and −3 ≤ α < 0. It is a trivial case that S4,0 is the unique graph with the
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second-minimal ABCα index in U4, where −3 ≤ α < 0. For n ≥ 5, we have the following

theorem.

Theorem 2.3 Among all graphs in Un with n ≥ 5 and −3 ≤ α < 0,

(i) if n = 5, then Sn(n − 3, 2, 1) is the unique graph with the second-minimal ABCα

index;

(ii) if 6 ≤ n ≤ 9, then the graph with the second-minimal ABCα index is either

Sn(n− 3, 2, 1) or Sn,n−4;

(iii) if n ≥ 10, then Sn,n−4 is the unique graph with the second-minimal ABCα index.

Proof. For n ≥ 5 and −3 ≤ α < 0, similarly to the proof of Theorem 2.2, we know the

graphs with second-minimal ABCα index in Un is either Sn(n− 3, 2, 1) or Sn,n−4.

Recalling that

Z(n, α) = ABCα(Sn,n−4)− ABCα(Sn(n− 3, 2, 1)) = 2
(1
2

)α

−
(2
3

)α

−
[ n− 1

3(n− 2)

]α
,

we have for −3 ≤ α < 0, Z(n, α) is decreasing in n. Thus Z(5, α) > 0 (shown in Fig.7.),

and Z(n, α) < 0 with n ≥ 10 (shown in Fig.8.). While for 6 ≤ n ≤ 9, we get that

Z(n, α) > 0 or Z(n, α) < 0 is decided by the value of α and n (shown in Figs.9-10.).

This completes the proof of Theorem 2.3. �

-3 -2 -1 0

0

0.5

1

1.5

Fig.7. The value of Z(5,α) for α ∈
[−3, 0].

-3 -2 -1 0

-8

-6

-4

-2

0

Fig.8. The value of Z(10,α) for α ∈
[−3, 0].

-3 -2 -1 0

-1.5

-1

-0.5

0

0.5

Fig.9. The value of Z(6,α) for α ∈
[−3, 0].

-3 -2 -1 0

-6

-4

-2

0

2

Fig.10. The value of Z(9,α) for α ∈
[−3, 0].
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3 On the extremal ABCα indices of bicyclic graphs
In this section, the n-vertex bicyclic graphs are considered with the maximal (resp.

minimal) ABCα index for α > 0 (resp. −1 ≤ α < 0).

Let Bn be the set of bicyclic graphs with n vertices, Bn,p be the set of n−vertex bicyclic

graphs with p pendent vertices for 0 ≤ p ≤ n−4, and Cr,t
n be the n-vertex bicyclic graphs

by identifying one vertex of two cycles Cr and Ct and attaching n + 1 − r − t pendent

vertices to the common vertex, where t ≥ r ≥ 3, r + t ≤ n+ 1.

For 0 ≤ p ≤ n− 5, let Cn,p be the set of graphs Cn,p
∼= Cr,t

n with 3 ≤ r ≤ t ≤ n− 2− p

and r + t = n+ 1− p.

Similarly to Lemma 2.2, using Lemma 2.1, we have the following lemma.

Lemma 3.1 Let G ∈ Bn,p with n ≥ 5 and 0 ≤ p ≤ n− 5,

(i) if α > 0, then ABCα(G) ≤ ABCα(Cn,p);

(ii) if −1 ≤ α < 0, then ABCα(G) ≥ ABCα(Cn,p), where ABCα(Cn,p) =
n+ 1

2α
+

p
[(p+ 3

p+ 4

)α

−
(1
2

)α]
.

Theorem 3.1 Among all graphs in Bn,p with n ≥ 5 and 0 ≤ p ≤ n− 5,

(i) if α > 0, then Cn,n−5 is the unique graph with the maximal ABCα index;

(ii) if −1 ≤ α < 0, then Cn,n−5 is the unique graph with the minimal ABCα index.

Proof. Let

T (p, α) = ABCα(Cn,p) =
n+ 1

2α
+ p

[(p+ 3

p+ 4

)α

−
(1
2

)α]
.

We obtain

Tp(p, α) =
(p+ 3

p+ 4

)α

−
(1
2

)α

+ αp
(p+ 3

p+ 4

)α−1 1

(p+ 4)2
> 0, for α > 0.

Then ABCα(Cn,p) is strictly increasing in p, by Lemma 3.1 (i), Theorem 3.1 (i) holds.

Similarly, we have Tp(p, α) < 0 for −1 ≤ α < 0.

The theorem follows. �

Next, we will consider the case of p = n− 4.

Let B4 be the bicyclic graph obtained by adding an edge to the cycle C4. Label the

vertices of B4 by v1, v2, v3, v4 with dv1 = dv2 = 3, dv3 = dv4 = 2, Bn(n1, n2, n3, n4) be the

graph formed from B4 by attaching ni−1 pendent vertices to vi, where n1 ≥ n2 ≥ 1, n3 ≥

n4 ≥ 1 and
4∑

i=1

ni = n.

Lemma 3.2 Let N(x, α) = xf(x+ 3, 1, α)− (x− 1)f(x+ 2, 1, α) and x ≥ 1,

(i) given α > 0, then N(x, α) is strictly increasing in x;

(ii) given −1 ≤ α < 0, then N(x, α) is strictly decreasing in x.
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Proof. Let m(x, α) = xf(x+3, 1, α) = x
(x+ 2

x+ 3

)α

, then N(x, α) = m(x, α)−m(x−1, α).

By direct calculation,

mx(x, α) =
(x+ 2

x+ 3

)α

+ xα
(x+ 2

x+ 3

)α−1 1

(x+ 3)2
=

(x+ 2

x+ 3

)α[
1 +

xα

(x+ 2)(x+ 3)

]
,

and

mxx(x, α) = α
(x+ 2

x+ 3

)α−1 1

(x+ 3)2

[
1 +

xα

(x+ 2)(x+ 3)

]
+
(x+ 2

x+ 3

)α α(6− x2)

(x+ 2)2(x+ 3)2

= α
(x+ 2

x+ 3

)α−1 1

(x+ 2)(x+ 3)3

[
(5 + α)x+ 12

]
.

Then (i) for α > 0 and x ≥ 1, mxx(x, α) > 0. It follows that Nx(x, α) = mx(x, α) −

mx(x− 1, α) > 0, thus N(x, α) is strictly increasing in x.

(ii) If −1 ≤ α < 0 and x ≥ 1, then mxx(x, α) < 0. Thus N(x, α) is strictly decreasing

in x. �

Lemma 3.3 Given v − u = z − w > 0 and z > v,

(i) if α > 0, then f(3, u, α)− f(3, v, α) > f(3, w, α)− f(3, z, α);

(ii) if −1 ≤ α < 0, then f(3, u, α)− f(3, v, α) < f(3, w, α)− f(3, z, α).

Proof. Let g(y) = f(3, y, α) =
(y + 1

3y

)α

, it is sufficient to prove g(u)−g(v) > g(w)−g(z)

for v − u = z − w > 0 and z > v. By direct calculation,

g′(y) = α
(y + 1

3y

)α−1−1

3y2
,

and

g′′(y) = α(α− 1)
(y + 1

3y

)α−2(−1

3y2

)2

+ α
(y + 1

3y

)α−1 2

3y3

= α
(y + 1

3y

)α−2 1

9y4

[
α− 1 + 2(y + 1)

]
.

(i) If α > 0, then g′′(y) > 0. Thus g′(y) is strictly increasing in y. If v ≤ w, using

Lagrange’s mean value theorem on the intervals [w, z] and [u, v], then (i) follows directly.

If v > w, by v − u = z − w, then using Lagrange’s mean value theorem on the intervals

[v, z] and [u,w], the result also holds. Hence, (i) holds.

(ii) For −1 ≤ α < 0, in a similar way as in the proof of α > 0, we can show that (ii)

holds. �

Lemma 3.4 Let I(x, α) =
(x− 2

x− 1

)α

+
[ x

3(x− 1)

]α
− 2

(1
2

)α

,

(i) given 0 < α < 1, if x ≥ 5 then I(x, α) is increasing in x;

(ii) given −1 ≤ α ≤ −0.3, if x ≥ 9 then I(x, α) is increasing in x.

Proof. Consider the derivative I(x, α) with respect to x,

Ix(x, α) = α
(x− 2

x− 1

)α−1 1

(x− 1)2
+ α

[ x

3(x− 1)

]α−1 −1

3(x− 1)2

= α
( 1

x− 1

)α−1 1

(x− 1)2

[
(x− 2)α−1 − 1

3

(x
3

)α−1]
.

(i) For 0 < α < 1,
[ x

3(x− 2)

]1−α

>
(1
3

)1−α

>
1

3
. Hence Ix(x, α) > 0.
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(ii) For x ≥ 9, we have x

3(x− 2)
≤ 3

7
. If −1 ≤ α ≤ −0.3, then

[ x

3(x− 2)

]1−α

≤(3
7

)1−α

.

Let q(α) =
(3
7

)1−α

− 1

3
, Fig.11 shows that q(α) < 0. Then

[ x

3(x− 2)

]1−α

<
1

3
for

−1 ≤ α ≤ −0.3. Therefore, Ix(x, α) > 0 for x ≥ 9, the result follows. �
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Fig.11. The value of q(α) for α ∈ [−1,−0.3].

Lemma 3.5 For n2 ≥ 2,

(i) if α > 0, then ABCα(Bn(n1 + 1, n2 − 1, n3, n4)) > ABCα(Bn(n1, n2, n3, n4));

(ii) if −1 ≤ α < 0, then ABCα(Bn(n1+1, n2− 1, n3, n4)) < ABCα(Bn(n1, n2, n3, n4)).

Proof. By direction calculation,

ABCα(Bn(n1 + 1, n2 − 1, n3, n4))− ABCα(Bn(n1, n2, n3, n4))

=
(
n1f(1, n1+3, α)+(n2−2)f(1, n2+1, α)+f(n1+3, n3+1, α)+f(n2+1, n3+1, α)+f(n1+

3, n4+1, α)+f(n2+1, n4+1, α)+f(n1+3, n2+1, α)
)
−
( 2∑

i=1

(ni−1)f(1, ni+2, α)+f(n1+

2, n3+1, α)+f(n2+2, n3+1, α)+f(n1+2, n4+1, α)+f(n2+2, n4+1, α)+f(n1+2, n2+2, α)
)

= N(n1, α)−N(n2− 1, α)+h(n1+2, n3+1, α)−h(n2+1, n3+1, α)+h(n1+2, n4+1, α)

−h(n2 + 1, n4 + 1, α) + f(n1 + 3, n2 + 1, α)− f(n1 + 2, n2 + 2, α).

Then, (i) for α > 0, by Lemma 3.2, we have N(n1, α) − N(n2 − 1, α) > 0. By

Lemma 2.4, we have h(n1 + 2, n3 + 1, α) − h(n2 + 1, n3 + 1, α) > 0 and h(n1 + 2, n4 +

1, α) − h(n2 + 1, n4 + 1, α) > 0. Note that (n1 + 3)(n2 + 1) < (n1 + 2)(n2 + 2), we get

f(n1+3, n2+1, α)−f(n1+2, n2+2, α) =
[ n1 + n2 + 2

(n1 + 3)(n2 + 1)

]α
−
[ n1 + n2 + 2

(n1 + 2)(n2 + 2)

]α
> 0.

Thus ABCα(Bn(n1 + 1, n2 − 1, n3, n4))− ABCα(Bn(n1, n2, n3, n4)) > 0.

(ii) For −1 ≤ α < 0, in a similar manner as above, the result holds. �

Lemma 3.6 For n4 ≥ 2,

(i) if α > 0, then ABCα(Bn(n1, n2, n3 + 1, n4 − 1)) > ABCα(Bn(n1, n2, n3, n4));
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(ii) if −1 ≤ α < 0, then ABCα(Bn(n1, n2, n3+1, n4− 1)) < ABCα(Bn(n1, n2, n3, n4)).

Proof. By direction calculation,

ABCα(Bn(n1, n2, n3 + 1, n4 − 1))− ABCα(Bn(n1, n2, n3, n4))

=
(
n3f(1, n3 +2, α)+ (n4 − 2)f(1, n4, α)+ f(n1 +2, n3 +2, α)+ f(n2 +2, n4, α)+ f(n1 +

2, n4, α)+ f(n2+2, n3+2, α)
)
−
( 4∑

i=3

(ni− 1)f(1, ni+1, α)+ f(n1+2, n3+1, α)+ f(n1+

2, n4 + 1, α) + f(n2 + 2, n3 + 1, α) + f(n2 + 2, n4 + 1, α)
)

= d(n3, α)−d(n4−1, α)+h(n3+1, n1+2, α)−h(n4, n1+2, α)+h(n3+1, n2+2, α)−h(n4, n2

+2, α).

Then, (i) for α > 0, using Lemma 2.3, we have d(n3, α)−d(n4−1, α) > 0. By Lemma

2.4, we have h(n3+1, n1+2, α)−h(n4, n1+2, α) > 0 and h(n3+1, n2+2, α)−h(n4, n2+

2, α) > 0. Thus ABCα(Bn(n1, n2, n3 + 1, n4 − 1))− ABCα(Bn(n1, n2, n3, n4)) > 0.

(ii) For −1 ≤ α < 0, in a similar method as in the proof of α > 0, we can show that

(ii) holds. �

Lemma 3.7 Let G = Bn(n1, 1, n3, 1) with n1, n3 ≥ 2 and n = n1 + n3 + 2,

(i) if α > 0, then ABCα(G) < ABCα(Bn(1, 1, n− 3, 1)) < ABCα(Bn(n− 3, 1, 1, 1));

(ii) if −1 ≤ α < 0, then ABCα(G) > ABCα(Bn(1, 1, n − 3, 1)) > ABCα(Bn(n −

3, 1, 1, 1)).

Proof. By direct calculation,

ABCα(Bn(n1, 1, n3, 1)) = (n1 − 1)f(1, n1 + 2, α) + (n3 − 1)f(1, n3 + 1, α) + f(n1 +

2, n3 + 1, α) + f(n1 + 2, 3, α) + f(n1 + 2, 2, α) + f(n3 + 1, 3, α) + f(2, 3, α),

ABCα(Bn(1, 1, n− 3, 1)) = ABCα(Bn(1, 1, n1 + n3 − 1, 1))

= (n1 + n3 − 2)f(1, n1 + n3, α) + 2f(n1 + n3, 3, α) + f(3, 3, α) + 2f(3, 2, α),

ABCα(Bn(n − 3, 1, 1, 1)) = (n − 4)f(1, n − 1, α) + 2f(2, n − 1, α) + f(3, n − 1, α) +

2f(2, 3, α).

Then

ABCα(Bn(n1, 1, n3, 1))− ABCα(Bn(1, 1, n1 + n3 − 1, 1))

= (n1 − 1)[f(1, n1 + 2, α)− f(1, n1 + n3, α)] + (n3 − 1)[f(1, n3 + 1, α)− f(1, n1 + n3, α)]+

[f(n1 + 2, 3, α)− f(n1 + n3, 3, α)]− [f(3, 3, α)− f(n3 + 1, 3, α)] + f(n1 + 2, n3 + 1, α)−

f(n1 + n3, 3, α).

(i) For α > 0 and n1, n3 ≥ 2, by Lemma 2.1, we have f(1, n1+2, α)−f(1, n1+n3, α) < 0

and f(1, n3+1, α)−f(1, n1+n3, α) < 0. By Lemma 3.3, we have [f(n1+2, 3, α)−f(n1+

n3, 3, α)]− [f(3, 3, α)− f(n3 + 1, 3, α)] < 0. Notice that (n1 + 2)(n3 + 1)− 3(n1 + n3) =

(n1 − 1)(n3 − 2) > 0, we get
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f(n1+2, n3+1, α)− f(n1+n3, 3, α) =
[ n1 + n3 + 1

(n1 + 2)(n3 + 1)

]α
−
[n1 + n3 + 1

3(n1 + n3)

]α
< 0.

Thus ABCα(Bn(n1, 1, n3, 1))− ABCα(Bn(1, 1, n− 3, 1)) < 0.

On the other hand, ABCα(Bn(n − 3, 1, 1, 1)) − ABCα(Bn(1, 1, n − 3, 1)) = (n −

4)[f(1, n−1, α)−f(1, n−2, α)]+ [f(2, 3, α)−f(n−2, 3, α)]− [f(3, 3, α)−f(n−1, 3, α)]+

f(2, n− 1, α)− f(3, n− 2, α).

Similarly as above, we have ABCα(Bn(n− 3, 1, 1, 1))−ABCα(Bn(1, 1, n− 3, 1)) > 0.

(ii) For −1 ≤ α < 0, in a similar method as in the proof of α > 0, we can show that

(ii) holds. �

From Lemmas 3.5-3.7, we have the following Lemma 3.8.

Lemma 3.8 Among the graphs in Bn,n−4 with n ≥ 5,

(i) if α > 0, then Bn(n−3, 1, 1, 1) is the unique graph with the maximal ABCα index,

and Bn(1, 1, n− 3, 1) is the unique graph with the second-maximal ABCα index;

(ii) if −1 ≤ α < 0, then Bn(n− 3, 1, 1, 1) is the unique graph with the minimal ABCα

index, and Bn(1, 1, n− 3, 1) is the unique graph with the second-minimal ABCα index.

Theorem 3.2 Among all graphs in Bn with n ≥ 4 and α > 0, Bn(n − 3, 1, 1, 1) is the

unique graph with the maximal ABCα index.

Proof. The case of n = 4 is trivial. Suppose that n ≥ 5.

By Theorem 3.1, among all graphs in Bn,p with 0 ≤ p ≤ n − 5, Cn,n−5 is the unique

graph with the maximal ABCα index. By Lemma 3.8, Bn(n − 3, 1, 1, 1) is the unique

graph with the maximal ABCα index in Bn,n−4. Then the graphs in Bn which has the

maximal ABCα index is either Bn(n− 3, 1, 1, 1) or Cn,n−5. Furthermore,

ABCα(Bn(n − 3, 1, 1, 1)) − ABCα(Cn,n−5) =
(n− 2

n− 1

)α

+
[ n

3(n− 1)

]α
− 2

(1
2

)α

=

I(n, α).

We have I(n, α) >
(n− 2

n− 1

)α

+
( 1

n− 1

)α

− 2
(1
2

)α

. It is clear that I(n, 1) > 0.

For α > 1, by Lemma 2.6, we get
(n− 2

n− 1

)α

+
( 1

n− 1

)α

− 2
(1
2

)α

> 0.

For 0 < α < 1, by Lemma 3.4, we have
(n− 2

n− 1

)α

+
[ n

3(n− 1)

]α
− 2

(1
2

)α

≥
(3
4

)α

+( 5

12

)α

− 2
(1
2

)α

= I(5, α) > 0 (shown in Fig.12).

This completes the proof of Theorem 3.2. �

-357-



0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

Fig.12. The value of I(5,α) for α ∈
[0, 1].
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Fig.13. The value of L(α) for α ∈
[−1,−0.3].

Theorem 3.3 Among all graphs in Bn with n ≥ 4 and −1 ≤ α < 0, Bn(n− 3, 1, 1, 1) is

the unique graph with the minimal ABCα index.

Proof. The case of n = 4 is trivial. In the following, we suppose that n ≥ 5.

Similarly to the proof of Theorem 3.2, we get that the graphs in Bn which has the

minimal ABCα is either Bn(n− 3, 1, 1, 1) or Cn,n−5.

By the proof of Theorem 3.2,

I(n, α) = ABCα(Bn(n − 3, 1, 1, 1)) − ABCα(Cn,n−5) =
(n− 2

n− 1

)α

+
[ n

3(n− 1)

]α
−

2
(1
2

)α

.

Then we distinguish between the following two cases.

Case 1. −1 ≤ α ≤ −0.3.

For n = 5, 6, 7, 8 by direct calculation, we have I(n, α) < 0. Furthermore, I(n, α) →

1+
(1
3

)α

−2
(1
2

)α

, as n → ∞. Let L(α) = 1+
(1
3

)α

−2
(1
2

)α

, Fig.13 shows that L(α) < 0.

Then for n ≥ 9, by Lemma 3.4, we have I(n, α) < 0.

Combining all above, for any n ≥ 5 and −1 ≤ α ≤ −0.3, we have I(n, α) < 0 .

Case 2. −0.3 < α < 0.

If n = 5, then we have I(5, α) =
(3
4

)α

+
( 5

12

)α

− 2
(1
2

)α

< 0 (as shown in Fig.14).

Since
(n− 2

n− 1

)α

is decreasing in n and
[ n

3(n− 1)

]α
is increasing in n. If n ≥ 6, then

I(n, α) ≤
(4
5

)α

+
(1
3

)α

− 2
(1
2

)α

. Let R(α) =
(4
5

)α

+
(1
3

)α

− 2
(1
2

)α

, we have R(α) < 0

(shown in Fig.15). Then the result follows. �
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Fig.14. The value of I(5,α) for α ∈
[−0.3, 0].
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Fig.15. The value of R(α) for α ∈
[−0.3, 0].
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