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Abstract

For a symmetric bivariable function f(x, y), let the connectivity function of
a connected graph G be Mf (G) =

∑
uv∈E(G) f(d(u), d(v)), where d(u) is the de-

gree of vertex u. As an application of majorization theory, we present a uniform
method to some extremal results together with its corresponding extremal graphs
for vertex-degree-based invariants among the class of trees, unicyclic graphs and bi-
cyclic graphs with fixed number of independence number and/or matching number,
respectively. As a consequence, several known results in chemical graph theory has
been obtained.

1 Introduction

In this paper, we only consider simple connected undirected graph, and G = (V,E) is

a connected graph with n vertices and m edges. If m = n + c − 1, then G is called a

c-cyclic graph. Especially, when c = 0, 1 or 2, then G is called a tree, unicyclic graph or

bicyclic graph, respectively. As usual, denote d(u) the degree of u. A vertex of degree one

is called a pendent vertex of G, and the number of pendent vertices of G will be referred

as p(G). In contrast with pendent vertex, a vertex of degree being at least two is called
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a non-pendent vertex. Furthermore, a vertex with degree k will be referred as a k-vertex.

Suppose the degree of vertex vi equals di for i = 1, 2, . . . , n, then π(G) = (d1, d2, . . . , dn) is

called the degree sequence of G. In the following discussions we enumerate the degrees in

non-increasing order, i.e., d1 ≥ d2 ≥ · · · ≥ dn. Consequently, d(v1) ≥ d(v2) ≥ · · · ≥ d(vn)

holds, where V (G) = {v1, v2, . . . , vn}. Let Γ(π) be the class of connected graphs with

degree sequence π. When G is a c-cyclic graph with degree sequence π, then
n∑

i=1

di = 2(n+ c− 1). (1)

A subset S of V (G) is said to be an independent set of G if each pair of vertices of S

are not adjacent. The number of vertices in a maximum independent set of G is called the

independence number of G and denoted by α(G). If G is a connected graph with n ≥ 3

vertices, then it is easy to see that the class of pendent vertices form an independent

vertex set of G. Thus, we have

p(G) ≤ α(G). (2)

A matching in a graph G is a set of pairwise nonadjacent edges. The maximum size of

a matching set of G is called the matching number of G and denoted by β(G) hereafter.

For any connected graph G, since each edge of any matching has at least one end vertex

being a non-pendent vertex, we have

p(G) ≤ n− β(G). (3)

Among all the vertex-degree-based graph invariants, the first Zagreb index M1(G) and

second Zagreb index M2(G) [2] are two famous topological indices, where

M1(G) =
∑

v∈V (G)

(d(u))2 , and M2(G) =
∑

uv∈E(G)

d(u)d(v).

In what follows, γ denotes a real number. As a generalization of M1(G), Li and Zheng

[4] introduced the notation of general Randić index Rγ(G) (sometimes also referred as

“zeroth-order general Randić index”), where

Rγ(G) =
∑

v∈V (G)

(d(v))γ.

Furthermore, R−1(G) is called the inverse degree of graph G and denoted by ID(G)

(See [12]).
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Since
∑

uv∈E(G) (d(u) + d(v)) =
∑

v∈V (G) (d(v))
2 , as another extension to M1(G), the

general sum-connectivity index [14] χγ(G) of G is constructed as

χγ(G) =
∑

uv∈E(G)

(d(u) + d(v))γ .

The reformulated Zagreb index Z2(G) of G [9] is a slight modification to χ2(G), where

Z2(G) =
∑

uv∈E(G)

(d(u) + d(v)− 2)2 .

As an extension of Z2(G), we define Zγ(G) as follows:

Zγ(G) =
∑

uv∈E(G)

(d(u) + d(v)− 2)γ .

In order to study on vertex-degree-based invariants of a graph, Wang [10] recently

proposed the concept of escalating function as follows: A symmetric bivariate function

f(x, y) defined on positive real numbers is called escalating if

f(x1, x2) + f(y1, y2) ≥ f(x2, y1) + f(x1, y2) (4)

holds for any x1 ≥ y1 > 0 and x2 ≥ y2 > 0, and the inequality in (4) is strict if x1 > y1 and

x2 > y2. Furthermore, an escalating function f(x, y) is called good escalating if f(x, y)

satisfies
∂f(x, y)

∂x
> 0,

∂2f(x, y)

∂x2
≥ 0,

and

f(x1 + 1, x2) + f(x1 + 1, y1 − 1) ≥ f(x2, y1) + f(x1, y1)

holds for any x1 ≥ y1 and x2 ≥ 1. To extend these above definitions of vertex-degree-based

invariants, Wang [10] defined connectivity function of a connected graph G associated with

a symmetric bivariate function f(x, y) as

Mf (G) =
∑

uv∈E(G)

f (d(u), d(v)) . (5)

In this paper, we will employ the majorization theorem as a tool to give a uniform

method for some extremal results together with its corresponding extremal graphs of

vertex-degree-based invariants among the class of trees, unicyclic graphs and bicyclic

graphs with fixed number of independence number and/or matching number, respectively.
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2 Some useful preliminaries
As stated in [6, 13], the majorization theorem is an important and effective tool to deal

with extremal problem of graph spectrum and topological index theory. In this section,

we shall introduce some majorization theorems for vertex-degree-based invariants. Firstly,

we introduce the definition of majorization.

Definition 2.1 (See [6, 8]) Let π = (a1, a2, . . . , an) and π′ = (a′1, a
′
2, . . . , a

′
n) be two dif-

ferent non-increasing sequences of nonnegative real numbers, we write π E π′ if and only

if
∑n

i=1 ai =
∑n

i=1 a
′
i, and

∑j
i=1 ai ≤

∑j
i=1 a

′
i for all j = 1, 2, . . . , n. Furthermore, we

write π C π′ if and only if π E π′ and π 6= π′. The ordering π E π′ is sometimes called

majorization.

A real valued function f(x) defined on a convex set D is said to be strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

holds for all 0 ≤ λ ≤ 1 and all x, y ∈ D. The following majorization theorem for a strictly

convex function had been discovered long time ago [3].

Theorem 2.1 [3] Let π = (a1, a2, . . . , an) and π′ = (b1, b2, . . . , bn) be two non-increasing

sequences of nonnegative real numbers. If πC π′ and ϕ is a strictly convex function, then∑n
i=1 ϕ(ai) <

∑n
i=1 ϕ(bi).

Note that ϕ(x) = xr is a strictly convex function for either r > 1 or r < 0, and

ϕ(x) = −xr is a strictly convex function for 0 < r < 1. Thus, Theorem 2.1 implies the

following corollary.

Corollary 2.1 Let π = (a1, a2, . . . , an) and π′ = (b1, b2, . . . , bn) be two non-increasing

sequences of nonnegative real numbers. If πC π′, then
∑n

i=1 a
r
i <

∑n
i=1 b

r
i holds for either

r > 1 or r < 0, and
∑n

i=1 a
r
i >

∑n
i=1 b

r
i holds for 0 < r < 1.

For a given degree sequence π and a good escalating function f(x, y), if G has the

maximum connectivity function in Γ(π), then G is called an extremal graph of Γ(π).

Theorem 2.2 Let π and π′ be two different non-increasing degree sequences with πC π′.

(i) [5] If G ∈ Γ(π) and G′ ∈ Γ(π′), then Rγ(G) < Rγ(G
′) holds for either γ < 0 or γ > 1,

and Rγ(G) > Rγ(G
′) holds for 0 < γ < 1.

(ii) [7] Let G and G′ be an extremal c-cyclic graph of Γ(π) and Γ(π′), respectively. If

f(x, y) is a good escalating function, then Mf (G) < Mf (G
′) holds for c ∈ {0, 1, 2}.
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Theorem 2.3 [7] The second Zagreb index M2(G) is good escalating, Zγ(G) and χγ(G)

are also good escalating for γ > 1.

3 Extremal results with given independence number

Denote by R(G) the reduced graph obtained from G by recursively deleting pendent

vertices of the resultant graph until no pendent vertices remain. If G is a c-cyclic graph

with c ≥ 1, it is easy to see that R(G) is unique and R(G) is also a c-cyclic graph.

Hereafter, let π1 = (2c + p, 2(n−p−1), 1(p)), π2 = (2c + p − 2, 3(2), 2(n−p−3), 1(p)) and π3 =

(2c+ p− 4, 4, 3(2), 2(n−p−4), 1(p)).

Lemma 3.1 Let G be a c-cyclic graph with n vertices, p pendent vertices and degree

sequence π. If π 6= π1, then π C π1. Furthermore, (2c + p, 2(n−p−1), 1(p)) C (2c + p +

1, 2(n−p−2), 1(p+1)).

Proof. By Definition 2.1, it is easy to check that (2c + p, 2(n−p−1), 1(p)) C (2c + p +

1, 2(n−p−2), 1(p+1)). Now, we turn to prove πCπ1. To do this, let π1 = (d′1, d
′
2, . . . , d

′
n−p, 1

(p))

and π = (d1, d2, . . . , dn−p, 1
(p)), where d1 ≥ d2 ≥ · · · ≥ dn−p ≥ 2. Then,

d1 = 2(n+ c− 1)− p− d2 − d3 − · · · − dn−p ≤ 2(n+ c− 1)− p− 2 (n− p− 1) = 2c+ p.

If d1 = 2c + p, then d2 = d3 = · · · = dn−p = 2, and hence π = π1, a contradiction. Thus,

d1 < 2c+ p. Since dj ≥ 2 holds for 2 ≤ j ≤ n− p,

j∑
i=1

di = 2(n+ c− 1)− p− dj+1 − · · · − dn−p ≤ 2(n+ c− 1)− p− 2 (n− p− j) =

j∑
i=1

d′i

holds for 2 ≤ j ≤ n− p. Thus, π C π1.

As usual, let Pn, Cn and Kn be the path, cycle and complete graph with n vertices,

respectively. An s-rose graph is a graph with exactly s cycles that all meet in one vertex.

Lemma 3.2 Let G be a c-cyclic graph with n vertices, p pendent vertices and degree

sequence π such that every vertex of R(G) is adjacent to at least one pendent vertex.

(i) If π 6= π2 and c ≥ 1, then π C π2. (ii) If π 6= π3 and c ≥ 2, then π C π3.

Proof. Let π(G) = (d1, d2, . . . , dn−p, 1
(p)), where d1 ≥ d2 ≥ · · · ≥ dn−p ≥ 2. Since c ≥ 1, G

contains at least one cycle such that every vertex of this cycle is adjacent to at least one

pendent vertex. Thus, we have d1 ≥ d2 ≥ d3 ≥ 3 and hence π C π2 by (1). So, (i) holds.
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Now, we turn to prove (ii). Since c ≥ 2, we may suppose that Cs and Ct are two

cycles of G. Thus, each vertex of Cs and Ct is adjacent to at least one pendent vertex,

and hence the degree of every vertex on Cs or Ct is at least three. Furthermore, since G

is connected, there is at least one vertex with degree being at least four. In this case, we

may suppose that π = (d1, d2, . . . , dn−p, 1
(p)), where d1 ≥ d2 ≥ · · · ≥ dk ≥ 4 > dk+1 =

dk+2 = · · · = dq = 3 > dq+1 = dq+2 = · · · = dn−p = 2. By the former argument, k ≥ 1 and

q ≥ 4.

If k = 1, then R(G) is a c-rose graph (since every vertex of R(G) is adjacent to at

least one pendent vertex). Thus, π = (d1, 3
(q−1), 2(n−p−q), 1(p)) and q ≥ s + t − 1 ≥ 5. In

this case,

d1 = 2(n+ c− 1)− p− 3(q − 1)− 2(n− p− q) = 2c+ p− q + 1 ≤ 2c+ p− 4

and d1 + d2 = 2(n+ c− 1)− p− 3(q − 2)− 2(n− p− q) = 2c+ 4 + p− q < 2c+ p.

Now, it is easy to check that π C π3, as d3 ≥ d4 ≥ 3. Otherwise, k ≥ 2. In this

case, π(B) = (d1, d2, . . . , dk, 3
(q−k), 2(n−p−q), 1(p)). Since q ≥ 4, k ≥ 2 and π 6= π3, we have

π C π3.

Lemma 3.3 Let G be a c-cyclic graph with n vertices and degree sequence π = (d1, d2, . . . ,

dn−p, 1
(p)) such that d3 ≥ 3. If π 6= π2 and c ≥ 2, then π C π2.

Proof. We may suppose that d1 ≥ d2 ≥ · · · ≥ dq ≥ 3 > dq+1 = dq+2 = · · · = dn−p = 2.

Since d3 ≥ 3, we have q ≥ 3 and hence

π E (2c+ 1 + p− q, 3(q−1), 2(n−p−q), 1(p))C π2.

This completes the proof of this result.

Let v be a vertex of a graph G. Suppose Ps = u1u2 · · ·us, where ui 6∈ V (G) for

1 ≤ i ≤ s. If we obtain G′ by identifying the vertex v with u1, then we say that G′ is

obtained from G by attaching the path Ps to v of G. As shown in Figure 1, let F1 and F2

be two c-cyclic graphs, where c ≥ 1. Hereafter, let S1(c; a, b) (resp., S2(c; a, b)) define the

c-cyclic graph obtained by attaching a paths of lengths two and b paths of lengths one,

respectively, to the vertex v of F1 (resp., F2). If c = 0, then we agree with a+ b ≥ 2 and

we define S1(0; a, b) as the tree obtained by attaching a paths of lengths two and b paths

of lengths one, respectively, to one common vertex.
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v
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F1

v

Figure 1. The c-cyclic graphs F1 and F2.

In what follows, let π4 = (2c + a + b, 2(a+2c), 1(a+b)) and π5 = (c + 1 + a + b, c +

2, 3(c), 2(a), 1(a+b+c+1)). It is easy to see that S1(c; a, b) ∈ Γ(π4) and S2(c; a, b) ∈ Γ(π5).

Lemma 3.4 Let G be a c-cyclic graph such that G ∈ Γ(π4), where c ≥ 0 and 2c+a+b ≥ 2.

If exactly 2c vertices of degrees two are not adjacent to any pendent vertex in G, then

G ∼= S1(c; a, b).

Proof. We may suppose that c ≥ 1, as the case of c = 0 can be proved similarly. Since

G is a c-cyclic graph with d2 = 2, R(G) is just a c-rose graph. Thus, each vertex of

V (R(G))\{v1} is not adjacent to any pendent vertex. Since exactly 2c vertices of degrees

two of G are not adjacent to any pendent vertex, we can conclude that each cycle of G is

a triangle, and hence each vertex of V (G)\V (R(G)) is adjacent to at least one pendent

vertex.

Let u be a 2-vertex of G such that u 6∈ V (R(G)). Since u is adjacent to at least

one pendent vertex, we can conclude that u is adjacent to exactly one pendent vertex

(Otherwise, G is disconnected, a contradiction). If u is adjacent to another 2-vertex (say

v), then v is adjacent to a pendent vertex and u, which implies that G is disconnected, a

contradiction. Thus, u is adjacent to one pendent vertex and the maximum degree vertex.

Now, we can conclude that G ∼= S1(c; a, b).

Lemma 3.5 Let G be a c-cyclic graph such that G ∈ Γ(π5), where c ≥ 1 and a + b ≥ 1.

If every non-pendent vertex of G is adjacent to at least one pendent vertex, then G ∼=
S2(c; a, b).

Proof. Since every non-pendent vertex of G is adjacent to at least one pendent vertex and

G ∈ Γ(π5), then the degree of each vertex of V (R(G)) is at least three. By the definition

of π5, R(G) is a c-cyclic graph with at most c+2 vertices and the third maximum degree

vertex of R(G) is a 2-vertex. Thus, R(G) ∼= R(F2).
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Since every non-pendent vertex of G is adjacent to at least one pendent vertex, similar

with the proof of Lemma 3.4, we can conclude that every 2-vertex of G is adjacent

to one pendent vertex and the maximum degree vertex. Now, we can conclude that

G ∼= S2(c; a, b).

Let B1(a, b) be the bicyclic graph obtained from S1(1; a, b) by adding one edge be-

tween two 2-vertices in V (S1(1; a, b))\V (C3), where a ≥ 2 and let B2(a, b) be the bi-

cyclic graph obtained from S1(1; a, b) by adding one edge between one 2-vertex of V (C3)

and one 2-vertex of V (S1(1; a, b))\V (C3), where a ≥ 1. In what follows, let π6 =

(a + b + 2, 3(2), 2(a), 1(a+b)) and let K4 − e be a bicyclic graph obtained by deleting one

edge from K4.

Lemma 3.6 Let B be a bicyclic graph such that B ∈ Γ(π6), where a + b ≥ 1. If all the

non-pendent vertices being not adjacent to any pendent vertex induce either K2 or K3,

then either B ∼= B1(a, b) or B ∼= B2(a, b).

Proof. Suppose that Cs and Ct are two cycles of B with t ≥ s ≥ 3, and suppose that

π6 = (d1, d2, . . . , dn). Since except for at most three non-pendent vertices, each of the

other non-pendent vertices of B is adjacent to at least one pendent vertex, there are at

least |V (Cs ∪ Ct)| − 3 vertices with degree being at least three. Note that d2 = 3 and

d4 = 2. Thus, 4 ≤ |V (Cs) ∪ V (Ct)| ≤ 6 and 1 ≤ |V (Cs) ∩ V (Ct)| ≤ 3.

We firstly consider the case of |V (Cs) ∩ V (Ct)| = 1. Note that all the non-pendent

vertices being not adjacent to any pendent vertex induce either K2 or K3. Combining this

with d2 = 3 and d4 = 2, we have |V (Cs)∪V (Ct)| = 5 and s = t = 3. By the hypothesis, v2
and v3 are two adjacent 3-vertices in the same triangle of B, and v2 and v3 are adjacent to

exactly one pendent vertex, respectively. Furthermore, the other two adjacent 2-vertices

in the same triangle of B are not adjacent to any pendent vertex. Let u be a 2-vertex of

B such that u 6∈ V (R(B)). Then, u is adjacent to at least one pendent vertex. Since B

is connected, u is adjacent to one pendent vertex and the maximum degree vertex. Now,

we can conclude that B ∼= B1(a, b) with a ≥ 2.

We secondly consider the case of |V (Cs) ∩ V (Ct)| = 2. In this case, we have (s, t) ∈

{(3, 3), (3, 4), (3, 5), (4, 4)}. Note that all the non-pendent vertices being not adjacent to

any pendent vertex induce either K2 or K3. Combining this with d2 = 3 and d4 = 2, we

have R(B) ∼= K4 − e. Now, since d2 = 3 and d4 = 2, one 3-vertex and one 2-vertex of

K4− e cannot be adjacent to any pendent vertex. Since B is connected, each of the other
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2-vertices not in K4 − e is adjacent with exactly one pendent vertex and the maximum

degree vertex. Now, by the definition of B and π6, we have B ∼= B2(a, b) with a ≥ 1.

We thirdly consider the case of |V (Cs)∩V (Ct)| = 3. In this case, (s, t) ∈ {(4, 4), (4, 5)}.

Note that all the non-pendent vertices being not adjacent to any pendent vertex induce

either K2 or K3. Thus, we have d4 ≥ 3, a contradiction.

For convenience, we rewrite S1(0;n−1−α, 2α+1−n) as T (n, α), S1(1;n−α−2, 2α+

1− n) as U1(n, α), S2(1;n− α− 3, 2α+ 1− n) as U2(n, α), B1(n− α− 2, 2α+ 1− n) as

Z1(n, α), B2(n− α− 2, 2α+ 1− n) as Z2(n, α), S1(2;n− α− 3, 2α+ 1− n) as Z3(n, α),

and rewrite S2(2;n− α− 4, 2α + 1− n) as Z4(n, α).

Theorem 3.1 Let T be a tree with n (≥ 3) vertices and independence number α. If

T 6∼= T (n, α), then (i) Rγ(T ) < Rγ(T (n, α)) holds for either γ < 0 or γ > 1, and

Rγ(T ) > Rγ(T (n, α)) holds for 0 < γ < 1, and (ii) Mf (T ) < Mf (T (n, α)) holds for any

good escalating function f(x, y).

Proof. Since T is a bipartite graph, we have α ≥ dn
2
e. We suppose that T contains p

pendent vertices and suppose the degree sequence of T is π. By (2) and since n ≥ 3, we

have 2 ≤ p ≤ α. Let π′ = (α, 2(n−α−1), 1(α)).

Suppose that T ∈ Γ(π′). Since p = α, the class of pendent vertices of T form a

maximum independent vertex set of T , and hence every non-pendent vertex must be

adjacent to at least one pendent vertex. By Lemma 3.4, we have T ∼= T (n, α), and hence

Γ(π′) =
{
T (n, α)

}
. (6)

By (6), we have π 6= π′.

If p = α and π 6= π′, then π C π′ by Lemma 3.1.

Otherwise, p ≤ α−1. In this case, Lemma 3.1 implies that πE(α−1, 2(n−α), 1(α−1))Cπ′.

In both cases, the results follow from Theorem 2.2 and (6).

Corollary 3.1 Let T be a tree with n (≥ 3) vertices and independence number α. If T 6∼=
T (n, α), then (i) [11] χγ(T ) < χγ(T (n, α)) holds for γ ≥ 1, (ii) [1] M1(T ) < M1(T (n, α))

and M2(T ) < M2(T (n, α)), and (iii) [12] ID(T ) < ID(T (n, α)).

Proof. By Theorems 2.3 and 3.1, the results hold.

Theorem 3.2 Let U be a unicyclic graph with n vertices and independence number α,

where 3 ≤ α ≤ n−3. If U 6∈
{
U1(n, α), U2(n, α)

}
, then (i) Rγ(U) < max

{
Rγ(U1(n, α)),
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Rγ(U2(n, α))
}

for γ < 0 or γ > 1 and Rγ(U) > min
{
Rγ(U1(n, α)), Rγ(U2(n, α))

}
for

0 < γ < 1, and (ii) Mf (U) < max
{
Mf (U1(n, α)),Mf (U2(n, α))

}
holds for any good

escalating function f(x, y).

Proof. In the proof of this result, denote by π′ = (α + 1, 2(n−α), 1(α−1)) and π′′ =

(α, 3(2), 2(n−α−3),1(α)). Since the deletion of any edge of the unique cycle of U forms a

tree, we have α ≥ dn−1
2
e. We suppose that the degree sequence of U is π, Cg is the unique

cycle of U , and U contains p pendent vertices. By (2), p ≤ α.

Let U be a unicyclic graph of Γ(π′). If g ≥ 4, then all the pendent vertices combining

with at least two vertices of Cg will form an independent vertex set of size being at least

α+1, a contradiction. Thus, the unique cycle of U is a triangle. Since U contains exactly

α − 1 pendent vertices, except for two adjacent 2-vertices in the triangle of U , each of

the other 2-vertices is adjacent to at least one pendent vertex. By Lemma 3.4, we have

U ∼= U1(n, α).

Let U be a unicyclic graph of Γ(π′′). Then, the class of pendent vertices of U form an

independent vertex set of U , and hence every non-pendent vertex is adjacent to at least

a pendent vertex. By Lemma 3.5, we have U ∼= U2(n, α).

Now, we can conclude that

Γ(π′) =
{
U1(n, α)

}
and Γ(π′′) =

{
U2(n, α)

}
. (7)

Since U 6∈
{
U1(n, α), U2(n, α)

}
, we have π 6∈

{
π′, π′′

}
.

If p ≤ α− 1, then π C π′ by Lemma 3.1.

Otherwise, p = α. Since p = α, each non-pendent vertex is adjacent to at least a

pendent vertex. By Lemma 3.2 (i), we have π C π′′.

By Theorem 2.2 and (7), the results hold.

Corollary 3.2 Let U be a unicyclic graph with n vertices and independence number α

(≤ n − 3) such that U 6∼= U1(n, α). (i) If γ > 1 and α ≥ 4, then χγ(U) < χγ(U1(n, α))

and Zγ(U) < Zγ(U1(n, α)). (ii) If α ≥ 4, then M1(U) < M1(U1(n, α)). (iii) If n ≥ 9 and

α ≥ 3, then M2(U) < M2(U1(n, α)).

Proof. By an elementary computation, it follows that

χγ(U1(n, α)) =(n− α)(α + 3)γ + (2α− n+ 1)(α + 2)γ + 4γ + (n− α− 2)3γ,

χγ(U2(n, α)) =2(α + 3)γ + (n− α− 3)(α + 2)γ + (2α− n+ 1)(α + 1)γ + 6γ
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+ 2× 4γ + (n− α− 3)3γ.

When γ > 1 and α ≥ 4, we have

χγ(U1(n, α))− χγ(U2(n, α)) = (α + 3)γ + (n− α− 3)
(
(α + 3)γ − (α + 2)γ

)
+(2α− n+ 1)×

(
(α + 2)γ − (α + 1)γ

)
− 6γ − 4γ + 3γ

> 7γ − 6γ − 4γ + 3γ > 0

by Corollary 2.1. With the similar reason, we have Zγ(U1(n, α)) > Zγ(U2(n, α)).

Thus, (i) follows from Theorems 2.2 and 3.2.

It is easy to check that

M1(U1(n, α))−M1(U2(n, α)) = 2(α− 3) > 0

when α ≥ 4, and hence (ii) also follows from Theorems 2.2 and 3.2.

Now, we turn to prove (iii). Since

M2(U1(n, α)) = 2(α + 1)(n− α) + 4 + 2(n− α− 2) + (α + 1)(2α + 1− n)

= nα + 3n− α + 1,

and M2(U2(n, α)) = 2× 3α + 15 + 2α(n− α− 3) + 2(n− α− 3) + α(2α + 1− n)

= nα + 2n− α + 9.

For n ≥ 9, we have

M2(U1(n, α))−M2(U2(n, α)) = n− 8 > 0,

and hence (iii) follows from Theorems 2.2 and 3.2.

Theorem 3.3 Let B be a bicyclic graph with n vertices and independence number α,

where 4 ≤ α ≤ n− 4.

(i) If B 6∈
{
Z1(n, α), Z2(n, α), Z3(n, α), Z4(n, α)

}
, then

Rγ(B) < max
{
Rγ(Z2(n, α)), Rγ(Z3(n, α)), Rγ(Z4(n, α))

}
holds for γ < 0 or γ > 1, and

Rγ(B) > min
{
Rγ(Z2(n, α)), Rγ(Z3(n, α)), Rγ(Z4(n, α))

}
holds for 0 < γ < 1.

(ii) If B 6∈
{
Z2(n, α), Z3(n, α), Z4(n, α)

}
and f(x, y) is a good escalating function, then

Mf (B) < max
{
Mf (Z2(n, α)), Mf (Z3(n, α)), Mf (Z4(n, α))

}
.
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Proof. Suppose Cs and Ct are two cycles of B, the degree sequence of B is π =

(d1, d2, . . . , dn) and B contains p pendent vertices. By (2), p ≤ α. In the proof of

this result, denote by π′ = (α, 4, 3(2), 2(n−α−4), 1(α)), π′′ = (α+1, 3(2), 2(n−α−2), 1(α−1)) and

π′′′ = (α + 2, 2(n−α+1), 1(α−2)).

Firstly, we suppose that π = π′. Since p = α, every non-pendent vertex is adjacent to

at least one pendent vertex. By Lemma 3.5, we have B ∼= Z4(n, α).

Secondly, we suppose that π = π′′′. Since d2 = 2, we have |V (Cs)∩V (Ct)| = 1. Then,

there is an independent set of size at least α− 2 + b s
2
c+ b t

2
c, and hence s = t = 3. Now,

it is easy to see that there are exactly four 2-vertices being not adjacent to any pendent

vertex in B. By Lemma 3.4, B ∼= Z3(n, α).

Thirdly, we suppose that π = π′′. Since p = α− 1, all the non-pendent vertices being

not adjacent to any pendent vertex must induce a complete graph Kq. Recall that R(B)

is also a bicyclic graph. Thus, q ∈ {0, 1, 2, 3}. We assume that q ∈ {0, 1}. Since d4 = 2,

we have |V (Cs) ∪ V (Ct)| = 4 and there is exactly one non-pendent vertex being not

adjacent to any pendent vertex, that is, q = 1. In this case, R(B) ∼= K4 − e, and either

d2 ≥ 4 or d4 ≥ 3 (since there is exactly one non-pendent vertex of B being not adjacent

to any pendent vertex), a contradiction. Thus, q ∈ {2, 3}, that is, all the non-pendent

vertices being not adjacent to any pendent vertex induce either K2 or K3. By Lemma

3.6, B ∈
{
Z1(n, α), Z2(n, α)

}
.

By an elementary computation, it follows that

Mf (Z2(n, α))−Mf (Z1(n, α)) = f(3, 2) + f(2, 1)− f(2, 2)− f(3, 1) > 0

when f(x, y) is a good escalating function. Combining this with the above arguments, we

may suppose that π 6∈
{
π′, π′′, π′′′

}
. By Theorem 2.2, it suffices to show

π C π′ or π C π′′ or π C π′′′. (8)

If p ≤ α− 2, then π C π′′′ by Lemma 3.1 and hence (8) holds.

If p = α, then every non-pendent vertex is adjacent to at least one pendent vertex.

Now, Lemma 3.2 (ii) implies that π C π′ and hence (8) holds.

If p = α − 1, then all non-pendent vertices of B being not adjacent to any pendent

vertex induce a complete graph Kq. Since R(B) is also a bicyclic graph, q ∈ {0, 1, 2, 3}.

When q ∈ {0, 1} or |V (Cs) ∪ V (Ct)| ≥ 6, then d3 ≥ 3. When |V (Cs) ∪ V (Ct)| = 5 and

q ∈ {2, 3}, we also have d3 ≥ 3. Otherwise, |V (Cs) ∪ V (Ct)| = 4 and q ∈ {2, 3}. In this

case, R(B) ∼= K4 − e and hence d3 ≥ 3. Now, Lemma 3.3 implies that π C π′′ and hence

(8) holds.

-336-



Corollary 3.3 Let B be a bicyclic graph with n vertices and independence number α

such that B 6∼= Z3(n, α). If γ > 1 and 5 ≤ α ≤ n − 4, then χγ(B) < χγ(Z3(n, α)) and

Zγ(B) < Zγ(Z3(n, α)).

Proof. By an elementary computation, it follows that

χγ(Z2(n, α)) = 2(α + 4)γ + (α + 3)γ(n− α− 2) + (α + 2)γ(2α− n+ 1)

+5γ + 6γ + 4γ + 3γ(n− α− 3),

χγ(Z3(n, α)) = (α + 4)γ(n− α + 1) + (α + 3)γ(2α− n+ 1) + 3γ(n− α− 3) + 4γ × 2,

χγ(Z4(n, α)) = (α + 4)γ + 2(α + 3)γ + (α + 2)γ(n− α− 4)

+(α + 1)γ(2α− n+ 1) + 3γ(n− α− 4) + 7γ × 2 + 5γ + 4γ × 2.

For γ > 1, by Corollary 2.1 we have

χγ(Z3(n, α))− χγ(Z2(n, α))

= (α + 4)γ + (n− α− 2)
(
(α + 4)γ − (α + 3)γ

)
+(2α− n+ 1)

(
(α + 3)γ − (α + 2)γ

)
+ 4γ − 5γ − 6γ

≥ (α + 4)γ + 4γ − 5γ − 6γ ≥ 7γ + 4γ − 5γ − 6γ > 0,

χγ(Z2(n, α))− χγ(Z4(n, α))

= (α + 4)γ + (n− α− 4)
(
(α + 3)γ − (α + 2)γ

)
+(2α− n+ 1)×

(
(α + 2)γ − (α + 1)γ

)
+ 3γ + 6γ − 7γ × 2− 4γ

≥ (α + 4)γ + 3γ + 6γ − 7γ × 2− 4γ

≥ 9γ + 6γ + 3γ − 7γ × 2− 4γ > 0.

Thus, χγ(Z4(n, α)) < χγ(Z2(n, α)) < χγ(Z3(n, α)).

With the similar reason,

Zγ(Z4(n, α)) < Zγ(Z2(n, α)) < Zγ(Z3(n, α)).

Now, the result follows from Theorems 2.3 and 3.3.

Corollary 3.4 Let B be a bicyclic graph with n vertices and independence number α,

where 4 ≤ α ≤ n− 4. If n ≥ 10 and B 6∼= Z3(n, α), then M2(B) < M2(Z3(n, α)).

Proof. From the definition, it follows that

M2(Z4(n, α)) = 4α + 2× 3α + 2α(n− α− 4) + α(2α− n+ 1) + 2(n− α− 4) + 34
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= αn+ 2n+ α + 26,

M2(Z3(n, α)) = 2(α + 2)(n− α + 1) + (α + 2)(2α− n+ 1) + 8 + 2(n− α− 3)

= αn+ α + 4n+ 8,

M2(Z2(n, α)) = αn+ 3n+ α + 15.

Thus, M2(Z3(n, α)) − M2(Z2(n, α)) = n − 7 > 0 and M2(Z3(n, α)) − M2(Z4(n, α)) =

2n− 18 > 0.

Now, the result follows from Theorems 2.3 and 3.3.

4 Extremal results with given matching number

In this section, we will consider the extremal problem in the class of c-cyclic graph with n

vertices and matching number β. To this aim, we rewrite S1(0; β−1, n+1−2β) as T (n; β),

S1(1; β−2, n+1−2β) as U1(n; β), S2(1; β−3, n+1−2β) as U2(n; β), B1(β−2, n+1−2β)

as Z1(n; β), B2(β − 2, n + 1 − 2β) as Z2(n; β), S1(2; β − 3, n + 1 − 2β) as Z3(n; β), and

rewrite S2(2; β − 4, n+ 1− 2β) as Z4(n; β).

Theorem 4.1 Let T be a tree with n (≥ 3) vertices and matching number β. If T 6∼=
T (n; β), then (i) Rγ(T ) < Rγ(T (n; β)) holds for either γ < 0 or γ > 1, and Rγ(T ) >

Rγ(T (n; β)) holds for 0 < γ < 1, and (ii) Mf (T ) < Mf (T (n; β)) for any good escalating

function f(x, y).

Proof. Suppose the degree sequence of T is π and π′ = (n − β, 2(β−1), 1(n−β)). Note

that T contains at least β vertices of degree being at least two and β ≤ bn
2
c. Thus,

p(T ) ≤ n− β and hence πE π′ by Lemma 3.1 and (3). If π = π′, then T contains exactly

β vertices with degree being at least two. Since the matching number of T is β, each

non-pendent vertex is adjacent to at least one pendent vertex. By Lemma 3.4, we have

T ∼= T (n; β), a contradiction. Thus, π C π′ and hence the results follow from Theorem

2.2 and Γ(π′) =
{
T (n; β)

}
.

Corollary 4.1 Let T be a tree with n (≥ 3) vertices and matching number β. If T 6∼=
T (n; β), then (i) χγ(T ) < χγ(T (n; β)) and Zγ(T ) < Zγ(T (n; β)) holds for γ ≥ 1, (ii)

M1(T ) < M1(T (n; β)) and M2(T ) < M2(T (n; β)), and (iii) [12] ID(T ) < ID(T (n; β)).

Proof. By Theorems 2.3 and 4.1, the results hold.
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Theorem 4.2 Let U be a unicyclic graph with n vertices and matching number β, where

3 ≤ β ≤ n−3. If U 6∈
{
U1(n; β), U2(n; β)

}
, then (i)Rγ(U) < max

{
Rγ(U1(n; β)), Rγ(U2(n;

β))
}

for γ < 0 or γ > 1, and Rγ(U) > min
{
Rγ(U1(n; β)), Rγ(U2(n; β))

}
for 0 < γ < 1,

and (ii) Mf (U) < max
{
Mf (U1(n; β)),Mf (U2(n; β))

}
for any good escalating function.

Proof. In the proof of this result, let π′ = (n − β, 3(2), 2(β−3), 1(n−β)) and π′′ = (n − β +

1, 2(β), 1(n−β−1)). Suppose that the degree sequence of U is π, Cg is the unique cycle of U ,

and U contains p pendent vertices. By (3), p(U) ≤ n− β.

Firstly, we suppose that U ∈ Γ(π′). Then, every non-pendent vertex is adjacent

to at least one pendent vertex (since U contains exactly n − β pendent vertices and β

non-pendent vertices). By Lemma 3.5, we have U ∼= U2(n; β), a contradiction.

Secondly, we suppose that U ∈ Γ(π′′). By the definition of π′′, every vertex of V (Cg)\

{v1} cannot be adjacent to any pendent vertex. Note that there are β + 1 non-pendent

vertices in U and every edge in a matching has at least one non-pendent vertex as its end

vertex. If g ≥ 4, then the matching number of U is at most bg−1
2
c+β+1−(g−1) ≤ β−1,

a contradiction. Thus, g = 3 and hence there are exactly two 2-vertices in Cg being not

adjacent to any pendent vertex. By Lemma 3.4, we have U ∼= U1(n; β), a contradiction.

From the above arguments, it follows that

Γ(π′) =
{
U2(n; β)

}
and Γ(π′′) =

{
U1(n; β)

}
. (9)

Now, we suppose that π 6∈ {π′, π′′}. If p ≤ n − β − 1, then π C π′′ by Lemma 3.1. If

p = n− β, then since every edge in a matching has at least one non-pendent vertex as its

end vertex and the matching number of U is β, we can conclude that each non-pendent

vertex is adjacent to at least one pendent vertex. By Lemma 3.2 (i), it follows that πCπ′.

By Theorem 2.2 and (9), the results hold.

Corollary 4.2 Let U be a unicyclic graph with n vertices and matching number β (≥ 3)

such that U 6∼= U1(n; β). (i) If γ > 1 and β ≤ n − 4, then χγ(U) < χγ(U1(n; β)),

Zγ(U) < Zγ(U1(n; β)) and M1(U) < M1(U1(n; β)). (ii) If n ≥ 9 and β ≤ n − 3, then

M2(U) < M2(U1(n; β)).

Proof. By an elementary computation, we have

χγ(U1(n; β)) = β(n− β + 3)γ + (n− 2β + 1)(n− β + 2)γ + 4γ + (β − 2)3γ,
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and

χγ(U2(n; β)) = 2(n− β + 3)γ + (β − 3) ((n− β + 2)γ + 3γ) + (n− 2β + 1)(n− β + 1)γ

+6γ + 2× 4γ.

We first prove (i). Since γ > 1 and 3 ≤ β ≤ n− 4,

χγ(U1(n; β))− χγ(U2(n; β)) = (n− β + 3)γ + (β − 3) ((n− β + 3)γ − (n− β + 2)γ)

+(n− 2β + 1) ((n− β + 2)γ − (n− β + 1)γ)− 6γ − 4γ

+3γ > 7γ − 6γ − 4γ + 3γ > 0

by Corollary 2.1. With the similar reason, Zγ(U2(n; β)) < Zγ(U1(n; β)). It is easy to see

that

M1(U1(n; β))−M1(U2(n; β)) = 2(n− β − 3) > 0.

Thus, (i) follows from Theorems 2.3 and 4.2.

Now, we turn to prove (ii). By Theorems 2.3 and 4.2, it suffices to show that M2(U1(n; β)) >

M2(U2(n; β)). By an elementary computation, we have

M2(U1(n; β)) = 2β(n− β + 1) + 4 + 2(β − 2) + (n− β + 1)(n− 2β + 1)

= n2 − nβ + β + 2n+ 1,

M2(U2(n; β)) = 2× 3(n− β) + 15 + 2(n− β)(β − 3) + 2(β − 3) + (n− β)(n− 2β + 1)

= n2 − nβ + β + n+ 9.

Thus, M2(U1(n; β))−M2(U2(n; β)) = n− 8 > 0.

Theorem 4.3 Let B be a bicyclic graph with n vertices and matching number β, where

4 ≤ β ≤ n− 4.

(i) If B 6∈
{
Z1(n; β), Z2(n; β), Z3(n; β), Z4(n; β)

}
, then

Rγ(B) < max
{
Rγ(Z2(n; β)), Rγ(Z3(n; β)), Rγ(Z4(n; β))

}
holds for γ < 0 or γ > 1, and

Rγ(B) > min
{
Rγ(Z2(n; β)), Rγ(Z3(n; β)), Rγ(Z4(n; β))

}
holds for 0 < γ < 1.

(ii) If B 6∈
{
Z2(n; β), Z3(n; β), Z4(n; β)

}
and f(x, y) is a good escalating function,

then

Mf (B) < max
{
Mf (Z2(n; β)), Mf (Z3(n; β)), Mf (Z4(n; β))

}
.
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Proof. Suppose Cs and Ct are two cycles of B, the degree sequence of B is π =

(d1, d2, . . . , dn) and B contains p pendent vertices. By (3), p ≤ n− β. In the proof of this

result, denote by π′ = (n− β, 4, 3(2), 2(β−4), 1(n−β)), π′′ = (n− β + 1, 3(2), 2(β−2), 1(n−β−1))

and π′′′ = (n− β + 2, 2(β+1), 1(n−β−2)).

Firstly, we suppose that π = π′. Since B contains exactly β non-pendent vertices and

the matching number of B is equal to β, every non-pendent vertex is adjacent to at least

one pendent vertex. By Lemma 3.5, we have B ∼= Z4(n; β).

Secondly, we suppose that π = π′′′. Since d2 = 2, we have |V (Cs) ∩ V (Ct)| = 1.

Note that there are at most b s−1
2
c + b t−1

2
c independent edges induced by the vertex set

(V (Cs) ∪ V (Ct))\{v1}. Thus, the matching number of B is at most

β +

⌊
s− 1

2

⌋
+

⌊
t− 1

2

⌋
+ 2− (s− 1 + t− 1) ≤ β + 2−

⌈
s− 1

2

⌉
−

⌈
t− 1

2

⌉
≤ β,

and hence s = t = 3. Since the matching number of B is equal to β, B contains

exactly four 2-vertices being not adjacent to any pendent vertex in B. By Lemma 3.4,

B ∼= Z3(n; β).

Thirdly, we suppose that π = π′′. Since B contains β+1 non-pendent vertices and each

edge of the maximum matching with β edges in B contains at least one non-pendent vertex

as its end vertex, there is either at most one non-pendent vertex being not adjacent to any

pendent vertex or there are exactly two adjacent non-pendent vertices being not adjacent

to any pendent vertex. Now, we assume that there is at most one non-pendent vertex

being not adjacent to any pendent vertex. Since d4 = 2, we have |V (Cs) ∪ V (Ct)| = 4

and there is exactly one non-pendent vertex being not adjacent to any pendent vertex.

In this case, it follows that R(B) ∼= K4 − e, and hence either d2 ≥ 4 or d4 ≥ 3 (since

there is exactly one non-pendent vertex of B being not adjacent to any pendent vertex),

a contradiction. Thus, there are exactly two adjacent non-pendent vertices being not

adjacent to any pendent vertex. By Lemma 3.6, B ∈
{
Z1(n; β), Z2(n; β)

}
.

By an elementary computation, it follows that

Mf (Z2(n; β))−Mf (Z1(n; β)) = f(3, 2) + f(2, 1)− f(2, 2)− f(3, 1) > 0

when f(x, y) is a good escalating function. Combining this with the above arguments, we

may suppose that π 6∈
{
π′, π′′, π′′′

}
. By Theorem 2.2, it suffices to show

π C π′ or π C π′′ or π C π′′′. (10)

If p ≤ n− β − 2, then π C π′′′ by Lemma 3.1 and hence (10) holds.
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If p = n−β, then every non-pendent vertex is adjacent to at least one pendent vertex.

Now, Lemma 3.2 (ii) implies that π C π′ and hence (10) holds.

If p = n − β − 1, then B contains exactly β + 1 non-pendent vertices. In this case,

either at most one non-pendent vertex being not adjacent to any pendent vertex or there

exist two adjacent non-pendent vertices being not adjacent to any pendent vertex. When

|V (Cs) ∪ V (Ct)| ≥ 5, then d3 ≥ 3. Otherwise, |V (Cs) ∪ V (Ct)| = 4 and hence R(B) ∼=
K4− e. Recall that either at most one non-pendent vertex is not adjacent to any pendent

vertex or there exist two adjacent non-pendent vertices being not adjacent to any pendent

vertex. Thus, d3 ≥ 3. Now, Lemma 3.3 implies that π C π′′ and hence (10) holds.

Corollary 4.3 Let B be a bicyclic graph with n vertices and matching number β such

that B 6∼= Z3(n; β). If γ > 1 and 4 ≤ β ≤ n − 4, then χγ(B) < χγ(Z3(n; β)) and

Zγ(B) < Zγ(Z3(n; β)).

Proof. By an elementary computation, it follows that

χγ(Z2(n, α)) = 2(n− β + 4)γ + (n− β + 3)γ(β − 2) + (n− β + 2)γ(n− 2β + 1)

+5γ + 6γ + 4γ + 3γ(β − 3),

χγ(Z3(n; β)) = (n− β + 4)γ(β + 1) + (n− β + 3)γ(n− 2β + 1) + 3γ(β − 3)

+4γ × 2,

and χγ(Z4(n; β)) = (n− β + 4)γ + 2(n− β + 3)γ + (n− β + 2)γ(β − 4)

+(n− β + 1)γ(n− 2β + 1) + 3γ(β − 4) + 7γ × 2 + 5γ + 4γ × 2.

Since γ > 1 and 4 ≤ β ≤ n− 4, by Corollary 2.1 we have

χγ(Z3(n; β))− χγ(Z2(n; β)) = (n− β + 4)γ + (β − 2)
(
(n− β + 4)γ − (n− β + 3)γ

)
+(n− 2β + 1)×

(
(n− β + 3)γ − (n− β + 2)γ

)
+ 4γ

−5γ − 6γ

≥ (n− β + 4)γ + 4γ − 5γ − 6γ ≥ 7γ + 4γ − 5γ − 6γ > 0,

χγ(Z3(n; β))− χγ(Z4(n; β)) = (n− β + 4)γ × 2 + (β − 4)
(
(n− β + 4)γ − (n− β + 2)γ

)
+(n− 2β + 1)

(
(n− β + 3)γ − (n− β + 1)γ

)
+2

(
(n− β + 4)γ − (n− β + 3)γ

)
+ 3γ − 7γ × 2− 5γ

≥ 2(n− β + 4)γ + 3γ − 7γ × 2− 5γ ≥ 8γ × 2 + 3γ − 7γ × 2

−5γ > 0.
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Thus, max
{
χγ(Z2(n; β)), χγ(Z4(n; β))

}
< χγ(Z3(n; β)).

With the similar reason,

max
{
Zγ(Z2(n; β)), Zγ(Z4(n; β))

}
< Zγ(Z3(n; β)).

Now, the result follows from Theorems 2.3 and 4.3.

Corollary 4.4 Let B be a bicyclic graph with n vertices and matching number β, where

4 ≤ β ≤ n− 4. If n ≥ 10 and B 6∼= Z3(n; β), then M2(B) < M2(Z3(n; β)).

Proof. By an elementary computation, it follows that

M2(Z2(n; β)) = 6(n− β + 1) + 2(n− β + 1)(β − 2) + (n− β + 1)(n− 2β + 1) + 18

+2(β − 3)

= n2 − βn− β + 4n+ 15,

M2(Z3(n; β)) = 2(n− β + 2)(β + 1) + (n− β + 2)(n− 2β + 1) + 8 + 2(β − 3)

= n2 − βn− β + 5n+ 8,

M2(Z4(n; β)) = 4(n− β) + 6(n− β) + 2(n− β)(β − 4) + (n− β)(n− 2β + 1)

2(β − 4) + 34

= n2 − βn− β + 3n+ 26.

Since M2(Z3(n; β)) − M2(Z2(n; β)) = n − 7 > 0 and M2(Z3(n; β)) − M2(Z4(n; β)) =

2n− 18 > 0, the result follows from Theorems 2.3 and 4.3.
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