Is Every Graph the Extremal Value of a Vertex-Degree-Based Topological Index?

Juan Rada ${ }^{1}$, Sergio Bermudo ${ }^{2}$
${ }^{1}$ Instituto de Matemáticas, Universidad de Antioquia
Medellín, Colombia
${ }^{2}$ Department of Economy, Quantitative Methods and Economic History, Pablo de Olavide University. Carretera de Utrera Km. 1, 41013-Sevilla, Spain
pablo.rada@udea.edu.co, sbernav@upo.es

(Received June 8, 2018)

Abstract

Let \mathcal{G}_{n} be the set of graphs with n non-isolated vertices. In this paper we identify vertex-degree-based topological indices over \mathcal{G}_{n} with vectors in \mathbb{R}^{h}, the Euclidean space with $h=\frac{(n-1) n}{2}$ coordinates. In this setting, we give an interpretation of the extremal values of a topological index in terms of angles between vectors in \mathbb{R}^{h}. Then we consider the following problem: given a graph $G_{0} \in \mathcal{G}_{n}$, does there exist a vertex-degree-based topological index that attains its extremal values in G_{0} ? The answer is affirmative. In order to do this, we introduce the support of the graph G_{0}, the reference vector, and then construct vectors such that G_{0} is an extremal value.

1 Introduction

In the chemical literature, a great variety of topological indices (molecular structure descriptors) have been and are currently considered in applications to QSPR/QSAR studies $[1,11,12]$. Many of them depend only on the degrees of the vertices of the underlying molecular graph and are now called vertex-degree-based topological indices. More precisely, given nonnegative numbers $\left\{\varphi_{i j}\right\}$, a vertex-degree-based topological index is
expressed as

$$
\begin{equation*}
T I=T I(G)=\sum_{1 \leq i \leq j \leq n-1} m_{i j} \varphi_{i j} \tag{1}
\end{equation*}
$$

where G is a (molecular) graph with n vertices and $m_{i j}$ is the number of edges of G connecting a vertex of degree i with a vertex of degree j. For instance, $\varphi_{i j}=\frac{1}{\sqrt{i j}}$ pertains to the Randić connectivity index [10], one of the classical vertex-degree-based topological indices with more applications in chemistry and pharmacology. Details on this and others degree-based-topological indices can be found in [2-8] and the references cited therein.

Let \mathcal{G}_{n} be the set of graphs with n non-isolated vertices. In Section 2 of this paper we give a one-to-one correspondence between vertex-degree-based topological indices over \mathcal{G}_{n} and vectors in \mathbb{R}^{h}, the Euclidean space with $h=\frac{(n-1) n}{2}$ coordinates. So we can identify vertex-degree-based topological indices with vectors. In this setting, we give an interpretation of the extremal values of a topological index in terms of angles between vectors in \mathbb{R}^{h}.

One important problem that appears frequently in the mathematical-chemistry literature is to find the extremal values of well known topological indices over the class of graphs with equal number of vertices. In Section 3 we consider the inverse problem: given a graph $G_{0} \in \mathcal{G}_{n}$, does there exist a vertex-degree-based topological index that attains its extremal values in G_{0} ? The answer is affirmative. In order to do this, we introduce the support of the graph G_{0}, the reference vector, and then construct vectors in Theorems 3.5 and 3.10 such that G_{0} is an extremal value.

The proof of our main result strongly relies on [9, Theorem 2.3]. Let TI be a vertex-degree-based topological index defined from the numbers $\left\{\varphi_{i j}\right\}$ as in (1). Consider the numbers $f_{i j}=\frac{i j \varphi_{i j}}{i+j}$, where (i, j) belongs to the set

$$
K=\{(i, j) \in \mathbb{N} \times \mathbb{N}: 1 \leq i \leq j \leq n-1\}
$$

Define the sets

$$
K_{\min }(f)=\left\{(r, s) \in K: f_{r s}=\min _{(i, j) \in K} f_{i j}\right\}
$$

and

$$
K_{\max }(f)=\left\{(p, q) \in K: f_{p q}=\max _{(i, j) \in K} f_{i j}\right\} .
$$

The complements of $K_{\min }(f)$ and $K_{\max }(f)$ in K are denoted by $K_{\min }^{c}(f)$ and $K_{\max }^{c}(f)$, respectively.

Theorem 1.1 [9] Let TI be a vertex-degree-based topological index as in (1) and define $f_{i j}=\frac{i j \varphi_{i j}}{i+j}$ for every $(i, j) \in K$. For every graph $G \in \mathcal{G}_{n}$

$$
n\left(\min _{(i, j) \in K} f_{i j}\right) \leq T I(G) \leq n\left(\max _{(i, j) \in K} f_{i j}\right) .
$$

Moreover, equality on the left occurs if and only if $m_{p q}=0$ for all $(p, q) \in K_{\min }^{c}(f)$. Equality on the right occurs if and only if $m_{r s}=0$ for all $(r, s) \in K_{\text {max }}^{c}(f)$.

2 Geometric representation of vertex-degree-based topological indices

Let n be a positive integer. Consider the set

$$
K=\{(i, j) \in \mathbb{N} \times \mathbb{N}: 1 \leq i \leq j \leq n-1\}
$$

Note that K has exactly $h=\frac{(n-1) n}{2}$ elements. We order lexicographically the elements of K :

$$
\begin{aligned}
& (1,1)<(1,2)<(1,3)<(1,4)<\cdots \quad<(1, n-1) \\
& <(2,2)<(2,3)<(2,4)<\cdots \quad<(2, n-1) \\
& <(3,3)<(3,4)<\cdots \quad<(3, n-1) \\
& \begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
< & (n-2, n-2) & < & (n-2, n-1)
\end{array} \\
& <(n-1, n-1)
\end{aligned}
$$

so we can express every vector of \mathbb{R}^{h} as $\left(\varphi_{i j}\right)$, where $\varphi_{i j} \in \mathbb{R}$ for all $(i, j) \in K$.
Recall that the dot product of two vectors $X=\left(x_{i j}\right)_{(i, j) \in K}$ and $Y=\left(y_{i j}\right)_{(i, j) \in K}$ of \mathbb{R}^{h} is

$$
X \cdot Y=\sum_{(i, j) \in K} x_{i j} y_{i j} .
$$

Let \mathcal{G}_{n} be the set of graphs with n non-isolated vertices. Consider the function m : $\mathcal{G}_{n} \longrightarrow \mathbb{R}^{h}$ defined by $m(G)=\left(m_{i j}(G)\right)_{(i, j) \in K}$, where $G \in \mathcal{G}_{n}$. We next formally define a vertex-degree-based topological index over \mathcal{G}_{n}.

Definition 2.1 A vertex-degree-based topological index is a function $T_{\varphi}: \mathcal{G}_{n} \longrightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
T_{\varphi}(G)=m(G) \cdot \varphi, \tag{2}
\end{equation*}
$$

for all $G \in \mathcal{G}_{n}$, where $\varphi \in \mathbb{R}^{h}$.

So every vertex-degree-based topological index is of the form T_{φ} for some vector $\varphi \in$ \mathbb{R}^{h}, and conversely, every vector $\varphi \in \mathbb{R}^{h}$ induces a vertex degree based topological index T_{φ} as in (2). In other words, vertex-degree-based topological indices can be identified with vectors in \mathbb{R}^{h}. From now on, if $G \in \mathcal{G}_{n}$ we write $\varphi(G)$ instead of $T_{\varphi}(G)$. In other words, if $G \in \mathcal{G}_{n}$ then

$$
\varphi(G)=m(G) \cdot \varphi
$$

Example 2.2 The Randić index over \mathcal{G}_{n} is the vector $\varphi=\left(\frac{1}{\sqrt{i j}}\right)_{(i, j) \in K} \in \mathbb{R}^{h}$.
Recall that the length of $X \in \mathbb{R}^{h}$ is $\|X\|=(X \cdot X)^{\frac{1}{2}}$. The angle between the two vectors X and Y of \mathbb{R}^{h} is defined as the angle θ between 0 and π such that

$$
\begin{equation*}
\cos \theta=\frac{X \cdot Y}{\|X\|\|Y\|} \tag{3}
\end{equation*}
$$

The vectors are perpendicular if $\theta=\frac{\pi}{2}$. If $\theta<\frac{\pi}{2}$ (resp. $\theta>\frac{\pi}{2}$) then the angle is acute (resp. obtuse). It follows from (3) that the angle between X and Y is acute (resp. obtuse) if and only if $X \cdot Y>0$ (resp. $X \cdot Y<0$). If $X \cdot Y=0$ then X and Y are perpendicular. We next give a geometric interpretation of the extremal values of a vertex-degree-based topological index over \mathcal{G}_{n}.

Theorem 2.3 Let $G_{0} \in \mathcal{G}_{n} . G_{0}$ attains the minimum value of the vertex-degree-based topological index $\varphi \in \mathbb{R}^{h}$ over \mathcal{G}_{n} if and only if φ is perpedicular or forms an acute angle with $m(G)-m\left(G_{0}\right)$, for all $G \in \mathcal{G}_{n}$.

Proof. Note that for all $G \in \mathcal{G}_{n}$

$$
\begin{equation*}
\left[m(G)-m\left(G_{0}\right)\right] \cdot \varphi=\varphi(G)-\varphi\left(G_{0}\right) \tag{4}
\end{equation*}
$$

The result follows from (4) using the fact that G_{0} attains the minimum value of φ if and only if $\varphi(G)-\varphi\left(G_{0}\right) \geq 0$.

Similarly we have the following result.

Theorem 2.4 Let $G_{0} \in \mathcal{G}_{n} . G_{0}$ attains the maximum value of the vertex-degree-based topological index $\varphi \in \mathbb{R}^{h}$ over \mathcal{G}_{n} if and only if φ is perpedicular or forms an obtuse angle with $m(G)-m\left(G_{0}\right)$, for all $G \in \mathcal{G}_{n}$.

3 Is every graph the extremal value of a vertex degree based topological index?

One fundamental problem in chemical graph theory is to determine the extremal values of a given vertex-degree-based topological index over \mathcal{G}_{n}. Now we consider the inverse problem: given a graph $G_{0} \in \mathcal{G}_{n}$, does there exist $\varphi \in \mathbb{R}^{h}$ such that G_{0} is an extremal value of φ over \mathcal{G}_{n} ?

Definition 3.1 The support of a graph $G \in \mathcal{G}_{n}$ is denoted by $\operatorname{Supp}(G)$ and defined as

$$
\operatorname{Supp}(G)=\left\{(p, q) \in K: m_{p q}(G)>0\right\} .
$$

Example 3.2 We compute the support of several graphs:

1. If S_{n} is the star tree with n vertices then $\operatorname{Supp}\left(S_{n}\right)=\{(1, n-1)\}$;
2. If K_{n} is the complete graph with n vertices then $\operatorname{Supp}\left(K_{n}\right)=\{(n-1, n-1)\}$;
3. If P_{n} is the path tree with n vertices then $\operatorname{Supp}\left(P_{n}\right)=\{(1,2),(2,2)\}$.

Definition 3.3 We define the reference vector $\mathcal{R}=\left(\mathcal{R}_{p q}\right) \in \mathbb{R}^{h}$ as the vector with coordinates $\mathcal{R}_{p q}=\frac{p+q}{p q}$, for all $(p, q) \in K$.

Example 3.4 If $n=4$ then $h=\frac{4 \cdot 3}{2}=6$ and the reference vector $\mathcal{R}=\left(\mathcal{R}_{p q}\right) \in \mathbb{R}^{6}$ is

$$
\mathcal{R}=\left(\begin{array}{ccc}
2 & 3 / 2 & 4 / 3 \\
* & 1 & 5 / 6 \\
* & * & 2 / 3
\end{array}\right)
$$

Let $X=\left(x_{i j}\right)_{(i, j) \in K}$ and $Y=\left(y_{i j}\right)_{(i, j) \in K}$ be two vectors of \mathbb{R}^{h}. We write $X \geq Y$ to indicate that $x_{i j} \geq y_{i j}$ for all $(i, j) \in K$. Also, if $L \subseteq K$ then $\left.X\right|_{L}=\left.Y\right|_{L}$ means $x_{i j}=y_{i j}$ for all $(i, j) \in L$.

Now we can state and prove our main result. We denote by $\operatorname{Supp}^{c}(G)$ the complement of $\operatorname{Supp}(G)$ in K.

Theorem 3.5 Let $G_{0} \in \mathcal{G}_{n}$ and k a positive number. If $\varphi \in \mathbb{R}^{h}$ is such that $\varphi \geq k \mathcal{R}$ and $\left.\varphi\right|_{\operatorname{Supp}\left(G_{0}\right)}=\left.k \mathcal{R}\right|_{\operatorname{Supp}\left(G_{0}\right)}$, then φ attains its minimum value over \mathcal{G}_{n} in G_{0} and $\varphi\left(G_{0}\right)=n k$.

Proof. Consider the vector $\varphi=\left(\varphi_{p q}\right) \in \mathbb{R}^{h}$ such that $\varphi \geq k \mathcal{R}$ and $\left.\varphi\right|_{\operatorname{Supp}\left(G_{0}\right)}=$ $\left.k \mathcal{R}\right|_{S u p p\left(G_{0}\right)}$. Let $f_{p q}=\frac{p q \varphi_{p q}}{p+q}$, for every $(p, q) \in K$. Clearly, $f_{p q}=k$ for every $(p, q) \in$ $\operatorname{Supp}\left(G_{0}\right)$ and $f_{p q} \geq k$ for every $(p, q) \in \operatorname{Supp}^{c}\left(G_{0}\right)$. Consequently, $k=\min _{(i, j) \in K} f_{i j}$ and $\operatorname{Supp}\left(G_{0}\right) \subseteq K_{\min }(f)$. Then $K_{\min }^{c}(f) \subseteq \operatorname{Supp}^{c}\left(G_{0}\right)$ which implies $m_{i j}\left(G_{0}\right)=0$ for all $(i, j) \in K_{\min }^{c}(f)$. Hence by Theorem 1.1

$$
\varphi(G) \geq n \min _{(i, j) \in K} f_{i j}=n k=\varphi\left(G_{0}\right)
$$

for every graph $G \in \mathcal{G}_{n}$. Consequently, φ attains its minimum value in G_{0} over \mathcal{G}_{n} and $\varphi\left(G_{0}\right)=n k$.

Figure 1. Graphs in \mathcal{G}_{4}
Corollary 3.6 Let $G_{0} \in \mathcal{G}_{n}$ and l_{0} a positive number. There exists a topological index $\varphi \in \mathbb{R}^{h}$ that attains its minimum value in G_{0} over \mathcal{G}_{n} and $\varphi\left(G_{0}\right)=l_{0}$.

Proof. Choose $\varphi=\left(\varphi_{p q}\right) \in \mathbb{R}^{h}$ such that $\varphi \geq \frac{l_{0}}{n} \mathcal{R}$ and $\left.\varphi\right|_{S_{u p p\left(G_{0}\right)}}=\left.\frac{l_{0}}{n} \mathcal{R}\right|_{S_{\text {upp }\left(G_{0}\right)}}$. Then by Theorem 3.5, $\varphi \in \mathbb{R}^{h}$ attains its minimal value in G_{0} over \mathcal{G}_{n} and $\varphi\left(G_{0}\right)=n \frac{l_{0}}{n}=l_{0}$.

Example 3.7 Consider the following problem: among all graphs in \mathcal{G}_{4} (see Figure 1), find a vertex-degree-based topological index φ such that C has minimum value over \mathcal{G}_{4} and $\varphi(C)=2$. As in the proof of Corollary 3.6, we compute the vector $\frac{l_{0}}{n} \mathcal{R}$, which in this case is

$$
\frac{1}{2} \mathcal{R}=\frac{1}{2}\left(\begin{array}{ccc}
2 & 3 / 2 & 4 / 3 \\
* & 1 & 5 / 6 \\
* & * & 2 / 3
\end{array}\right)
$$

Note that Supp $(C)=\{(1,3),(2,2),(2,3)\}$. Choose a vector $\varphi \geq \frac{1}{2} \mathcal{R}$ such that

$$
\left.\varphi\right|_{\{(1,3),(2,2),(2,3)\}}=\left.\frac{1}{2} \mathcal{R}\right|_{\{(1,3),(2,2),(2,3)\}} .
$$

For instance,

$$
\varphi=\frac{1}{2}\left(\begin{array}{ccc}
2 & 2 & 4 / 3 \\
* & 1 & 5 / 6 \\
* & * & 1
\end{array}\right)
$$

Then by Theorem 3.5, φ attains its minimum value in C over \mathcal{G}_{4} and $\varphi(C)=2$. In fact,

$$
\begin{array}{ll}
\varphi(A)=6(1 / 2)=3 & ; \varphi(E)=3(2 / 3)=2 \\
\varphi(B)=4(5 / 12)+1 / 2=13 / 6 & ; \varphi(F)=2(1)+1 / 2=5 / 2 \\
\varphi(C)=1 / 2+2 / 3+2(5 / 12)=2 & ; \varphi(G)=2(1)=2 . \\
\varphi(D)=4(1 / 2)=2 & ; \quad
\end{array}
$$

It is well known that the star tree S_{n} and the complete graph K_{n} are extremal values of many important vertex-degree-based topological indices over \mathcal{G}_{n}. Theorem 3.5 can explain this, as we shall see in our next results. Note that $\operatorname{Supp}\left(S_{n}\right)=\{(1, n-1)\}$ and $\operatorname{Supp}\left(K_{n}\right)=\{(n-1, n-1)\}$. In both cases, the support has exactly one element.

Corollary 3.8 Let $G_{0} \in \mathcal{G}_{n}$ and assume that $\operatorname{Supp}\left(G_{0}\right)=\left\{\left(p_{0}, q_{0}\right)\right\}$. If $\varphi \in \mathbb{R}^{h}$ satisfies $\varphi \geq k_{0} \mathcal{R}$, where $k_{0}=\frac{p_{0} q_{0}}{p_{0}+q_{0}} \varphi_{p_{0} q_{0}}$, then G_{0} attains the minimum value of φ over \mathcal{G}_{n}.

Proof. Since $\varphi \geq k_{0} \mathcal{R}$ and the coordinate $p_{0} q_{0}$ of $k_{0} \mathcal{R}$ is

$$
k_{0} \frac{p_{0}+q_{0}}{p_{0} q_{0}}=\left(\frac{p_{0} q_{0}}{p_{0}+q_{0}} \varphi_{p_{0} q_{0}}\right) \frac{p_{0}+q_{0}}{p_{0} q_{0}}=\varphi_{p_{0} q_{0}}
$$

we deduce the result from Theorem 3.5.

Example 3.9 Let S_{n} be the star tree with n vertices. Note that $\operatorname{Supp}\left(S_{n}\right)=\{(1, n-1)\}$. By Corollary 3.8, S_{n} is the minimum value of any vertex-degree-based topological index $\varphi=\left(\varphi_{p q}\right) \in \mathbb{R}^{h}$ over \mathcal{G}_{n} that satisfies

$$
\begin{equation*}
\varphi_{p q} \geq \frac{p+q}{p q} \frac{n-1}{n} \varphi_{1, n-1} \tag{5}
\end{equation*}
$$

for all $(p, q) \in K$. Note that for the Randić index $\varphi_{p q}=\frac{1}{\sqrt{p q}}$, geometric-arithmetic index $\varphi_{p q}=\frac{2 \sqrt{p q}}{p+q}$, harmonic index $\varphi_{p q}=\frac{2}{p+q}$, sum-connectivity index $\frac{1}{\sqrt{p+q}}$ and augmented Zagreb index $\varphi_{p q}=\left(\frac{p q}{p+q-2}\right)^{3}$, condition (5) holds. Hence, for each of these indices, the star attains its minimum value over \mathcal{G}_{n}.

Similarly, we have the dual results of Theorem 3.5, Corollaries 3.6 and 3.8.

Theorem 3.10 Let $G_{0} \in \mathcal{G}_{n}$ and k a positive number. If $\psi \in \mathbb{R}^{h}$ is such that $\psi \leq k \mathcal{R}$ and $\left.\psi\right|_{\operatorname{Supp}\left(G_{0}\right)}=\left.k \mathcal{R}\right|_{\operatorname{Supp}\left(G_{0}\right)}$, then ψ attains its maximum value over \mathcal{G}_{n} in G_{0} and $\psi\left(G_{0}\right)=n k$.

Corollary 3.11 Let $G_{0} \in \mathcal{G}_{n}$ and m_{0} a positive number. There exists a topological index $\psi \in \mathbb{R}^{h}$ that attains its maximum value in G_{0} over \mathcal{G}_{n} and $\psi\left(G_{0}\right)=m_{0}$.

Example 3.12 Let us find a topological index ψ over \mathcal{G}_{4} such that F has maximum value and $\psi(F)=1$ (see Figure 1). The support of F is $\{(1,2),(2,2)\}$. So we choose a vector $\psi \leq \frac{1}{4} \mathcal{R}$ such that $\left.\psi\right|_{\{(1,2),(2,2)\}}=\left.\frac{1}{4} \mathcal{R}\right|_{\{(1,2),(2,2)\}}$. For example,

$$
\psi=\frac{1}{4}\left(\begin{array}{ccc}
3 / 2 & 3 / 2 & 1 \\
* & 1 & 2 / 3 \\
* & * & 1 / 3
\end{array}\right) \leq \frac{1}{4}\left(\begin{array}{ccc}
2 & 3 / 2 & 4 / 3 \\
* & 1 & 5 / 6 \\
* & * & 2 / 3
\end{array}\right)=\frac{1}{4} \mathcal{R} .
$$

Hence, by Theorem 3.10, ψ attains its maximum value in F over \mathcal{G}_{4} and $\psi(F)=1$. In fact,

$$
\begin{array}{ll}
\psi(A)=6(1 / 12)=1 / 2 & ; \psi(E)=3(1 / 4)=3 / 4 \\
\psi(B)=4(1 / 6)+1 / 12=3 / 4 & ; \psi(F)=2(3 / 8)+1 / 4=1 \\
\psi(C)=1 / 4+1 / 4+2(1 / 6)=5 / 6 & ; \psi(G)=2(3 / 8)=3 / 4 . \\
\psi(D)=4(1 / 4)=1 &
\end{array}
$$

Corollary 3.13 Let $G_{0} \in \mathcal{G}_{n}$ and assume that Supp $\left(G_{0}\right)=\left\{\left(p_{0}, q_{0}\right)\right\}$. If $\psi \in \mathbb{R}^{h}$ satisfies $\psi \leq k_{0} \mathcal{R}$, where $k_{0}=\frac{p_{0} q_{0}}{p_{0}+q_{0}} \psi_{p_{0} q_{0}}$, then G_{0} attains the maximum value of ψ over \mathcal{G}_{n}.
Example 3.14 Let K_{n} be the complete graph with n vertices. Then

$$
\operatorname{Supp}\left(K_{n}\right)=\{(n-1, n-1)\} .
$$

By Corollary 3.13, K_{n} is the maximum value of any vertex-degree-based topological index $\psi=\left(\psi_{i j}\right) \in \mathbb{R}^{h}$ over \mathcal{G}_{n} that satisfies

$$
\begin{equation*}
\psi_{p q} \leq \frac{p+q}{p q} \frac{n-1}{2} \psi_{n-1, n-1} \tag{6}
\end{equation*}
$$

for all $(p, q) \in K$. For instance, the first Zagreb index $\psi_{p q}=p+q$, the second Zagreb index $\psi_{p q}=p q$, the Randić index $\psi_{p q}=\frac{1}{\sqrt{p q}}$, the harmonic index $\psi_{p q}=\frac{2}{p+q}$, the geometricarithmetic index $\psi_{p q}=\frac{2 \sqrt{p q}}{p+q}$, the sum-connectivity index $\psi_{p q}=\frac{1}{\sqrt{p+q}}$, the ABC index $\psi_{p q}=\sqrt{\frac{p+q-2}{p q}}$ and the augmented Zagreb $\psi_{p q}=\left(\frac{p q}{p+q-2}\right)^{3}$ satisfy condition (6). Hence, for each of these indices, the complete graph K_{n} attains its maximum value over \mathcal{G}_{n}.

Corollary 3.15 Let G_{0} and G_{1} be two graphs such that $\operatorname{Supp}\left(G_{0}\right) \cap \operatorname{Supp}\left(G_{1}\right)=\emptyset$, and let $l_{0}<l_{1}$ be two positive numbers. There exists a topological index φ which attains its minimum and maximum value over \mathcal{G}_{n} in G_{0} and G_{1}, respectively, and $\varphi\left(G_{0}\right)=l_{0}$ and $\varphi\left(G_{1}\right)=l_{1}$.

Proof. Define $\varphi=\left(\varphi_{p q}\right) \in \mathbb{R}^{h}$ such that $\frac{l_{0}}{n} \mathcal{R} \leq \varphi \leq \frac{l_{1}}{n} \mathcal{R},\left.\varphi\right|_{\operatorname{Supp}\left(G_{0}\right)}=\left.\frac{l_{0}}{n} \mathcal{R}\right|_{\operatorname{Supp}\left(G_{0}\right)}$ and $\left.\varphi\right|_{\operatorname{Supp}\left(G_{1}\right)}=\left.\frac{l_{1}}{n} \mathcal{R}\right|_{\operatorname{Supp}\left(G_{1}\right)}$. Then proceed as in Theorems 3.5 and 3.10.

One final comment. The most important vertex-degree-based topological indices are vectors which derive from symmetric functions (for instance, the Randić index $\frac{1}{\sqrt{p q}}$, the geometric-arithmetic index $\frac{2 \sqrt{p q}}{p+q}$, etc $\left.\ldots.\right)$. What about the vectors that are not of this type, are they interesting in applications to QSPR/QSAR?

References

[1] J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach, Amsterdam, 1999.
[2] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[3] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973-8978.
[4] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randic Index, Univ. Kragujevac, Kragujevac, 2008.
[5] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.
[6] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805-810.
[7] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[8] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[9] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603-616.
[10] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[11] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[12] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, WileyVCH, Weinheim, 2009.

