Communications in Mathematical and in Computer Chemistry

Is Every Graph the Extremal Value of a Vertex–Degree–Based Topological Index?

Juan Rada¹, Sergio Bermudo²

¹Instituto de Matemáticas, Universidad de Antioquia Medellín, Colombia

²Department of Economy, Quantitative Methods and Economic History, Pablo de Olavide University. Carretera de Utrera Km. 1, 41013-Sevilla. Spain

pablo.rada@udea.edu.co, sbernav@upo.es

(Received June 8, 2018)

Abstract

Let \mathcal{G}_n be the set of graphs with n non-isolated vertices. In this paper we identify vertex-degree-based topological indices over \mathcal{G}_n with vectors in \mathbb{R}^h , the Euclidean space with $h = \frac{(n-1)n}{2}$ coordinates. In this setting, we give an interpretation of the extremal values of a topological index in terms of angles between vectors in \mathbb{R}^h . Then we consider the following problem: given a graph $G_0 \in \mathcal{G}_n$, does there exist a vertex-degree-based topological index that attains its extremal values in G_0 ? The answer is affirmative. In order to do this, we introduce the support of the graph G_0 , the reference vector, and then construct vectors such that G_0 is an extremal value.

1 Introduction

In the chemical literature, a great variety of topological indices (molecular structure descriptors) have been and are currently considered in applications to QSPR/QSAR studies [1, 11, 12]. Many of them depend only on the degrees of the vertices of the underlying molecular graph and are now called vertex-degree-based topological indices. More precisely, given nonnegative numbers $\{\varphi_{ij}\}$, a vertex-degree-based topological index is expressed as

$$TI = TI(G) = \sum_{1 \le i \le j \le n-1} m_{ij} \varphi_{ij} \tag{1}$$

where G is a (molecular) graph with n vertices and m_{ij} is the number of edges of G connecting a vertex of degree *i* with a vertex of degree *j*. For instance, $\varphi_{ij} = \frac{1}{\sqrt{ij}}$ pertains to the Randić connectivity index [10], one of the classical vertex–degree–based topological indices with more applications in chemistry and pharmacology. Details on this and others degree–based–topological indices can be found in [2–8] and the references cited therein.

Let \mathcal{G}_n be the set of graphs with *n* non-isolated vertices. In Section 2 of this paper we give a one-to-one correspondence between vertex-degree-based topological indices over \mathcal{G}_n and vectors in \mathbb{R}^h , the Euclidean space with $h = \frac{(n-1)n}{2}$ coordinates. So we can identify vertex-degree-based topological indices with vectors. In this setting, we give an interpretation of the extremal values of a topological index in terms of angles between vectors in \mathbb{R}^h .

One important problem that appears frequently in the mathematical-chemistry literature is to find the extremal values of well known topological indices over the class of graphs with equal number of vertices. In Section 3 we consider the inverse problem: given a graph $G_0 \in \mathcal{G}_n$, does there exist a vertex-degree-based topological index that attains its extremal values in G_0 ? The answer is affirmative. In order to do this, we introduce the support of the graph G_0 , the reference vector, and then construct vectors in Theorems 3.5 and 3.10 such that G_0 is an extremal value.

The proof of our main result strongly relies on [9, Theorem 2.3]. Let TI be a vertexdegree-based topological index defined from the numbers $\{\varphi_{ij}\}$ as in (1). Consider the numbers $f_{ij} = \frac{ij\varphi_{ij}}{i+j}$, where (i, j) belongs to the set

$$K = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i \le j \le n - 1\}$$

Define the sets

$$K_{\min}(f) = \left\{ (r, s) \in K : f_{rs} = \min_{(i,j) \in K} f_{ij} \right\}$$

and

$$K_{\max}(f) = \left\{ (p,q) \in K : f_{pq} = \max_{(i,j) \in K} f_{ij} \right\}$$

The complements of $K_{\min}(f)$ and $K_{\max}(f)$ in K are denoted by $K_{\min}^{c}(f)$ and $K_{\max}^{c}(f)$, respectively.

Theorem 1.1 [9] Let TI be a vertex-degree-based topological index as in (1) and define $f_{ij} = \frac{ij\varphi_{ij}}{i+j}$ for every $(i,j) \in K$. For every graph $G \in \mathcal{G}_n$

$$n\left(\min_{(i,j)\in K} f_{ij}\right) \leq TI\left(G\right) \leq n\left(\max_{(i,j)\in K} f_{ij}\right).$$

Moreover, equality on the left occurs if and only if $m_{pq} = 0$ for all $(p,q) \in K_{min}^c(f)$. Equality on the right occurs if and only if $m_{rs} = 0$ for all $(r,s) \in K_{max}^c(f)$.

2 Geometric representation of vertex-degree-based topological indices

Let n be a positive integer. Consider the set

$$K = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i \le j \le n - 1\}.$$

Note that K has exactly $h = \frac{(n-1)n}{2}$ elements. We order lexicographically the elements of K:

so we can express every vector of \mathbb{R}^h as (φ_{ij}) , where $\varphi_{ij} \in \mathbb{R}$ for all $(i, j) \in K$.

Recall that the dot product of two vectors $X = (x_{ij})_{(i,j)\in K}$ and $Y = (y_{ij})_{(i,j)\in K}$ of \mathbb{R}^h is

$$X \cdot Y = \sum_{(i,j) \in K} x_{ij} y_{ij}.$$

Let \mathcal{G}_n be the set of graphs with n non-isolated vertices. Consider the function m: $\mathcal{G}_n \longrightarrow \mathbb{R}^h$ defined by $m(G) = (m_{ij}(G))_{(i,j) \in K}$, where $G \in \mathcal{G}_n$. We next formally define a vertex-degree-based topological index over \mathcal{G}_n .

Definition 2.1 A vertex-degree-based topological index is a function $T_{\varphi} : \mathcal{G}_n \longrightarrow \mathbb{R}$ defined as

$$T_{\varphi}(G) = m\left(G\right) \cdot \varphi,\tag{2}$$

for all $G \in \mathcal{G}_n$, where $\varphi \in \mathbb{R}^h$.

So every vertex-degree-based topological index is of the form T_{φ} for some vector $\varphi \in \mathbb{R}^{h}$, and conversely, every vector $\varphi \in \mathbb{R}^{h}$ induces a vertex degree based topological index T_{φ} as in (2). In other words, vertex-degree-based topological indices can be identified with vectors in \mathbb{R}^{h} . From now on, if $G \in \mathcal{G}_{n}$ we write $\varphi(G)$ instead of $T_{\varphi}(G)$. In other words, if $G \in \mathcal{G}_{n}$ then

$$\varphi\left(G\right) = m\left(G\right) \cdot \varphi$$

Example 2.2 The Randić index over \mathcal{G}_n is the vector $\varphi = \left(\frac{1}{\sqrt{ij}}\right)_{(i,j)\in K} \in \mathbb{R}^h$.

Recall that the length of $X \in \mathbb{R}^h$ is $||X|| = (X \cdot X)^{\frac{1}{2}}$. The angle between the two vectors X and Y of \mathbb{R}^h is defined as the angle θ between 0 and π such that

$$\cos \theta = \frac{X \cdot Y}{\|X\| \|Y\|}.$$
(3)

The vectors are perpendicular if $\theta = \frac{\pi}{2}$. If $\theta < \frac{\pi}{2}$ (resp. $\theta > \frac{\pi}{2}$) then the angle is acute (resp. obtuse). It follows from (3) that the angle between X and Y is acute (resp. obtuse) if and only if $X \cdot Y > 0$ (resp. $X \cdot Y < 0$). If $X \cdot Y = 0$ then X and Y are perpendicular. We next give a geometric interpretation of the extremal values of a vertex-degree-based topological index over \mathcal{G}_n .

Theorem 2.3 Let $G_0 \in \mathcal{G}_n$. G_0 attains the minimum value of the vertex-degree-based topological index $\varphi \in \mathbb{R}^h$ over \mathcal{G}_n if and only if φ is perpedicular or forms an acute angle with $m(G) - m(G_0)$, for all $G \in \mathcal{G}_n$.

Proof. Note that for all $G \in \mathcal{G}_n$

$$[m(G) - m(G_0)] \cdot \varphi = \varphi(G) - \varphi(G_0).$$
(4)

The result follows from (4) using the fact that G_0 attains the minimum value of φ if and only if $\varphi(G) - \varphi(G_0) \ge 0$.

Similarly we have the following result.

Theorem 2.4 Let $G_0 \in \mathcal{G}_n$. G_0 attains the maximum value of the vertex-degree-based topological index $\varphi \in \mathbb{R}^h$ over \mathcal{G}_n if and only if φ is perpedicular or forms an obtuse angle with $m(G) - m(G_0)$, for all $G \in \mathcal{G}_n$.

3 Is every graph the extremal value of a vertex degree based topological index?

One fundamental problem in chemical graph theory is to determine the extremal values of a given vertex-degree-based topological index over \mathcal{G}_n . Now we consider the inverse problem: given a graph $G_0 \in \mathcal{G}_n$, does there exist $\varphi \in \mathbb{R}^h$ such that G_0 is an extremal value of φ over \mathcal{G}_n ?

Definition 3.1 The support of a graph $G \in \mathcal{G}_n$ is denoted by Supp(G) and defined as

 $Supp(G) = \{ (p,q) \in K : m_{pq}(G) > 0 \}.$

Example 3.2 We compute the support of several graphs:

- 1. If S_n is the star tree with n vertices then $Supp(S_n) = \{(1, n-1)\};$
- 2. If K_n is the complete graph with n vertices then $Supp(K_n) = \{(n-1, n-1)\};$
- 3. If P_n is the path tree with n vertices then $Supp(P_n) = \{(1,2), (2,2)\}.$

Definition 3.3 We define the reference vector $\mathcal{R} = (\mathcal{R}_{pq}) \in \mathbb{R}^h$ as the vector with coordinates $\mathcal{R}_{pq} = \frac{p+q}{pq}$, for all $(p,q) \in K$.

Example 3.4 If n = 4 then $h = \frac{4 \cdot 3}{2} = 6$ and the reference vector $\mathcal{R} = (\mathcal{R}_{pq}) \in \mathbb{R}^6$ is

$$\mathcal{R} = \left(\begin{array}{rrr} 2 & 3/2 & 4/3 \\ * & 1 & 5/6 \\ * & * & 2/3 \end{array}\right).$$

Let $X = (x_{ij})_{(i,j)\in K}$ and $Y = (y_{ij})_{(i,j)\in K}$ be two vectors of \mathbb{R}^h . We write $X \ge Y$ to indicate that $x_{ij} \ge y_{ij}$ for all $(i,j) \in K$. Also, if $L \subseteq K$ then $X|_L = Y|_L$ means $x_{ij} = y_{ij}$ for all $(i,j) \in L$.

Now we can state and prove our main result. We denote by $Supp^{c}(G)$ the complement of Supp(G) in K.

Theorem 3.5 Let $G_0 \in \mathcal{G}_n$ and k a positive number. If $\varphi \in \mathbb{R}^h$ is such that $\varphi \ge k\mathcal{R}$ and $\varphi \Big|_{Supp(G_0)} = k\mathcal{R} \Big|_{Supp(G_0)}$, then φ attains its minimum value over \mathcal{G}_n in G_0 and $\varphi(G_0) = nk$.

Proof. Consider the vector $\varphi = (\varphi_{pq}) \in \mathbb{R}^h$ such that $\varphi \geq k\mathcal{R}$ and $\varphi\Big|_{Supp(G_0)} = k\mathcal{R}\Big|_{Supp(G_0)}$. Let $f_{pq} = \frac{pq\varphi_{pq}}{p+q}$, for every $(p,q) \in K$. Clearly, $f_{pq} = k$ for every $(p,q) \in Supp(G_0)$ and $f_{pq} \geq k$ for every $(p,q) \in Supp^c(G_0)$. Consequently, $k = \min_{(i,j)\in K} f_{ij}$ and $Supp(G_0) \subseteq K_{\min}(f)$. Then $K_{\min}^c(f) \subseteq Supp^c(G_0)$ which implies $m_{ij}(G_0) = 0$ for all $(i,j) \in K_{\min}^c(f)$. Hence by Theorem 1.1

$$\varphi\left(G\right) \ge n \min_{(i,j)\in K} f_{ij} = nk = \varphi\left(G_0\right),$$

for every graph $G \in \mathcal{G}_n$. Consequently, φ attains its minimum value in G_0 over \mathcal{G}_n and $\varphi(G_0) = nk$.

Figure 1. Graphs in \mathcal{G}_4

Corollary 3.6 Let $G_0 \in \mathcal{G}_n$ and l_0 a positive number. There exists a topological index $\varphi \in \mathbb{R}^h$ that attains its minimum value in G_0 over \mathcal{G}_n and $\varphi(G_0) = l_0$.

Proof. Choose $\varphi = (\varphi_{pq}) \in \mathbb{R}^h$ such that $\varphi \geq \frac{l_0}{n} \mathcal{R}$ and $\varphi \Big|_{Supp(G_0)} = \frac{l_0}{n} \mathcal{R} \Big|_{Supp(G_0)}$. Then by Theorem 3.5, $\varphi \in \mathbb{R}^h$ attains its minimal value in G_0 over \mathcal{G}_n and $\varphi(G_0) = n\frac{l_0}{n} = l_0$.

Example 3.7 Consider the following problem: among all graphs in \mathcal{G}_4 (see Figure 1), find a vertex-degree-based topological index φ such that C has minimum value over \mathcal{G}_4 and $\varphi(C) = 2$. As in the proof of Corollary 3.6, we compute the vector $\frac{l_0}{n}\mathcal{R}$, which in this case is

$$\frac{1}{2}\mathcal{R} = \frac{1}{2} \begin{pmatrix} 2 & 3/2 & 4/3 \\ * & 1 & 5/6 \\ * & * & 2/3 \end{pmatrix}.$$

Note that $Supp(C) = \{(1,3), (2,2), (2,3)\}$. Choose a vector $\varphi \geq \frac{1}{2}\mathcal{R}$ such that

$$\varphi \Big|_{\{(1,3),(2,2),(2,3)\}} = \frac{1}{2} \mathcal{R} \Big|_{\{(1,3),(2,2),(2,3)\}}$$

For instance,

$$\varphi = \frac{1}{2} \left(\begin{array}{ccc} 2 & 2 & 4/3 \\ * & 1 & 5/6 \\ * & * & 1 \end{array} \right)$$

Then by Theorem 3.5, φ attains its minimum value in C over \mathcal{G}_4 and $\varphi(C) = 2$. In fact,

$$\begin{array}{ll} \varphi\left(A\right)=6\left(1/2\right)=3 & ; & \varphi\left(E\right)=3\left(2/3\right)=2 \\ \varphi\left(B\right)=4\left(5/12\right)+1/2=13/6 & ; & \varphi\left(F\right)=2\left(1\right)+1/2=5/2 \\ \varphi\left(C\right)=1/2+2/3+2\left(5/12\right)=2 & ; & \varphi\left(G\right)=2\left(1\right)=2. \\ \varphi\left(D\right)=4\left(1/2\right)=2 & ; & \end{array}$$

It is well known that the star tree S_n and the complete graph K_n are extremal values of many important vertex-degree-based topological indices over \mathcal{G}_n . Theorem 3.5 can explain this, as we shall see in our next results. Note that $Supp(S_n) = \{(1, n - 1)\}$ and $Supp(K_n) = \{(n - 1, n - 1)\}$. In both cases, the support has exactly one element.

Corollary 3.8 Let $G_0 \in \mathcal{G}_n$ and assume that $Supp(G_0) = \{(p_0, q_0)\}$. If $\varphi \in \mathbb{R}^h$ satisfies $\varphi \geq k_0 \mathcal{R}$, where $k_0 = \frac{p_0 q_0}{p_0 + q_0} \varphi_{p_0 q_0}$, then G_0 attains the minimum value of φ over \mathcal{G}_n .

Proof. Since $\varphi \geq k_0 \mathcal{R}$ and the coordinate $p_0 q_0$ of $k_0 \mathcal{R}$ is

$$k_0 \frac{p_0 + q_0}{p_0 q_0} = \left(\frac{p_0 q_0}{p_0 + q_0} \varphi_{p_0 q_0}\right) \frac{p_0 + q_0}{p_0 q_0} = \varphi_{p_0 q_0}.$$

we deduce the result from Theorem 3.5.

Example 3.9 Let S_n be the star tree with n vertices. Note that $Supp(S_n) = \{(1, n - 1)\}$. By Corollary 3.8, S_n is the minimum value of any vertex-degree-based topological index $\varphi = (\varphi_{pq}) \in \mathbb{R}^h$ over \mathcal{G}_n that satisfies

$$\varphi_{pq} \ge \frac{p+q}{pq} \frac{n-1}{n} \varphi_{1,n-1} \tag{5}$$

for all $(p,q) \in K$. Note that for the Randić index $\varphi_{pq} = \frac{1}{\sqrt{pq}}$, geometric-arithmetic index $\varphi_{pq} = \frac{2}{p+q}$, harmonic index $\varphi_{pq} = \frac{2}{p+q}$, sum-connectivity index $\frac{1}{\sqrt{p+q}}$ and augmented Zagreb index $\varphi_{pq} = \left(\frac{pq}{p+q-2}\right)^3$, condition (5) holds. Hence, for each of these indices, the star attains its minimum value over \mathcal{G}_n .

Similarly, we have the dual results of Theorem 3.5, Corollaries 3.6 and 3.8.

Theorem 3.10 Let $G_0 \in \mathcal{G}_n$ and k a positive number. If $\psi \in \mathbb{R}^h$ is such that $\psi \leq k\mathcal{R}$ and $\psi \Big|_{supp(G_0)} = k\mathcal{R} \Big|_{supp(G_0)}$, then ψ attains its maximum value over \mathcal{G}_n in G_0 and $\psi(G_0) = nk$.

Corollary 3.11 Let $G_0 \in \mathcal{G}_n$ and m_0 a positive number. There exists a topological index $\psi \in \mathbb{R}^h$ that attains its maximum value in G_0 over \mathcal{G}_n and $\psi(G_0) = m_0$.

Example 3.12 Let us find a topological index ψ over \mathcal{G}_4 such that F has maximum value and $\psi(F) = 1$ (see Figure 1). The support of F is $\{(1,2), (2,2)\}$. So we choose a vector $\psi \leq \frac{1}{4}\mathcal{R}$ such that $\psi\Big|_{\{(1,2), (2,2)\}} = \frac{1}{4}\mathcal{R}\Big|_{\{(1,2), (2,2)\}}$. For example,

$$\psi = \frac{1}{4} \begin{pmatrix} 3/2 & 3/2 & 1\\ * & 1 & 2/3\\ * & * & 1/3 \end{pmatrix} \le \frac{1}{4} \begin{pmatrix} 2 & 3/2 & 4/3\\ * & 1 & 5/6\\ * & * & 2/3 \end{pmatrix} = \frac{1}{4} \mathcal{R}.$$

Hence, by Theorem 3.10, ψ attains its maximum value in F over \mathcal{G}_4 and $\psi(F) = 1$. In fact,

$$\begin{array}{ll} \psi\left(A\right)=6\left(1/12\right)=1/2 & ; & \psi\left(E\right)=3\left(1/4\right)=3/4 \\ \psi\left(B\right)=4\left(1/6\right)+1/12=3/4 & ; & \psi\left(F\right)=2\left(3/8\right)+1/4=1 \\ \psi\left(C\right)=1/4+1/4+2\left(1/6\right)=5/6 & ; & \psi\left(G\right)=2\left(3/8\right)=3/4. \\ \psi\left(D\right)=4\left(1/4\right)=1 \end{array}$$

Corollary 3.13 Let $G_0 \in \mathcal{G}_n$ and assume that $Supp(G_0) = \{(p_0, q_0)\}$. If $\psi \in \mathbb{R}^h$ satisfies $\psi \leq k_0 \mathcal{R}$, where $k_0 = \frac{p_0 q_0}{p_0 + q_0} \psi_{p_0 q_0}$, then G_0 attains the maximum value of ψ over \mathcal{G}_n . **Example 3.14** Let K_n be the complete graph with n vertices. Then

$$Supp(K_n) = \{(n-1, n-1)\}.$$

By Corollary 3.13, K_n is the maximum value of any vertex-degree-based topological index $\psi = (\psi_{ij}) \in \mathbb{R}^h$ over \mathcal{G}_n that satisfies

$$\psi_{pq} \le \frac{p+q}{pq} \frac{n-1}{2} \psi_{n-1,n-1} \tag{6}$$

for all $(p,q) \in K$. For instance, the first Zagreb index $\psi_{pq} = p + q$, the second Zagreb index $\psi_{pq} = pq$, the Randić index $\psi_{pq} = \frac{1}{\sqrt{pq}}$, the harmonic index $\psi_{pq} = \frac{2}{p+q}$, the geometricarithmetic index $\psi_{pq} = \frac{2\sqrt{pq}}{p+q}$, the sum-connectivity index $\psi_{pq} = \frac{1}{\sqrt{p+q}}$, the ABC index $\psi_{pq} = \sqrt{\frac{p+q-2}{pq}}$ and the augmented Zagreb $\psi_{pq} = \left(\frac{pq}{p+q-2}\right)^3$ satisfy condition (6). Hence, for each of these indices, the complete graph K_n attains its maximum value over \mathcal{G}_n .

Corollary 3.15 Let G_0 and G_1 be two graphs such that $Supp(G_0) \cap Supp(G_1) = \emptyset$, and let $l_0 < l_1$ be two positive numbers. There exists a topological index φ which attains its minimum and maximum value over \mathcal{G}_n in G_0 and G_1 , respectively, and $\varphi(G_0) = l_0$ and $\varphi(G_1) = l_1$.

Proof. Define $\varphi = (\varphi_{pq}) \in \mathbb{R}^h$ such that $\frac{l_0}{n}\mathcal{R} \leq \varphi \leq \frac{l_1}{n}\mathcal{R}$, $\varphi |_{Supp(G_0)} = \frac{l_0}{n}\mathcal{R} |_{Supp(G_0)}$ and $\varphi |_{Supp(G_1)} = \frac{l_1}{n}\mathcal{R} |_{Supp(G_1)}$. Then proceed as in Theorems 3.5 and 3.10. One final comment. The most important vertex-degree-based topological indices are vectors which derive from symmetric functions (for instance, the Randić index $\frac{1}{\sqrt{pq}}$, the geometric-arithmetic index $\frac{2\sqrt{pq}}{p+q}$, etc). What about the vectors that are not of this type, are they interesting in applications to QSPR/QSAR?

References

- J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
- [2] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertexdegree-based molecular structure descriptors, *MATCH Commun. Math. Comput. Chem.* 66 (2011) 613–626.
- [3] B. Furtula, I. Gutman, M. Dehmer, On structure–sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973–8978.
- [4] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
- [5] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.
- [6] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertexdegree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805–810.
- [7] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
- [8] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
- J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603–616.
- [10] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [11] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- [12] R. Todeschini, V. Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley– VCH, Weinheim, 2009.