
Harmonic Index and its Generalizations:

Extremal Results and Bounds

Akbar Ali1, Lingping Zhong2, Ivan Gutman3

1Knowledge Unit of Science, University of Management & Technology,
Sialkot, Pakistan

akbarali.maths@gmail.com

2Department of Mathematics, Nanjing University of Aeronautics and Astronautics
Nanjing 210016, P. R. China

zhong@nuaa.edu.cn

3Faculty of Science, University of Kragujevac,
P.O.Box 60, 34000 Kragujevac, Serbia

gutman@kg.ac.rs

(Received April 14, 2018)

Abstract

The general sum–connectivity index χα of a graph G is defined as χα(G) =∑
uv∈E(G)(du + dv)

α, where uv is the edge connecting the vertices u and v, du is
the degree of the vertex u, and α is a real number. Research on χα began in 1972,
when the first Zagreb index χ1 was introduced within a study of total π-electron
energy. Later, in 1987, the harmonic index H(= 2χ−1) appeared in connection
with some conjectures, generated by the computer program Graffiti. The sum–
connectivity index χ−1/2, was proposed in 2009 and eventually extended to the
general sum–connectivity index χα, which not only includes all the aforementioned
graph invariants but also the hyper–Zagreb index χ2. In this survey, we outline
extremal results and bounds involving the mentioned invariants.

1 Introduction

Throughout this survey paper, the term “graph” refers to a simple and finite graph, unless

stated otherwise. Let G be such a graph, V (G) its vertex set and E(G) its edge set. The

number of vertices, |V (G)| = n is the order of G. The number of edges |E(G)| = m is

the size of G. A graph with n vertices and m edges is referred to as an (n,m)-graph. The

edge connecting the two vertices u and v will be denoted by uv. The degree of a vertex
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u, denoted by du, is the number of vertices adjacent to u. If du = 0, then u is an isolated

vertex. If du = 1 then u is a pendent vertex, whereas uv is a pendent edge.

Additional definitions are found in Section 2. For notation and terminology the readers

may also consult the books [27,86,91,184].

The graphs representing molecules are said to be molecular graphs. In these graphs,

vertices correspond to the atoms while edges represent the covalent bonds between atoms

in the underlying molecule [86, 184]. Graph invariants that found applications in chem-

istry, especially in QSPR and QSAR studies, are usually referred to as topological in-

dices [46, 58,174,175].

The Platt index, proposed for predicting properties of paraffins [146], is one of the

oldest degree–based topological index. It is defined as

Pl(G) =
∑

uv∈E(G)

(du + dv − 2) .

Note that du + dv − 2 is the degree of the edge uv, namely the number of edges incident

to uv.

The Platt index can be written [62,138] as

Pl(G) = M1(G)− 2m, (1)

where m is the size of the graph G and M1(G) is the first Zagreb index,

M1(G) =
∑

u∈V (G)

d2
u =

∑
uv∈E(G)

(du + dv) .

It was introduced in 1972 within the study of total π-electron energy of alternant hydro-

carbons [89]. Certainly, both the topological indices M1 and Pl have same properties,

due to the identity (1).

The first Zagreb index is one of the most thoroughly examined degree–based graph

invariants. Details about the (chemical and mathematical) properties of the first Zagreb

index can be found in the surveys [13, 28, 29, 83, 84, 87, 138] and in the references quoted

therein.

Inspired by the work done on the first Zagreb index M1, Zhou and Trinajstić [214]

proposed the following generalized version of M1:

χα(G) =
∑

uv∈E(G)

(du + dv)
α
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where α is a real number. It is customary to require that α be non-zero, because the case

α = 0 is trivial: χ0(G) = m for all graphs G.

The topological index χα generalizes also the so called sum–connectivity index X

(which is equal to χ−1/2), introduced in [213], and hence the name general sum–connectivity

index.

The sum–connectivity index is also a variant of the well–known Randić index [155],

which was proposed for measuring the extent of branching of certain chemical compounds.

The Randić index of a graph G is defined as

R(G) =
∑

uv∈E(G)

(dudv)
−1/2 .

The sum–connectivity index and Randić index correlate well among themselves and the

predictive abilities of these topological indices are practically same in most of the cases;

for example, see [81,118–121,139,188]. It should be mentioned here that the topological

index χ2 was proposed in [167], under the name hyper–Zagreb index.

In 1987, the so called harmonic index appeared within some conjectures, generated

by the computer program Graffiti [73]. The harmonic index is usually denoted by H and

this topological index coincides with the graph invariant 2χ−1. Till 2011, the harmonic

index attracted little attention. But, after the paper [202] was published, the situation

changed and many publications on this topological index resulted and are still appearing.

At this point it should be noted that in the literature there is another topological

index [136], which was also proposed under the name harmonic index, but whose definition

is different from that of H.

Three fundamental and most studied problems in the theory of topological indices,

considered in mathematical chemistry, ask for the

• extremal structures, under certain constraints, that maximize or minimize the given

topological index;

• best possible lower and upper bounds for the given topological index;

• relations between different topological indices.

In this survey, we attempt to gather results pertaining to the above mentioned issues,

involving the harmonic index H, sum–connectivity index X, hyper–Zagreb index χ2 and

general sum–connectivity index χα. Certainly, several result concerning the topological
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index χα recovers also the results regarding the first Zagreb index (and hence the Platt

index). Moreover, due to the recently published updated surveys on the first Zagreb

index [13,28,29], we do not include results that are concerned only with the first Zagreb

index.

The remaining part of this survey is organized as follows. The main definitions are

given in the next section. Sections 3, 4, and 5 are devoted, respectively, to results on the

harmonic index H, sum–connectivity index X, and general sum–connectivity index χα

(including the hyper–Zagreb index χ2).

2 Preliminaries

Most of the well–known degree–based topological indices can be obtained from the fol-

lowing general setting [95,187]:

BID(G) =
∑

uv∈E(G)

f(du, dv), (2)

where f is a non-negative real valued symmetric function of du and dv. The topological

indices of the form (2) will be referred to as bond incident degree indices [185], BID indices

in short. In Table 2, we list some choices of the function f for which Eq. (2) corresponds

to topological indices considered in the current literature.

The first Zagreb coindex is defined [61] as

M1(G) =
∑

uv 6∈E(G);u6=v

(du + dv)

which can also be obtained from (2) because of the identity [45]:

M1(G) =
∑

uv∈E(G)

[2 (|V (G)| − 1)− (du + dv)] .

The average distance µ(G) of a connected graph G is defined [63] as

µ(G) =
1(
n
2

) ∑
{u,v}⊆V (G)

d(u, v) (3)

where d(u, v) denotes the distance (that is, length of the shortest path) between the

vertices u and v.

The sum–connectivity matrix S(G) of a non-trivial graph G is defined [215] as

S(G) = [si,j]n×n
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The function f(du, dv) Eq. (2) corresponds to symbol

du + dv first Zagreb index [89] M1

2(du + dv)
−1 harmonic index [73] H

(du + dv)
−1/2 sum–connectivity index [213] X

(du + dv)
2 hyper–Zagreb index [167] χ2

(du + dv)
α general sum–connectivity index [214] χα

(du)
−3/2 + (dv)

−3/2 zeroth–order connectivity/Randić index [106] 0R

(du)
2 + (dv)

2 forgotten topological index [78] F

(du)
α−1 + (dv)

α−1 general zeroth–order Randić index [98] 0Rα

du dv second Zagreb index [88] M2

(du dv)
−1/2 Randić index [155] R

(du dv)
−1 modified second Zagreb index [138] M∗

2

(du dv)
α general Randić index [25] Rα√

du+dv−2
du dv

atom–bond connectivity index [72] ABC

2
√
du dv(du + dv)

−1 first geometric–arithmetic index [186] GA

du dv(du + dv)
−1 inverse sum indeg index [187] ISI

Table 1: Some topological indices considered in the present survey paper. The parameter
α is a non-zero real number. Here, it should be mentioned that the modified second
Zagreb index M∗

2 coincides with the first–order overall index [26,138], Rα is also referred
to as variable second Zagreb index (see [131]), and 0Rα coincides with both the first
general Zagreb index [110] and variable first Zagreb index [131].

where

si,j =

(dvi + dvj)
−1/2 if vivj ∈ E(G)

0 otherwise.

It should be mentioned that trace of the matrix S(G)2 coincides with the harmonic

index [215].

The sum Si =
∑n

j=1 si,j is known as the sum of the i-th row of the sum–connectivity

matrix S(G) of an n-vertex graph G [198].

The sum of absolute values of all eigenvalues of the sum–connectivity matrix S(G) is

referred to as the sum–connectivity energy (SE) [215].

If G is an n-vertex graph, then the sum–connectivity Estrada index (SEE) of G is
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defined [198] as

SE(G) =
n∑
i=1

eµi

where µ1, µ2, . . . , µn are the eigenvalues of the sum–connectivity matrix S(G).

The eccentricity of a vertex v in a graph is the distance from v to a vertex farthest

from v. The radius of a graph G is the minimal vertex eccentricity in G. The average

eccentricity of a graph G, denoted by avec(G), is the mean value of eccentricities of all

vertices of G.

The diameter of a graph G is the greatest distance between any pair of vertices of G.

The minimum number of edges of a (connected) graph G whose removal makes G

acyclic is known as the cyclomatic number and it is denoted by ν.

The chromatic number of a graph G, denoted by χ(G), is the minimum number of

colors needed to color the vertices of G so that no two adjacent vertices have the same

color. The total chromatic number of a graph G is the minimum number of colors needed

to color the elements (that is, the vertices and edges) of G so that incident elements as

well as the adjacent elements have distinct colors.

The clique number of a graph G, denoted by ω(G), is the maximal order of a complete

subgraph of G.

If D is the diagonal matrix of vertex degrees of a graph G and A is the adjacency

matrix of G, then the matrix D + A is called signless Laplacian matrix.

A matching in a graph is a set of pairwise non-adjacent edges.

In a graph G, a set D ⊆ V (G) is a dominating set if every vertex of the set V (G) \D

has a neighbor in D. A minimal dominating set is one which consists of a least number

of vertices. The domination number is the number of vertices in a minimal dominating

set.

Any subset V ′ of the vertex set of a graph G is said to be an independent set if

the vertices of V ′ are pairwise non-adjacent. The independence number of a graph G is

defined as the cardinality of a maximal independent set in G.

A tree resulting in a path after deletion of all its pendent vertices is known as a caterpil-

lar. Let d ≥ 3, pi ≥ 0 for 2 ≤ i ≤ d− 2 and p1, pd−1 ≥ 1. Denote by MS(p1, p2, . . . , pd−1)

the caterpillar consisting of a path v1v2 · · · vd−1 with pi pendent vertices attached at vi

for 1 ≤ i ≤ d− 1.

A tree containing exactly one branching vertex is said to be a starlike tree. Denote by
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Sn(r1, r2, . . . , rk) the n-vertex starlike tree whose pendent paths have lengths r1, r2, . . . , rk,

where r1 ≥ r2 ≥ · · · ≥ rk and r1 + r2 + · · ·+ rk + 1 = n.

Following Hosseini et al. [97], we define a proper Kragujevac tree: a tree possessing a

central vertex of degree at least 3, to which branches of the form B1 and/or B2 and/or

B3 and/or . . . Bk are attached, where the branches B1, B2, . . ., Bk are depicted in Figure

1.

︸ ︷︷ ︸

BkB1 B2 B3

k
Figure 1: The branches of a proper Kragujevac tree.

Denote by Sn,p the tree obtained from the path Pn−p+1 by attaching p − 1 pendent

vertices to one pendent vertex of Pn−p+1.

With given vertex degrees, the greedy tree is achieved through the following “greedy

algorithm” [189]:

(i) Label the vertex with the largest degree as v (the root);

(ii) Label the neighbors of v as v1, v2, . . . , assign the largest degrees available to them

such that dv1 ≥ dv2 ≥ · · · ;

(iii) Label the neighbors of v1 (except v) as v1,1, v1,2, . . . such that they take all the largest

degrees available and that dv1,1 ≥ dv1,2 ≥ · · · , then do the same for v2, v3, . . .;

(iv) Repeat (iii) for all the newly labeled vertices, always start with the neighbors of the

labeled vertex with the largest degree whose neighbors are not labeled yet.

Given a non-increasing degree sequence (d1, d2, . . . , dm) of internal vertices, the alter-

nating greedy tree is constructed through the following recursive algorithm [189]:

(i) If m−1 ≤ dm, then the alternating greedy tree is simply obtained by a tree rooted at r

with dm children, dm−m+1 of which are pendents and the rest with degrees d1, . . . , dm−1;

(ii) Otherwise, m−1 ≥ dm+1. We produce a subtree T1 rooted at r with dm−1 children

with degrees d1, . . . , ddm−1 ;

(iii) Consider the alternating greedy tree S with degree sequence (ddm , . . . , dm−1), let v

be a pendent vertex with the smallest neighbor degree. Identify the root of T1 with v.

A quasi–tree is a graph obtained from a tree T by adding one vertex u and edges
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joining u to some positive number of vertices in T .

A connected graph G is a cactus if and only if every edge of G lies on at most one

cycle.

Denote by H(n, k;n1, n2, . . . , nk) the unicyclic graph obtained from a cycle Ck with

ni pendent vertices attached at vi for 1 ≤ i ≤ k, where Ck = v1v2 · · · vkv1, ni ≥ 0 and

n1 + · · ·+ nk = n− k.

For 3 ≤ k ≤ n−2, let Uk1,k2,...,kt
n,k be the unicyclic graph obtained from the cycle Ck by

attaching t paths of lengths k1, k2, . . . , kt to one vertex of Ck such that k1 +k2 + · · ·+kt =

n− k. Let

F1 = {Uk1,k2,...,k∆−2

n,3 : 1 ≤ k1, k2, . . . , k∆−2 ≤ 2}

and

F2 = {Uk1,k2,...,k∆−2

n,k : k ≥ 3 and k1, k2, . . . , k∆−2 ≥ 2}.

Let u be a fixed pendent vertex of the n-vertex star graph Sn, n ≥ 4. Denote by Hn,r

the graph obtained from Sn by adding r edges between u and r other pendent vertices.

Let K∗1,n−1
∼= K1,n−1 and for k ≥ 2, let K∗k,n−k be the graph obtained from the

complete bipartite graph Kk,n−k by adding an edge between every pair of (different)

vertices of degree n− k.

A graph µ∗(G) obtained from a graph G by applying the transformation introduced

in [135] is known as Mycielskian of G. The vertex set of µ∗(G) consists of the disjoint

union V (G)∪ V ′(G)∪ {w}, where V ′(G) = {v′ : v ∈ V (G)}, and the edge set of µ∗(G) is

the set E(G) ∪ {v′u : vu ∈ E(G)} ∪ {v′w : v′ ∈ V ′(G)}.
Let (d0, d1, . . . , dn−1) be a non-increasing degree sequence of a connected graph G with

vertex set V (G) = {v0, v1, . . . , vn−1}, where di = dvi for i = 0, 1, . . . , n − 1. Following

Li et al. [108], we introduce an ordering of the vertices of G induced by breadth–first

search (BFS): create a sorted list of vertices beginning with v0; append all neighbors

u1, u2, . . . , ud0 of v0 sorted by decreasing degrees; then append all neighbors of u1 that

are not already in the list, also sorted by decreasing degrees; continue recursively with

u2, u3, . . ., until all vertices of G are processed. In this way, we get a rooted graph, with

root v0. The distance d(v, v0) is called the height h(v) of a vertex v ∈ V (G).

Let G be a connected rooted graph with root v0. A well ordering ≺ of the vertices is

called breadth–first searching ordering [24,200] with non-increasing degrees (BFS ordering

for short) if the following conditions hold for all vertices u, v ∈ V (G):
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(i) u ≺ v implies h(u) ≤ h(v);

(ii) u ≺ v implies d(u) ≥ d(v);

(iii) let uv, xy ∈ E(G) and uy, xv 6∈ E(G) with h(u) = h(x) = h(v) − 1 = h(y) − 1. If

u ≺ x , then v ≺ y.

A graph having a BFS ordering of its vertices is known as a BFS graph.

Denote by xa,b the number of edges, in a graph G, connecting the vertices of degrees

a and b.

A k-polygonal system is a connected geometric figure obtained by concatenating con-

gruent regular k-polygons side to side in a plane in such a way that the figure divides

the plane into one infinite (external) region and a number of finite (internal) regions,

and all internal regions must be congruent regular k-polygons. In a k-polygonal system,

two polygons are said to be adjacent if they share a side. The characteristic graph (or

dualist or inner dual) of a given k-polygonal system consists of vertices corresponding

to k-polygons of the system; two vertices are adjacent if and only if the corresponding

k-polygons are adjacent. A k-polygonal system whose characteristic graph is the path

(respectively, tree) is called k-polygonal chain (respectively, k-polygonal catacondensed

system). In a k-polygonal chain, a k-polygon having one (respectively two) neighboring

k-polygon(s) is called terminal (respectively, non-terminal) k-polygon. Any k-polygonal

system can be represented by a graph, in which the edges represent sides of a k-polygon

while the vertices correspond to the points where two sides of a k-polygon meet. In

what follows, by a k-polygonal system we always mean the graph corresponding to the

k-polygonal system.

A 3-polygonal (triangular) chain in which every vertex has degree at most 4 is said

to be a linear triangular chain.

In a 4-polygonal (polyomino) chain, a non-terminal square having a vertex of degree 2

is known as a kink. In a 5-polygonal (pentagonal) chain, a kink is a non-terminal pentagon

which contains an edge connecting the vertices of degree 2. A linear polyomino/pentagonal

chain is the one, without kinks. A zigzag polyomino/pentagonal chain is the one, con-

sisting of only kinks and terminal squares. A segment in a polyomino/pentagonal chain

is a maximal linear sub–chain, including the kinks and/or terminal squares at its ends.

The number of squares/pentagons in a segment is called its length. A segment is said to

be external (internal, respectively) segment if it contains (does not contain, respectively)
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terminal square/pentagon.

The 6-polygonal (hexagonal) systems with equal number of hexagons and equal num-

ber of internal vertices are known as isomeric. Isomeric hexagonal systems have also

equal number of vertices and equal number of edges. Paths along the perimeter of a

hexagonal system having degree sequences (2, 3, 2), (2, 3, 3, 2), (2, 3, 3, 3, 2), (2, 3, 3, 3,

3, 2) are known as fissure, bay, cove, fjord, respectively. Sum of the number of fissures,

bays, coves, and fjords of a hexagonal system S is called the number of inlets of S.

In a hexagonal system, let b, c, f be the numbers of bays, coves, fjords, respectively.

3 The Harmonic Index

In this section, we collect results concerning the harmonic index H which are related to

the bounds and extremal properties of H. Because of the fact that H = 2χ−1, various

such type of results follow from Section 5, concerning general sum–connectivity index χα,

which covers the value α = −1 .

3.1 Harmonic index on trees

To the best of our knowledge, [202] is the first paper on extremal properties of the

harmonic index H. Zhong [202] identified the unique graphs with extremal H values

among n-vertex trees.

Theorem 1. [202] If n ≥ 3, then among n-vertex connected graphs (and hence, among

n-vertex trees) the star is the unique graph with minimal H value, equal to 2(n− 1)/n.

If we replace “connected graphs” with “graphs without isolated vertices” in Theorem 1

then the resulting (generalized) statement remains true [211]. Theorem 1 was proven also

in [38] independently. Tomescu and Kanwal [182] determined trees with first five mini-

mum H values among n-vertex trees, see Theorem 134. Trees with first two (respectively,

first four) minimum H values were determined also in [109] (respectively, [53]).

Theorem 2. [202] If n ≥ 4, then only the path graph Pn has maximum H value (which

is equal to n−3
2

+ 4
3
) among n-vertex trees.

Theorem 2 was proved by an alternative way in [99,109]. Ilić [100] proved Theorem 2

in a short way and determined the trees with second maximum H value among n-vertex
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trees, using a graph transformation which may be helpful in characterizing the graphs

with maximum H value among connected (n,m)-graphs. Deng et al. [52] characterized

the trees with third, fourth and fifth maximum H values from the class of all n-vertex

trees (for sufficiently large n).

Theorem 3. [100] If n ≥ 7, then only the starlike trees of the form Sn(r1, r2, r3), where

r1 ≥ r2 ≥ r3 ≥ 2, have second maximum H value (which is equal to n−7
4

+ 3
5

+ 1) among

n-vertex trees.

From Theorem 3, it follows that only the starlike trees of the form Sn(r1, r2, r3), where

r1 ≥ r2 ≥ r3 ≥ 2, have maximum H value among n-vertex starlike trees. This fact was

proved also in [22].

Fan et al. [76] determined the graphs with extremal H values from several classes of

trees. The next three results were proved in [76,108] independently.

Theorem 4. [76, 108] Among n-vertex trees with domination number γ, only the tree

T 0(n, γ) has minimum H value, where T 0(n, γ) is the tree obtained from the star Sn−γ+1

by attaching a pendent edge to each of γ − 1 pendent vertices of Sn−γ+1.

Theorem 5. [76, 108] For n ≥ 4, among n-vertex trees with domination number dn/3e,

only the path Pn has maximum H value.

Theorem 6. [76, 108] For n ≥ 5, among n-vertex trees with domination number 2, only

P4 (d(n− 4)/2e, b(n− 4)/2c) has maximum H value, where P4 (d(n− 4)/2e, b(n− 4)/2c)

is the tree obtained from the path P4 (= v1v2 · · · v`) by attaching d(n−4)/2e (respectively,

b(n− 4)/2c) pendent vertices to v1 (respectively, v`) of P4.

Theorem 7. [76] If |V1| = p, |V2| = q and n ≥ 4, then among n-vertex trees with bipar-

tition (V1, V2), only the tree B′p,q has minimum H value, where the tree B′p,q is obtained

from the path P2 by attaching p − 1 pendent vertices to one end vertex of P2 and q − 1

pendent vertices to the other end vertex of P2.

The next result was proved independently in [76,116,166,182].

Theorem 8. [76, 116,166,182] For n ≥ 5 and 3 ≤ k ≤ n− 2, among n-vertex trees with

k pendent vertices, only the tree Sn,k has minimum H value.
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Deng et al. [53] characterized the graphs having second minimum H value from the

family of n-vertex trees with fixed pendent vertices.

Shi [166] solved the problem of finding trees having maximum harmonic index from

the class of trees with fixed order as well as pendent vertices.

Theorem 9. [166] If 3 ≤ k ≤ bn+2
3
c, then among n-vertex trees with k pendent vertices,

only trees which have k− 2 vertices of maximum degree 3 such that every vertex of degree

3 is adjacent to either another vertex of degree 3 or a vertex of degree 2, have maximum

H value.

Theorem 9 can be considered as a particular case of Theorem 136. Since the extremal

trees specified in Theorem 9 are chemical trees, these trees also have the maximum H

value in the family of n-vertex chemical trees with k pendent vertices under the constrains

given in the aforementioned theorem and this fact was proven also in [41, 116]. Graphs

with minimum H value in the family of n-vertex chemical trees with fixed number of

pendent vertices were determined in [116]. Graphs with first three minimum (respectively,

maximum) H values from the family of n-vertex chemical trees were characterized in

[116,205] (respectively, [205]) .

The following theorem was proven in [53,76,182] independently.

Theorem 10. [53, 76, 182] If n ≥ 3 and 2 ≤ d ≤ n − 1, then among n-vertex trees with

diameter d, the tree T 1
d (n− d− 1) has minimum H value, where the tree T 1

d (n− d− 1),

is obtained from the path P (= v0v1 · · · vd) by attaching n− d− 1 pendent vertices to the

vertex v1.

Trees with second minimum H value and trees with third to (d(n− d+ 1)/2e+ 1)−th

minimum H values were also determined in [53, 76, 182] and [182], respectively, among

n-vertex trees with diameter d. Some extremal results concerning the harmonic index H

for multigraphs can be found in [182].

Theorem 11. [158] If n ≥ 5, then among n-vertex trees with maximum degree ∆,

• the starlike tree Sn(r1, r2, . . . , rk), with r1 ≥ r2 ≥ · · · ≥ rk ≥ 2, has maximum H value

for 3 ≤ ∆ ≤ n−1
2

• the starlike tree Sn(r1, r2, . . . , rk), with 1 ≤ rk ≤ rk−1 ≤ · · · ≤ r1 ≤ 2, has maximum H

value for ∆ > n−1
2

.
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Theorem 12. [189] Among trees with a given degree sequence, the greedy tree has maxi-

mum H value and the alternating greedy tree has minimum H value.

Theorem 13. [37] Among proper Kragujevac n-vertex trees with the central vertex of

degree r (where r ≥ 3) and no branches of type B1, the tree V (respectively, U) has

maximum (respectively, minimum) H value, where the trees U and V are depicted in

Figure 2.

︸ ︷︷ ︸
r − 1

︸ ︷︷ ︸
h

︸ ︷︷ ︸
h2

︸ ︷︷ ︸
h2︸ ︷︷ ︸

r − r1

︸ ︷︷ ︸
h1

︸ ︷︷ ︸
h1︸ ︷︷ ︸

r1
U V

Figure 2: The trees U and V mentioned in Theorems 13 and 88, where h = n−5r+3
2

,

h1 = bn−r−1
2r
c, h2 = dn−r−1

2r
e and r1 = (3+2h1)m−n+1

2
.

Theorem 14. [158] If T is an n-vertex tree with maximum degree ∆ and n ≡ r (mod

∆− 1), then

H(T ) ≥



2(n−1)2

(∆+2)n−4(∆−1)
if r = 0

2(n−1)2

(∆+2)n−3∆
if r = 1

2(n−1)2

(∆+2)n−2(∆+1)
if r = 2

2(n−1)2

(∆+2)n−2∆−3+r(r−2)
if r ≥ 3.

Theorem 15. [157] If T is an n-vertex tree with maximum degree ∆ and n ≡ r (mod
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∆− 1), where ∆ ≥ 3, then

H(G) ≥



2
∆−1

(
n(∆−2)

∆+1
+ ∆−2

2
+ n−(∆−1)2

2∆

)
if r = 0 and n > (∆− 1)(∆− 2)

2
(

(∆−1)2−n
(∆−1)2 + n−∆+1

∆+1
+ n−∆+1

2(∆−1)2

)
if r = 0 and n ≤ (∆− 1)(∆− 2)

2
(
n(∆−2)+1

∆2−1
+ ∆−1

2∆−1
+ n−1−∆(∆−1)

2∆(∆−1)

)
if r = 1 and n > (∆− 1)2 + 1

2
(

∆(∆−1)−n+1
∆(∆−1)

+ n−∆
∆+1

+ n−∆
(2∆−)(∆−1)

)
if r = 1 and n ≤ (∆− 1)2 + 1

2
∆−1

(
n(∆−2)+2

∆+1
+ n−∆−1

2∆

)
if r = 2

2
(
n(∆−2)+r−∆+1

∆2−1
+ r−1

∆+r−1
+ n−(r−1)∆−1

2∆(∆−1)

)
if r ≥ 3 and n ≥ ∆(r − 1) + 1

2
(

(r−1)∆−n+1
r(∆−1)

+ n−r
∆+1

+ n−r
(∆+r−1)(∆−1)

)
if r ≥ 3 and n < ∆(r − 1) + 1.

3.2 Harmonic index of unicyclic and bicyclic graphs

The graphs with extremum H values from the collections of all n-vertex connected uni-

cyclic and bicyclic graphs were determined independently in [99, 203] and [99, 210, 220],

respectively.

Theorem 16. [99, 203] If n ≥ 4, then among n-vertex connected unicyclic graphs, only

the graph Hn,1 has minimum H value and only the cycle Cn has maximum H value.

It should be mentioned that Li and Shiu [109] proved Theorem 16 by an alternative

way.

For sufficiently large n, graphs with second to fourth (respectively, second to fifth)

maximum H values were characterized in [209] (respectively, [52]), from the family of

connected unicyclic n-vertex graphs.

Tomescu and Kanwal [183] determined the graphs with first three minimum H val-

ues from the family of n-vertex connected unicyclic graphs having girth at least 4, see

Theorem 141.

Theorem 17. [209] Let Un,k be the set of connected unicyclic n-vertex graphs with girth

k.

(i). If n ≥ k ≥ 3, then H(n, k;n−k, 0, . . . , 0) is the unique graph with minimum H value
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in the set Un,k.

(ii). If n ≥ k = 3, then H(n, 3;n − 4, 1, 0) is the only graph with second minimum H

value in the set Un,k.

(iii). If n ≥ k+2 ≥ 6, then members of A(n, k) are the only graphs with second minimum

H value in the set Un,k, where A(n, k) is the set of n-vertex unicyclic graphs consisting

of a cycle Ck, n − k − 1 pendent edges incident to a vertex x ∈ V (Ck) and one pendent

edge incident to a vertex y ∈ V (Ck), such that the distance between x and y is at least 2.

Theorem 17 also follows from Theorem 140(v) and Theorem 141.

Theorem 18. [209] Let Un,k be the set of connected unicyclic n-vertex graphs with girth

k.

(i). If n − 2 ≥ k ≥ 3, then the graph obtained from the cycle Ck by attaching a path of

length n − k to one vertex of Ck, is the unique graph with maximum H value in the set

Un,k.

(ii). If n − 4 ≥ k ≥ 3, then the members of B(n, k) are the only graphs with second

maximum H value in the set Un,k, where B(n, k) is the set of n-vertex unicyclic graphs

obtained either by attaching two paths of length at least 2 to two adjacent vertices of Ck or

by connecting an edge between a vertex of Ck and a vertex v of a path of length n− k− 1

such that v is not adjacent to any pendent vertex.

(iii). If k = n − 3, then Un,n−3 is the only graph with second maximum H value in the

set Un,k, where Un,n−3 is the graph obtained by attaching a path of length 2 and a path of

length 1 to two adjacent vertices u, v of Cn−3, respectively.

(iv). If k = n− 2, then Un,n−2 is the only graph with second maximum H value in the set

Un,k, where Un,n−2 is the graph obtained from Cn−2 by attaching two pendent edges, one

at u ∈ V (Cn−2) and the other at v ∈ V (Cn−2) provided that uv ∈ E(Cn−2).

The next result can be considered as an extended version of Theorem 17(i).

Theorem 19. [204] If k ≥ 3, then H(n, k;n − k, 0, . . . , 0) is the unique graph with

minimum H value in the set of connected n-vertex graphs with girth at least k.

Theorem 20. [208] If 4 ≤ d ≤ n − 2, then among n-vertex connected unicyclic graphs

with diameter d, the unique graph obtained by attaching n − d − 1 pendent edges and a

path of length d − 3 to two non-adjacent vertices of C4, respectively, has minimum H

value.
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Theorem 21. [156] If n ≥ 5 and G is the graph with maximum H value among connected

unicyclic n-vertex graphs having maximum degree ∆, where n+2
2
≤ ∆ or ∆ ≤ n+1

2
, then

G ∈ F1 ∪ F2.

Theorem 22. [164] If G is a connected unicyclic molecular n-vertex graph with p pendent

vertices, then

H(G) ≥ n

4
+

3p

20

with equality if and only if G contains only vertices of degrees 1 and 4.

Theorem 23. [99,210,220] If n ≥ 4, then among n-vertex connected bicyclic graphs, only

the graph Hn,2 has minimum H value.

Theorem 24. [99,210,220] If n ≥ 6, then among n-vertex connected bicyclic graphs, only

the following graphs have maximum H value:

• the graph obtained from two disjoint cycles by joining them with an edge,

• the graph obtained from a cycle by adding an edge between any two non-adjacent vertices.

Deng et al. [52] characterized the graphs with first four maximum H values from the

class of all n-vertex connected bicyclic graphs (for sufficiently large n).

3.3 Harmonic index of general graphs

Theorem 25. [108] Among connected n-vertex graphs with fixed degree sequence, there

exists a BFS graph with maximum H value.

Theorem 26. [164] If n ≥ 3 and G is a connected n-vertex graph with maximum degree

∆, then

H(G) ≥ 2n∆

(∆ + 1)2

with equality if and only if G is the star graph.

Chang et al. [31] extended Theorem 1 for the n-vertex connected graphs with minimum

degree at least 2.

Theorem 27. [31] If n ≥ 4, then among n-vertex connected graphs with minimum degree

at least 2, only the graph K∗2,n−2 has minimum H value which is equal to

4

(
1− 3

n+ 1

)
+

1

n− 1
.
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Theorem 27 was proved also by Wu et al. [193] independently. The next result was

proved independently in [31,166].

Theorem 28. [31,166] If n ≥ 3, then among triangle-free connected n-vertex graphs with

minimum degree k ≥ 1, only the complete bipartite graph Kk,n−k has minimum H value

(which is equal to 2k(n−k)
n

).

For k = 2 (respectively, for 1 ≤ k ≤ n
2
), Theorem 28 was proved also by Wu et al. [193]

(respectively, by Liu [114]) independently. Cheng and Wang [33] extended Theorem 27

to the n-vertex connected graphs with minimum degree at least 3.

Theorem 29. [33] If n ≥ 6, then among n-vertex connected graphs with minimum degree

at least 3, only the graph K∗3,n−3 has minimum H value which is equal to

6

(
1− 5

n+ 2

)
+

3

n− 1
.

Theorem 30. [122] Among n-vertex connected graphs having k (where 1 ≤ k ≤ n − 2)

vertices of degree n−1 (which implies that the minimum degree in G is at least k), K∗k,n−k

is the unique graph with minimum H value, which is equal to

2k(n− k)

n+ k − 1
+
k(k − 1)

2(n− 1)
.

Since K∗k,n−k is the unique extremal graph in Theorem 30 and also for k = 1, 2, 3, the

only graph K∗k,n−k has minimum harmonic index among n-vertex connected graphs with

minimum degree at least k, see Theorems 1, 27, 29, respectively. Thereby, Cheng and

Wang [33] proposed the following conjecture:

Conjecture 31. [33] If n ≥ 4 and 1 ≤ k ≤ bn/2c+ 1, then among all n-vertex connected

graphs with minimum degree at least k, only the graph K∗k,n−k has minimum H value.

Generally, Conjecture 31 is not true, as some counterexamples were reported in [7]

for k = bn/2c + 1. However, Conjecture 31 is true when 1 ≤ k ≤ n/2 and this fact was

recently proved in [111]. The problem of characterizing graphs with minimum harmonic

index from the family of n-vertex connected graphs having minimum degree at least k,

for n/2 < k ≤ n− 2, was solved in [111,113].

Theorem 32. [123] If n ≥ 4, then among n-vertex quasi-trees which contain at least one

cycle, only the graph Hn,1 has minimum H value which is equal to

2(n− 3)

n
+

4

n+ 1
+

1

2
.
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Theorem 33. [16] If n ≥ 5, then among connected n-vertex cacti with k cycles, the graph

containing a vertex of degree n− 1 is the unique graph with minimum H value.

Several extremal results concerning harmonic index can be found in the book chapter

[163]. Next, we state some results concerning specific k-polygonal chain graphs.

Theorem 34. [9] If h ≥ 4, then among triangular chains with h triangles and maximum

degree 5, only the linear triangular chain has maximum H value.

Theorem 35. [149] If h ≥ 3, then among polyomino chains with h squares, only the

linear polyomino chain has maximum H value.

Theorem 35 was proved also in [14].

Theorem 36. [14, 50] Among the members of Ωh, only the zigzag polyomino chain has

minimum H value, where Ωh is the collection of polyomino chains having h squares, in

which no internal segment of length 3 has edge connecting the vertices of degree 3.

Theorem 37. [39, 152] If h ≥ 3, then among polyomino chains with h squares, only the

zigzag polyomino chain has minimum H value.

Clearly, Theorem 36 immediately follows from Theorem 37. The next result is due to

Cruz and Rada [40].

Theorem 38. [40] If h ≥ 3, then among polyomino catacondensed systems with h squares,

only the linear polyomino chain has maximum H value.

Theorem 39. [15] If h ≥ 3, then among members of Ω′h, only the zigzag (respectively,

linear) pentagonal chain has minimum (respectively, maximum) H value, where Ω′h is

the collection of pentagonal chains, having h pentagons, in which no internal segment of

length 3 has edge connecting the vertices of degree 3.

Cruz et al. [36] characterized the hexagonal systems having extremum H value from

the collection of isomeric hexagonal systems.

Theorem 40. [36] Among isomeric hexagonal systems, those having minimum (respec-

tively, maximum) number of inlets have maximum (respectively, minimum) H value.

Theorem 41. [153] Among catacondensed hexagonal systems with h hexagons, the linear

hexagonal chain Lh (respectively, Eh) has minimum (respectively, maximum) H value,

where Eh is described in Figure 6 of Ref. [153].
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Further extremal results concerning harmonic index of certain hexagonal systems can

be found in [21,34,35,92,92,150,151,154].

Recall that the numbers of bays, coves, and fjords of a hexagonal system are denoted

by b, c, and f .

Theorem 42. [57] If there is a hexagonal system S0 with h ≥ 3 hexagons, 2h + 1 +⌈√
12h− 3

⌉
vertices such that S0 satisfies the equation b + 2c + 3f = 0, then among

hexagonal systems with h hexagons, S0 has the minimal H value, which is equal to

7
⌈√

12h− 3
⌉

15
+ h+

3

5
.

Further extremal results related to Theorem 42 can be found in [57,85].

Brewster et al. [30] disproved two conjectures posed in [74] concerning the bounds of

H. The next result is due to Ilić [100].

Theorem 43. [100] If n = a + b ≥ 3 and G is a triangle–free connected (n,m)-graph,

then

H(G) ≥ 2m

n
=

2ab

n

with equality if and only if G ∼= Ka,b.

Theorem 43 also follows from Theorem 161. Theorem 43 was proved also in [114]

independently. It is interesting to note that the extremal graphs in both Theorems 28

and 43 are the complete bipartite graphs.

Theorem 44. [48] For n ≥ 3, if G is a connected n-vertex graph and λ1 is the largest

eigenvalue of G, then

H(G) ≥ 2(n− 1)3/2

λ1 n

with equality if and only if G ∼= Sn;

H(G) ≥ 1 + λ1 −
n

2

with equality if and only if G ∼= Kn;

H(G) ≥ 3
3

√
(n− 1)2

2n
− λ1

H(G) ≥ λ1 n

2
.
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Zhong [202] established a simple but elegant upper bound, given in the next theorem.

Theorem 45. [202] If G is an n-vertex graph then

H(G) ≤ n

2

with equality if and only if G is regular.

The bound given in Theorem 45 was derived also in [38,99,114] independently.

Theorem 46. [196] If G is a non-trivial connected (n,m)-graph, then

H(G) ≥ m

n− r(G)

where r(G) is the radius of G. If G ∼= Kn then the bound is attained.

Theorem 47. [196] If G is a non-trivial connected (n,m)-graph with p pendent vertices,

then

H(G) ≥ p

n− 1
+

m− p(
n− 1− p

2

)2 .

Theorem 48. [112] If n ≥ 4 and G is a connected n-vertex graph with diameter D(G),

then

H(G) ≤ D(G) +
n

2
− 1 and H(G) ≤ 1

2
nD(G)

where the equality sign in any of the above inequalities holds if and only if G ∼= Kn.

Theorem 49. [112] If n ≥ 4 and T is an n-vertex tree with diameter D(T ), then

H(T ) ≥ D(T ) +
5

6
− n

2
and H(T ) ≥

(
1

2
+

1

3(n− 1)

)
D(T )

where the equality sign in any of the above inequalities holds if and only if G ∼= Pn.

Liu [112] thought that Theorem 49 is true for any connected n-vertex graph, n ≥ 4,

and thereby proposed the following conjecture.

Conjecture 50. [112] If n ≥ 4 and G is a connected n-vertex graph with diameter D(G),

then

H(G) ≥ D(G) +
5

6
− n

2
and H(G) ≥

(
1

2
+

1

3(n− 1)

)
D(G)

where the equality sign in any of the above inequalities holds if and only if G ∼= Pn.
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Jerline and Michaelraj [104] proved the first inequality of Conjecture 50 for unicyclic

graphs by giving a better bound, given in the next theorem.

Theorem 51. [104] If n ≥ 7 and G is a connected n-vertex unicyclic graph with diameter

D(G), then

H(G) ≥ D(G) +
5

3
− n

2

with equality if and only if G is isomorphic to the graph obtained from the cycle C4 by

attaching one pendent edge and a path of length n − 5 to two diametrically nonadjacent

vertices of C4.

Jerline and Michaelraj [105] proved the second inequality of Conjecture 50 for unicyclic

graphs by establishing the following better bound:

Theorem 52. [105] If n ≥ 7 and G is a connected n-vertex unicyclic graph with diameter

D(G), then

H(G) ≥
(

1

2
+

2

3(n− 2)

)
D(G)

with equality if and only if G is isomorphic to the graph obtained from the cycle C4 by

attaching one pendent edge and a path of length n − 5 to two diametrically nonadjacent

vertices of C4.

Jerline and Michaelraj [105] proposed the following stronger version of Conjecture 50.

Conjecture 53. [105] If n ≥ 4 and G is a connected n-vertex graph, different from tree,

with diameter D(G), then

H(G) ≥ D(G) +
5

3
− n

2
and H(G) ≥

(
1

2
+

2

3(n− 2)

)
D(G)

where the equality sign in any of the above inequalities holds if and only if G is isomorphic

to the graph obtained from the cycle C4 by attaching one pendent edge and a path of length

n− 5 to two diametrically nonadjacent vertices of C4.

Theorem 54. [49] If χ is the chromatic number of an n-vertex graph G then

H(G) ≥ χ

2

with equality if and only if G ∼= Ka ∪ bK1 where Ka and K1 are disjoint complete graphs,

and b is a non-negative integer satisfying a+ b = n.

-269-



The next result is an immediate consequence of Theorem 54.

Corollary 55. [49] If χ is the chromatic number of an n-vertex graph G then

H(G) ≥ χ− n

2

with equality if and only if G ∼= Kn.

Deng et al. [56] established two lower bounds on H in order to prove a conjecture con-

cerning Randić index and radius of a graph. They also proposed a conjecture concerning

lower bound on H.

Theorem 56. [56] If T is a tree different from the even path, then

H(T ) > r(T ) +
1

15

where r(T ) is the radius of T .

Theorem 57. [56] If G is a connected graph with radius r(G) and cyclomatic number

ν ≥ 1, then

H(G) ≥ r(G)− 31

105
(ν − 1) .

For ν = 1, the equality sign in the above inequality holds if and only if G is isomorphic

to an even cycle.

Deng et al. [56] posed the following conjecture.

Conjecture 58. [56] If G is a connected graph different from the even path, then

H(G) ≥ r(G)

where r(G) is the radius of G.

If G is a connected triangle-free n-vertex graph with minimum degree δ satisfying

δ ≥
√

n
2

+ 7, where n is sufficiently large, then Conjecture 58 is true [166].

Theorem 59. [109] If G is a connected (n,m)-graph with maximum degree ∆ and p

pendent vertices, then

H(G) ≥ 2p

∆ + 1
+
m− p

∆

with equality if and only if G ∼= Sn or G is a regular graph or G is a (∆, 1)-semiregular

graph.
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Theorem 60. [211] (i) If m ≥ 1 and G is a graph of size m such that G contains no

isolated vertex, then

H(G) ≥ 2m

m+ 1

with equality if and only if either G ∼= Sm+1 or G ∼= K3.

(ii) If G is a triangle- and quadrangle-free (n,m)-graph, where m ≥ 1, then

H(G) ≥ 2m2

n(n− 1)

with equality if and only either G ∼= Sn or G is a Moore graph of diameter 2 (regular

graph with diameter two and girth five [94, 212]).

(iii) If G is an (n,m)-graph with minimum degree δ and maximum degree ∆, where

m ≥ 1, then

H(G) ≥ 2m2

2m(∆ + δ)− nδ∆
with equality if and only du = ∆, dv = δ for every edge uv ∈ E(G).

Theorem 61. [166] If G is either a tree or a connected triangle-free n-vertex graph with

minimum degree δ satisfying δ ≥
√

n
3
+5, where n is sufficiently large, then H(G) ≥ µ(G),

where µ(G) is the average distance of G, Eq. (3). Equality holds if and only if G is the

star.

Theorem 62. [166] If G is a connected (n,m)–graph with minimum degree δ and maxi-

mum degree ∆, then
n

2
− m(δ −∆)2

2δ∆(δ + ∆)
≤ H(G) ≤ n

2

with left (respectively, right) equality if and only if G is a biregular (respectively, regular)

graph.

Some bounds on the harmonic index, in terms of total chromatic number of a graph,

were obtained in [80].

Various bounds on the Harmonic index in terms of different graph parameters, in-

cluding several other topological indices, were derived in [115,134,162,207,219].

Theorem 63. [51] If n ≥ 5 and G is a connected n-vertex graph, then

H(G) ≥ 4− 3

n
− avec(G)
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with equality if and only if G ∼= Sn. Also, if n ≥ 7 then

H(G) ≥ 2(n− 1)(2n− 1)

n2 · avec(G)

with equality if and only if G ∼= Sn. Furthermore, if n ≥ 3 and q1 is the largest signless

Laplacian eigenvalue of G then

H(G) ≥ q1 −
3n

2
+ 2

with equality if and only if G ∼= Kn. Finally, if m is the size of G and λ1 is the largest

eigenvalue of G then

H(G) ≥ 2m2

λ2
1 n

with equality if and only if there exist some numbers r1 and r2 such that du + dv = r1 for

every edge uv ∈ E(G) and
∑

v∈NG(u) dv = r2 for every vertex v ∈ V (G), where NG(u) is

the set of vertices adjacent to u.

An upper bound on the harmonic index in terms of different graph parameters was

derived in [132].

Theorem 64. [164] If n ≥ 3 and G is a connected molecular (n,m)-graph, then

3m+ 4n

20
≤ H(G) ≤ m+ 2n

6

with left equality if and only if G contains only vertices of degrees 1 and 4, and the right

equality holding if and only if either G ∼= Pn or G ∼= Cn.

Theorem 65. [164] If G is a connected non-trivial (n,m)-graph with maximum degree

∆ and p pendent vertices, then

H(G) ≥ 2p

(∆ + 1)
+
m− p

∆
.

with equality if and only if G contains only vertices of degrees 1 and ∆.

Theorem 66. [204] If G is a connected non-trivial n-vertex graph with girth g(G) satis-

fying the inequality g(G) ≥ k ≥ 3, then

3k

2
− 6

n− k + 3
+

4

n− k + 4
+ 1− g(G) ≤ H(G) ≤ 3n

2
− g(G) (4)

k

g(G)

(
k

2
− 6

n− k + 3
+

4

n− k + 4
+ 1

)
≤ H(G) ≤ n2

2 g(G)
(5)
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−3k

2
+ g(G) ≤ H(G) ≤ n

2
+ g(G)− k (6)

−g(G)

2
≤ H(G) ≤ n g(G)

2k
. (7)

The upper (respectively, lower) bounds in (4) and (5) (respectively, in (6) and (7)) are

attained if and only if G ∼= Cn. The lower bounds in (4) and (5) are attained if and only

if G ∼= H(n, k;n− k, 0, . . . , 0). The upper bounds in (6) and (7) are attained if and only

if G is a regular graph with g(G) = k.

The first two bounds of Theorem 66 generalize the main result of [194].

Theorem 67. [215] If G is a non-trivial n-vertex graph and µ1 is the largest eigenvalue

of the sum–connectivity matrix S(G), then

H(G) ≥ n

n− 1
µ2

1

with equality if and only if G is isomorphic to either Kn or Kn.

3.4 Relations between harmonic index and other
topological indices

The topological indices occurring in this Subsection are defined in Table 2.

Theorem 68. [202] If G is a non-trivial connected (n,m)-graph, then

H(G) ≤ R(G)

where R(G) is the Randić index. Equality holds if and only if G is a 2m
n

-regular graph.

Theorem 68 was proved also in [196,197]. The lower bound, given in the next theorem,

is due to Ilić [100].

Theorem 69. [100] If G is a connected graph with m edges, then

H(G) ≥ 2m2

M1(G)

with equality if and only if du + dv is constant for every edge uv ∈ E(G).

The inequality given in Theorem 69 was also derived in [196,197]; unfortunately, the

authors of [196,197] made a mistake in the equality case.

Xu [196] derived several bounds on the harmonic index H in terms of some other

familiar BID indices.
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Theorem 70. [196] If G is a non-trivial connected graph, then

H(G) ≤ ABC(G)

2
+R(G)

where ABC is the atom–bond connectivity index, see Table 2. Equality holds if and only

if G ∼= P2.

Lemma 71. [19, 45] If G is an (n,m)-graph then

M1(G) = 2m(n− 1)−M1(G) .

From Theorem 69 and Lemma 71, the next result follows.

Theorem 72. If G is a connected graph with m edges, then

H(G) ≥ 2m2

2m(n− 1)−M1(G)

with equality if and only if du + dv is constant for every edge uv ∈ E(G).

The inequality given in Theorem 72, without the equality sign, was also derived

in [196, 197]. Liu [112] established some bounds on H in terms of order and diameter of

a graph.

Theorem 73. [211] (i) If G is an n-vertex graph, then

2
√
n− 1

n
R(G) ≤ H(G) ≤ R(G)

with left equality if and only if G ∼= Sn, and the right equality holding if and only if all

components of G are regular. Also, it holds that

n

2
−H(G) ≤ H(G) ≤ n−H(G)

with left equality if and only if either G ∼= Kn or G ∼= Kn, and the right equality holding

if and only if G is a k-regular graph with 1 ≤ k ≤ n− 2.

(ii) If G is a connected n-vertex graph, where n ≥ 3, then√
2

n− 1
X(G) ≤ H(G) ≤ 2√

3
X(G) (8)

with left equality if and only if G ∼= Kn, and the right equality holding if and only if

G ∼= P3. If the minimum degree of G is at least k ≥ 2, then the following bound is better

than the upper bound given in (8):

H(G) ≤ 2√
k
X(G)
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with equality if and only if G is k-regular.

(iii) If G is a connected n-vertex graph, where n ≥ 7, then

2

n

√
n− 1

n− 2
ABC(G) ≤ H(G) <

4

3
√

2
ABC(G)

with left equality if and only if G ∼= Sn (see also [90]). If the minimum degree of G is at

least k ≥ 2, then

H(G) ≤ ABC(G)√
2k − 2

with equality if and only if G is k-regular.

Theorem 74. [90] (i) If G is a connected molecular n-vertex graph, where n ≥ 3, and if

f(x, y) =

√
x+ y − 2

xy
· x+ y

2

then
ABC(G)

f(4, 4)
≤ H(G) ≤ ABC(G)

f(1, 2)
.

The left equality is not possible, but could be satisfied if G is the graph representation of

a diamond–like nanostructure [59, 60]. The right equality holds if and only if G ∼= P3.

(ii) If G is the molecular graph of a benzenoid system, then

ABC(G)

f(3, 3)
≤ H(G) ≤ ABC(G)

f(2, 2)
.

The left equality is attained if G is the graph representation of nanotubes and nanotoruses,

as well as fullerenes [59, 60]. The right equality holds if and only if G ∼= C6.

Theorem 75. [160] If G is a graph with minimum degree δ and maximum degree ∆, then

GA(G)

∆
≤ H(G) ≤ GA(G)

δ

where GA(G) is the geometric–arithmetic index, see Table 2. Equality (both left and

right) is attained if and only if G is a regular graph.

Several bounds on the harmonic index in terms of other topological indices can be

found in the references [11,164].

Iranmanesh and Saheli [102] obtained bounds on the harmonic index of caterpillars

with diameter 4.

Bounds on the harmonic index of graphs under various graph operations were obtained

in [1, 2, 140–142,165].
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Theorem 76. [161] If G is a non-trivial graph with minimum degree δ and maximum

degree ∆, then
δ GA(G)2

M2(G)
≤ H(G) ≤ GA(G)2 (δ2 + ∆2)2

4δ2 ∆ ·M2(G)

where M2 is the second Zagreb index, see Table 2. Equality (left or right) is attained if

and only if G is a regular graph.

Theorem 77. [129] If G is a non-trivial graph with minimum degree δ and maximum

degree ∆, then √
8(∆δ)3/2GA(G) ·M∗

2 (G)

(∆ + δ)3
≤ H(G) ≤

√
GA(G) ·M∗

2 (G)

with (left or right) equality if and only if G is a regular graph.

Theorem 78. [42] If G is a connected graph with maximum degree ∆ and

ID(G) =
∑

u∈V (G)

1

du

then

H(G) ≤ 1

2
ID(G) ∆

with equality if and only if G is regular. Also, if du ≥ dv ≥
√
du + 1 for every edge

uv ∈ E(G), then H(G) > ID(G). Furthermore, if G is a tree, then H(G) < ID(G).

Theorem 79. [144] If G is a connected (n,m)-graph with minimum degree δ and maxi-

mum degree ∆, then

2m

M2(G)

(
ISI(G)−

(δ −∆)(∆2 − δ2)
⌈
m
2

⌉ (
1− 1

m

⌈
m
2

⌉)
2∆δ

)
≤ H(G) ≤ m(δ + ∆)ISI(G)√

δ∆M2(G)

with (left or right) equality if and only if G is regular.

Theorem 80. [137] If G is a connected graph of order at least 3, then

H(G) ≤ ISI(G)

with equality if and only if G ∼= P3. If G has minimum degree δ and maximum degree ∆,

then
2 ISI(G)

∆2
≤ H(G) ≤ 2 ISI(G)

δ2

with (left or right) equality if and only if G is regular.
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Theorem 81. [93] If G is a graph of size m, minimum degree δ and maximum degree

∆, then
m2 δ

M2(G)
≤ H(G) ≤ M2(G)

δ3

with (left or right) equality if and only if G is regular;

2
√
δ∆

δ + ∆
·M∗

2 (G) ≤ H(G) ≤

M
∗
2 (G)

n/2

with left equality if and only if G is regular or biregular, and the right equality holding if

and only if G is regular;
M1(G)

2∆2
≤ H(G) ≤ M1(G)

2δ2

with (left or right) equality if and only if G is regular. Also, the following inequality holds

m(δ + 2)− F (G)

∆
≤ H(G) ≤ F (G)

2δ3
.

Theorem 82. [215] Let G be a non-trivial n-vertex graph. If µn and µ1 are the smallest

and greatest eigenvalues of the sum–connectivity matrix S(G), then

H(G) ≥ (µ1 − µn)2

2

with equality if and only if either G is isomorphic to a complete bipartite graph with

possibly isolated vertices or G ∼= Kn;

SE(G)2

n
≤ H(G) ≤ SE(G)2

2

with left equality if and only if either G is isomorphic to a regular graph of degree one or

G ∼= Kn, and the right equality holding if and only if either G is isomorphic to a complete

bipartite graph with possibly isolated vertices or G ∼= Kn

Theorem 83. [199] If G is a non-trivial n-vertex graph, then

SE(G)2 − n(det(S))2/n

n− 1
≤ H(G) ≤ SE(G)2 − n(n− 1) · (det(S))2/n

where det(S) is the determinant of the sum–connectivity matrix S(G).

The lower bound given in Theorem 83 is better than the second lower bound mentioned

in Theorem 82. Matejić et al. [130] obtained several bounds on the harmonic index.

Some inequalities involving the harmonic index and sum–connectivity Estrada index

were also derived in [198]. Several bounds concerning harmonic index can be found in

the book chapter [163].
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4 The Sum–Connectivity Index

Many results for the sum–connectivity index follow as special cases from results for general

sum–connectivity index χα. In order to avoid repetition, in this section we outline only

results pertaining to χα for α = −1/2.

4.1 Sum–connectivity index of trees

Theorem 84. [213] Among n-vertex trees, the trees Sn, MS(n− 3, 1) and MS(n− 4, 2)

have first, second and third, respectively, minimum sum–connectivity index.

Theorem 85. [213] If n ≥ 4, then the path Pn is the unique graph with maximum sum–

connectivity index among n-vertex trees. If n ≥ 7, then only the starlike trees of the form

Sn(r1, r2, r3), where r1 ≥ r2 ≥ r3 ≥ 2 (respectively, Sn(r1, r2, 1), where r1 ≥ r2 ≥ 2), have

second (respectively, third) maximum sum–connectivity index.

Betancur et al [22] proved that only the starlike trees of the form Sn(r1, r2, r3), where

r1 ≥ r2 ≥ r3 ≥ 2, have maximum sum–connectivity index among n-vertex starlike trees

for n ≥ 7. This fact also follows from Theorem 85.

Mao and Zhou [128] determined the trees with fourth to seventh maximum sum–

connectivity indices and fourth to eighth minimum sum–connectivity indices from the

family of n-vertex trees, for sufficiently large n.

Theorem 86. [213] If n ≥ 5 and 3 ≤ k ≤ n − 2, then among n-vertex trees with k

pendent vertices, only the tree Sn,k has minimum sum–connectivity index.

The graphs with first three minimum sum–connectivity indices from the family of

n-vertex molecular trees were also characterized [213].

Theorem 87. [68] Among n-vertex trees with maximum degree ∆, only the starlike trees

of the form Sn( 2, 2, . . . , 2︸ ︷︷ ︸
n−∆−1

, 1, 1, . . . , 1︸ ︷︷ ︸
2∆−n+1

), (respectively, Sn(r1, r2, . . . , r∆), r1 ≥ r2 ≥ · · · ≥

r∆ ≥ 2) have maximum sum–connectivity index for n/2 ≤ ∆ ≤ n − 2 (respectively, for

3 ≤ ∆ ≤ n−1
2

).

Theorem 88. [37] Among proper Kragujevac n-vertex trees with the central vertex of

degree r ≥ 3 and no branches of type B1, the tree V (respectively, U) has maximum

(respectively, minimum) sum–connectivity index, where the trees U and V are depicted

in Figure 2.
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Theorem 89. [195] If k ≥ 5 and T is an n-vertex molecular tree with k pendent vertices,

then

X(G) ≥ n

2
+

(
1√
6

+
1√
5
− 1

)
k +

3

2
− 4√

6

with equality if and only if x1,4 = k, x2,4 = k − 4, x2,2 = n − 2k + 3 for even k and

6 ≤ k ≤ bn+3
2
c.

Theorem 90. [195] If k is odd, 9 ≤ k ≤ bn+2
2
c and T is an n-vertex molecular tree with

k pendent vertices, then

X(G) ≥ n

2
+

(
1√
6

+
1√
5
− 1

)
k +

3√
5
−
√

6 + 1

with equality if and only if x1,4 = k, x2,4 = k − 6, x2,2 = n− 2k + 2, x2,3 = 3.

Theorem 91. [195] If k ≥ 3 and T is an n-vertex molecular tree with k pendent vertices,

then

X(G) ≤ n

2
+

(
1√
6

+
1√
3

+
1√
5
− 3

2

)
k + 1− 3√

6

with equality if and only if x1,2 = x2,3 = k, x2,2 = n−3k+2, x3,3 = k−3 for 3 ≤ k ≤ bn+2
3
c.

Theorem 92. [117] If T is an n-vertex tree with k pendent vertices and µ(T ) is the

average distance of T , then

X(G) ≥


µ(T ) + min

{
0,
√
k − 2

}
if k = 2

µ(T ) + max
{

0, k−1√
k+1
− 2
}

if k ≥ 3.

Equality is attained if T ∼= Sn and n→∞.

4.2 Sum–connectivity index of unicyclic and bicyclic graphs

Theorem 93. [65] If n ≥ 5, then among connected unicyclic n-vertex graphs, the graphs

H(n, 3;n− 3, 0, 0) and H(n, 3;n− 4, 1, 0) are the only species with minimum and second

minimum X values (see also [32]).

Theorem 94. [32, 68] If n ≥ 4, then among connected unicyclic n-vertex graphs, the

cycle Cn is the unique graph with maximum sum–connectivity index.

Theorem 95. [68] If n ≥ 5, then among connected unicyclic n-vertex graphs, the graphs

obtained by attaching a path of length at least 2 to a cycle are the only graphs with the

second maximum sum–connectivity index.
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Theorem 96. [32] If n ≥ 5 and 1 ≤ k ≤ n− 3, then among connected unicyclic n-vertex

graphs with k pendent vertices, the graph obtained from the cycle Cn−k by attaching k

pendent vertices to a single vertex, is the unique graph with minimum sum–connectivity

index.

Theorem 97. [68] Among connected unicyclic n-vertex graphs with maximum degree

∆, only the the unicyclic graph obtained by attaching 2∆ − n − 1 pendent vertices and

n − ∆ − 1 paths of length 2 to a vertex of a triangle, (respectively, the unicyclic graph

obtained by attaching ∆−2 paths of length at least 2 to a vertex of a cycle) have maximum

sum–connectivity index for n+2
2
≤ ∆ ≤ n− 2 (respectively, for 3 ≤ ∆ ≤ n+1

2
).

Theorem 98. [64] If n ≥ 8, then among connected bicyclic n-vertex graphs, Hn,2 (re-

spectively, the bicyclic graph, different from Hn,2, having a vertex of degree n− 1) is the

unique graph with minimum (respectively, second minimum) sum–connectivity index.

Graphs with first two maximum sum–connectivity indices in the family of connected

bicyclic n-vertex graphs were also characterized in [64].

4.3 Sum–connectivity index of general graphs

Theorem 99. [173] Among n-vertex quasi-trees, the graph obtained from the cycle Cn

by adding chords from one vertex u to c consecutive other vertices, has maximum sum–

connectivity index, where c = n− 3 if n ≤ 32 and c = 30 otherwise.

Extremal results concerning minimum sum–connectivity index and matching number

were obtained in [66] for trees and connected unicyclic graphs, in [64] for connected

bicyclic graphs, and in [126] for cacti. Results on trees with given matching number and

maximum sum–connectivity index are found in [222]

Theorem 100. [213] The complete graph Kn is the unique graph with maximum sum–

connectivity index among n-vertex graphs. If n ≥ 5, then the star Sn is the unique graph

with minimum sum–connectivity index among n-vertex graphs without isolated vertices.

Theorem 100 was proven in [38] by an alternative way.

Theorem 101. [126] If n ≥ 5, then among connected n-vertex cacti with k cycles,

the graph containing a vertex of degree n − 1 is the unique graph with minimum sum–

connectivity index.
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Theorem 102. [192] If n ≥ 11, then among n-vertex connected graphs with minimum

degree at least 2, only the graph K∗2,n−2 has minimum sum–connectivity index.

Theorem 103. [192] If n ≥ 11, then among connected triangle–free n-vertex graphs with

minimum degree at least 2, the complete bipartite graph K2,n−2 is the unique graph with

minimum sum–connectivity index.

Theorem 104. [9] If h ≥ 4, then among triangular chains with h triangles and maximum

degree 5, only the linear triangular chain has maximum sum–connectivity index.

Theorem 105. [149] If h ≥ 3, then among polyomino chains with h squares, only the

linear polyomino chain has maximum sum–connectivity index.

Theorem 105 was proven also in [14].

Theorem 106. [14] Among the members of Ωh, only the zigzag polyomino chain has

minimum sum–connectivity index, where Ωh is the collection of polyomino chains, having

h squares, in which no internal segment of length 3 has an edge connecting vertices of

degree 3.

Theorem 107. [39,152] If h ≥ 3, then among polyomino chains with h squares, only the

zigzag polyomino chain has minimum sum–connectivity index.

Clearly, Theorem 106 immediately follows from Theorem 107. The next result con-

cerning sum–connectivity index of polyomino catacondensed systems is due to Cruz and

Rada [40].

Theorem 108. [40] If h ≥ 3, then among polyomino catacondensed systems with h

squares, only the linear polyomino chain has maximum sum–connectivity index.

Theorem 109. [15] If h ≥ 3, then among the members of Ω′h, only the zigzag (respec-

tively, linear) pentagonal chain has minimum (respectively, maximum) sum–connectivity

index, where Ω′h is the collection of pentagonal chains, having h pentagons, in which no

internal segment of length 3 has an edge connecting vertices of degree 3.

Theorem 110. [36] Among the isomeric hexagonal systems, those having minimum (re-

spectively, maximum) number of inlets have maximum (respectively, minimum) sum–

connectivity index.
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Theorem 111. [153] Among catacondensed hexagonal systems with h hexagons, the lin-

ear hexagonal chain Lh (respectively, Eh) has minimum (respectively, maximum) sum–

connectivity index, where Eh is described in Figure 6 of Ref. [153].

Additional extremal results on the sum–connectivity index of hexagonal systems can

be found in [21,34,35,92,92,150,151,154].

Theorem 112. [57] If there is a hexagonal system S0 with h ≥ 3 hexagons, 2h + 1 +⌈√
12h− 3

⌉
vertices such that S0 satisfies the equation b + 2c + 3f = 0, then among

hexagonal systems with h hexagons S0 has the minimal sum–connectivity index.

Further extremal results related to Theorem 112 can be found in [57,85].

The following theorem gives lower bounds on the sum–connectivity index X.

Theorem 113. [213] (i) If G is a graph without pendent vertices, then X(G) ≥ R(G)

with equality if and only if all the non-isolated vertices of G have degree 2.

(ii) If G is a graph with m ≥ 1 edges, then

X(G) ≥ m
√
m√

M1(G)

with equality if and only if there exists a number r0 such that du + dv = r0 for every edge

uv ∈ E(G);

X(G) ≥ m√
m+ 1

with equality if and only if G has no two independent edges.

(iii) If m ≥ 1 and G is an (n,m)-graph, then

X(G) ≥ m
√
n− 1√

2m+ (n− 1)(n− 2)

with equality if and only if G is isomorphic to one of the graphs Kn, Sn, Kn ∪K1;

X(G) ≥ m
√
m√

n(n− 1)

with equality if and only if G ∼= Sn or G is isomorphic to a Moore graph of diameter 2

(regular graph with diameter two and girth five). Moreover, if the graph G has minimum

degree δ and maximum degree ∆ then

X(G) ≥ m
√
m√

2m(δ + ∆)− nδ∆
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with equality if and only if du + dv = δ + ∆ for every edge uv ∈ E(G).

(iv) If m ≥ 1 and G is a triangle-free (n,m)-graph, then

X(G) ≥ m√
n

with equality if and only if G is a complete bipartite graph.

(v) If G is an n-vertex graph, then

X(G) ≥ n
√
n− 1

2
√

2
−X(G)

with equality if and only if G is isomorphic to either Kn or Kn.

The following theorem gives upper bounds on the sum–connectivity index X.

Theorem 114. [213] (i) If G is a graph with m edges, then X(G) ≤ m/
√

2 with equality

if and only if G consists of m copies of K2 and arbitrary number of isolated vertices.

(ii) If m ≥ 1 and G is an (n,m)-graph, then

X(G) <

√
mn

2
.

(iii) If G is an n-vertex graph with maximum degree ∆, then

X(G) ≤ n
√

∆

2
√

2

with equality if and only if G is regular of degree ∆.

The bound given in the first part of the next theorem is an improved version of the

one, given in Theorem 114(ii).

Theorem 115. [96] (i) If m ≥ 1 and G is an (n,m)-graph, then

X(G) ≤
√
mn

2

with equality holding if and only if G is regular.

(ii) If G is a triangle– and quadrangle-free connected n-vertex graph with radius r(G),

then

X(G) ≤ n

2

√√
n− r(G) + 1

2

with equality if and only if either G is isomorphic to a Moore graph of diameter 2 or

G ∼= C6.
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Theorem 116. [213] If 4 ≤ n−1 ≤ m ≤ 2n and G is a connected molecular (n,m)-graph,

then

4

3

(
1√
5
− 1

2
√

2

)
n+

1

3

(
5

2
√

2
− 2√

5

)
m ≤ X(G) ≤

(
2√
3
− 1

)
n+

(
3

2
− 2√

3

)
m

with left equality if and only if G contains only vertices of degrees 1 and 4, and the right

equality holding if and only if G is either a path or a cycle.

Theorem 117. [211] If G is a connected n-vertex graph with minimum degree at least k,

where k ≥ 2, and χ is the chromatic number of G, then

X(G) ≥ χ

√
k

8

with equality if and only if G ∼= Kn.

Several bounds on the sum–connectivity index in terms of other topological indices

can be found in [11].

Theorem 118. [43] If G is a connected n-vertex graph with p pendent vertices, such that

every non-pendent vertex has degree at least δ′, then

X(G) ≥ R(G)− p√
δ′(δ′ + 1)(

√
δ′ + 1 +

√
δ′)

with equality if and only if G is isomorphic to any of the graphs Sn, Pn, Cn.

Theorem 119. [107] The sum–connectivity index of almost every n-vertex tree is among

(r ± ε)n, where r is some constant and ε is an arbitrary positive number.

Theorem 120. [143] If G is an (n,m)-graph with maximum degree ∆ and minimum

degree δ, then

n√
n+∆+1

+m

(
2√

1 + 3∆
+

1

2
√

∆

)
≤ X(µ∗(G)) ≤ n√

n+δ+1
+m

(
2√

1 + 3δ
+

1

2
√
δ

)
.

where µ∗(G) is the Mycielskian of G.

Recall that by Si =
∑n

j=1 si,j we denote the sum of the i-th row of the sum–

connectivity matrix S(G).

Theorem 121. [198] If G is a connected non-trivial n-vertex graph and µ1 is the largest

eigenvalue of the sum–connectivity matrix S(G), then

X(G) ≤ nµ1

2

with equality if and only if S1 = S2 = · · · = Sn.
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An inequality involving the sum–connectivity index and sum–connectivity Estrada

index was also derived in [198].

4.4 Relations between sum–connectivity index and
other topological indices

Theorem 122. [216] If G is a graph, then

X(G) ≥ R(G)√
2

with equality if and only if all non-isolated vertices have degree 1. Also, if G has no

component on two vertices, then

X(G) ≥
√

2

3
R(G)

with equality if and only if all non-trivial components of G are paths on 3 vertices.

Theorem 123. [216] If G is a graph with m edges, then

X(G) ≤
√
mR(G)

2

with equality if and only if G is regular. If G has n vertices, then

X(G) ≤ n
√
n− 1

2
−X(G)

with equality if and only if G is regular of degree (n − 1)/2. Moreover, if G does not

contain any isolated vertex but has the clique number ω, then

X(G) ≤ 1

2

√
m(ω − 1)

ω
· 0R(G)

with equality if and only if G is a regular complete ω-partite graph.

A lower bound on the sum–connectivity index of strong product of graphs was derived

in [2].

Theorem 124. [211] If G is a connected n-vertex graph, where n ≥ 5, then

X(G) ≤
√
n− 1

2
R(G)

with equality if and only if G ∼= Kn;√
n− 1

n(n− 2)
ABC(G) ≤ X(G) <

√
2

3
ABC(G)

with left equality if and only if G ∼= Sn.

-285-



Some bounds on the sum–connectivity index in terms of harmonic index can be ob-

tained from Theorem 73(ii).

Theorem 125. [160] If G is a graph with minimum degree δ and maximum degree ∆,

then
GA(G)√

2∆
≤ X(G) ≤

√
mGA(G)

2δ

with (left or right) equality if and only if G is a regular graph;

X(G) ≤
√
R(G) ·GA(G)

2

with equality if and only if G is either a regular or a biregular graph.

Theorem 126. [44] If G is a connected (n,m)-graph with maximum degree ∆, then

X(G) ≤ ∆ · 0R(G)

2
√

2

X(G) ≤
√

∆ +
√

(n− 1)(2m−∆)

2
√

2
.

The equality sign in either of the above inequalities holds if and only if G is a regular

graph.

Theorem 127. [44] If T is an n-vertex tree, then

X(T ) < 0R(T ) .

If G is an n-vertex graph such that dv ≥ 2n1/3 for all v ∈ V (G), then

X(G) > 0R(G) .

Theorem 128. [137] If G is a connected graph, then

X(G) ≤
√
ISI(G) ·M∗

2 (G)

with equality if and only if G is regular or biregular. If G has minimum degree δ, maximum

degree ∆ and size m, then

ISI(G) ·
√

2

∆3
≤ X(G) ≤

√
ISI(G) ·m

δ

with (left or right) equality if and only if G is regular.

-286-



5 General Sum–Connectivity Index

Throughout this section, whenever the condition on α is not mentioned, it is assumed

that α is any real number different from zero.

5.1 General sum–connectivity index of trees

Theorem 129. [214] If n ≥ 4, then among n-vertex trees

• the star Sn is the only graph with minimum (respectively, maximum) χα value for α < 0

(respectively, for α > 0);

• the path Pn is the only graph with minimum (respectively, maximum) χα value for α > 0

(respectively, for −1.4094 ≈ 1− log 2
log(4/3)

≤ α < 0).

Theorem 130. [67] If n ≥ 4, then among n-vertex trees, the path Pn is the only graph

with maximum χα value for x0 < α < 1− log 2
log(4/3)

≈ −1.4094, where x0 ≈ −1.7036 is the

unique root of the equation 3α − 4α = 2(4α − 5α).

Theorem 131. [67] If x1 ≈ −4.3586 is the unique root of the equation 4α − 5α =

3(5α − 6α), α < x1, and n ≥ 4, then among n-vertex trees, the starlike tree Sn(

(n−1)/2︷ ︸︸ ︷
2, . . . , 2 )

(respectively, Sn( 3,

(n−4)/2︷ ︸︸ ︷
2, . . . , 2 )) is the only graph with maximum χα value for even n (re-

spectively, for odd n).

Theorem 132. [182] If −1 ≤ α < 0, n ≥ 3, and 2 ≤ d ≤ n − 1, then among n-vertex

trees with diameter d, the tree Sn,n−d+1 has minimum χα value.

Theorem 133. [182] If −1 ≤ α < 0 and 3 ≤ d ≤ n − 2, then among n-vertex trees

with diameter d, the trees having minimum χα values are (in this order): MS(n −

d, 0, . . . , 0, 1),MS(n− d− 1, 0, . . . , 0, 2), . . . ,MS
(⌈

n−d+1
2

⌉
, 0, . . . , 0,

⌊
n−d+1

2

⌋)
.

The next result is a generalized version of Theorem 84.

Theorem 134. [182] If −1 ≤ α < 0, then among n-vertex trees, the trees Sn, MS(n −

3, 1), MS(n − 4, 2), Sn,n−3 and MS(n − 5, 3) have first, second, third, fourth and fifth,

respectively, minimum χα values.

The next result is a generalized version of Theorems 86 and 8.
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Theorem 135. [182] If −1 ≤ α < 0, n ≥ 5 and 3 ≤ k ≤ n − 2, then among n-vertex

trees with k pendent vertices, only the tree Sn,k has minimum χα value.

Extremal results concerning general sum–connectivity index for multigraphs can be

found in [182].

Theorem 136. [41] If −1 ≤ α < 0 and 3 ≤ k ≤ bn+2
3
c, then among n-vertex trees with

k pendent vertices, only the trees having k − 2 vertices of maximum degree 3 such that

every vertex of degree 3 is adjacent to either another vertex of degree 3 or a vertex of

degree 2, have maximum χα value.

Since the extremal trees specified in Theorem 136 are chemical trees, these trees also

have the maximum χα value in the family of n-vertex chemical trees with k pendent

vertices under the constrains given in the aforementioned theorem [41].

Theorem 137. [189] Among trees with given degree sequence, the greedy tree has maxi-

mum (respectively, minimum) χα value for α < 0 or α > 1 (respectively, for 0 < α < 1)

and alternating greedy tree has minimum (respectively, maximum) H value for α < 0 or

α > 1 (respectively, for 0 < α < 1).

Partial part of Theorem 137 also appeared in [20,201].

Theorem 138. [181] If n ≥ 3, α ≥ 1, and n/2 ≤ s ≤ n− 1, then among n-vertex trees

with independence number s, the starlike tree Sn( 2, 2, . . . , 2︸ ︷︷ ︸
n−s−1

, 1, 1, . . . , 1︸ ︷︷ ︸
2s−n+1

) is the unique tree

with maximum χα value.

The next result is a generalized version of Theorem 89.

Theorem 139. [41] If −1 ≤ α < 0, k ≥ 5, and T is an n-vertex molecular tree with k

pendent vertices, then

χα(G) ≥ 4α(n− 2k + 3) + 5α · k + 6α(k − 4)

with equality if and only if x1,4 = k, x2,4 = k − 4, x2,2 = n − 2k + 3 for even k and

6 ≤ k ≤ bn+3
2
c.
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5.2 General sum–connectivity index of unicyclic, bicyclic,
tricyclic and tetracyclic graphs

Tache and Tomescu [172] characterized the graphs having maximum χα value for n-

vertex trees and unicyclic graphs with fixed number of pendent vertices. Jamil and

Tomescu [103] obtained the graphs with minimum χα values in the families of n-vertex

trees (for −1 ≤ α < 0) and unicyclic graphs (for −0.585 ≤ α < 0) with fixed matching

number, under some constraints.

Theorem 140. [66] If n ≥ 5, then among connected unicyclic n-vertex graphs

(i) for α > 0, the cycle Cn is the unique graph with minimum χα value;

(ii) for 0 < α < 1, the graphs obtained by attaching a path on at least two vertices to a

vertex of a cycle, are the only graphs with second minimum χα value;

(iii) for α > 1, the graph obtained by attaching a pendent vertex to a vertex of the cycle

Cn−1, is the unique graph with second minimum χα value;

(iv) for α = 1, the extremal graphs mentioned in (ii) and (iii) are the only graphs with

second minimum χα value.

(v) for −1 ≤ α < 0, H(n, 3;n− 3, 0, 0) and H(n, 3;n− 4, 1, 0) are, respectively, the only

graphs with minimum and second minimum χα values.

Theorem 140(v) can be considered as an extended version of Theorem 93. Clearly,

the extremal graphs mentioned in Theorem 140(v) have girth equal to 3. Tomescu and

Kanwal [183] extended this result to unicyclic graphs of girth at least 4.

Theorem 141. [183] Let −1 ≤ α < 0 and Un,k be the set of connected unicyclic n-vertex

graphs of girth k.

(i). If n ≥ k ≥ 4, then H(n, k;n − k, 0, . . . , 0) is the unique graph with minimum χα

value in the set Un,k.

(ii). If n ≥ k + 2 ≥ 6, then the members of A(n, k) are the only graphs with second

minimum χα value in the set Un,k, where A(n, k) is the set of n-vertex unicyclic graphs

consisting of a cycle Ck, n− k− 1 pendent edges incident to a vertex x ∈ V (Ck) and one

pendent edge incident to a vertex y ∈ V (Ck), such that the distance between x and y is

at least 2.

(iii). If n ≥ k+4 ≥ 8, then there exists a natural number n0(α) such that if n−k ≥ n0(α)

then H(n, k;n − k − 1, 1, 0, . . . , 0) is the unique graph with third minimum χα value in

the set Un,k.
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The next result is a generalized version of Theorem 96.

Theorem 142. [179] If −1 ≤ α < 0, n ≥ 5, and 1 ≤ k ≤ n − 3, then among connected

unicyclic n-vertex graphs with k pendent vertices, the graph obtained from Cn−k by at-

taching k pendent vertices to a single vertex of Cn−k, is the unique graph with minimum

χα value.

Theorem 143. [18] If n ≥ 6 and −1 ≤ α < 0, then among n-vertex connected bicyclic

graphs, only the following graphs have maximum χα value:

• the graph obtained from two disjoint cycles by joining them with an edge,

• the graph obtained from a cycle by adding an edge between any two non-adjacent vertices.

Conjecture 144. [6] If −1 ≤ α < 0 and ν ≥ 1, then among connected n-vertex graphs

with cyclomatic number ν, Hn,ν is the unique graph with minimum χα value.

Theorem 145. [169] If n ≥ 5 and α > 1, then among connected bicyclic n-vertex graphs,

only the graphs consisting only of vertices of degrees 2 and 3, such that no two vertices

of degree 3 are adjacent, have minimum χα value.

In Theorem 145, if we replace the condition “α > 1” with “α = 1” then the resulting

statement remains true [47,82].

Theorem 146. [168] If n ≥ 5 and α ≥ 1, then among connected bicyclic n-vertex graphs,

Hn,2 is the unique graph with maximum χα value.

Ali and Dimitrov [12] gave a short proof of Theorem 146. For α = 2, Theorems 129,

140(i), 145 and 146 were also proven in [79].

Tache [171] characterized the graphs having maximum χα value, for α > 1, from the

classes of connected bicyclic n-vertex graphs with (i) fixed number of pendent vertices,

and (ii) girth.

Theorem 147. [221] If n ≥ 5 and α ≥ 1, then among connected tricyclic n-vertex graphs,

only Hn,3 and/or K have/has maximum χα value and K is the graph obtained from K4

by attaching n− 4 pendent vertices to one of the vertices of K4.

Theorem 147 was proven in a short way in [8]. Clearly, Theorem 147 does not give

precise extremal graphs. This gap was not addressed in [8] either, but was filled in [12].

The unique tetracyclic and unicyclic graphs with maximum χα value, for α ≥ 1, were

also identified in [12]. For a recent result on tricyclic graphs see [147].
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Theorem 148. [12] If n ≥ 5 and α ≥ 1, then among connected tricyclic n-vertex graphs,

only Hn,3 and/or K have/has maximum χα value and K is the graph obtained from K4

by attaching n− 4 pendent vertices to one of the vertices of K4. More precisely,

χα(Hn,3) < χα(K) for 1 < α < 2

χα(Hn,3) > χα(K) for α > 2

χα(Hn,3) = χα(K) for α = 1, 2.

Also, only the graph Hn,4 has maximum χα value, for α ≥ 1 and n ≥ 6, among connected

tetracyclic n-vertex graphs. Furthermore, Hn,1 is the unique graph with maximum χα

value for α ≥ 1 among connected unicyclic n-vertex graphs.

The unique unicyclic and bicyclic graphs with maximum χ2 value were identified also

in [79].

5.3 General sum–connectivity index of general graphs

Theorem 149. [54] Among n-vertex graphs,

• Kn is the unique graph with maximum χα value for non-zero α > −1;

• the graphs in which each component is regular of non-zero degree, are the only graphs

with maximum χα value for α = −1;

• Sn is the unique graph with minimum χα value for n ≥ 6 (respectively, for sufficiently

large n) and for −1 ≤ α ≤ 1
2

(respectively, for 1
2
< α < 0).

Theorem 150. [178] If −1 ≤ α < 0, n ≥ 5, and 3 ≤ k ≤ n − 1, then among connected

n-vertex graphs, containing at least one cycle, with girth at least k, the graph obtained

from the cycle Cn−k by attaching k pendent vertices to a single vertex of Cn−k, is the

unique graph with minimum χα value.

Tache [170] determined the graphs with maximum χα values from different families

of cacti for α > 1. The next result is a generalized version of Theorem 101.

Theorem 151. [4] If −1 ≤ α < 0 and n ≥ 3, then among connected n-vertex cacti with

k cycles, the graph containing a vertex of degree n− 1 is the unique graph with minimum

χα value.

Theorem 152. [176] If −1 ≤ α < α0 ≈ −0.867 and n ≥ 3, then among connected n-

vertex graphs with minimum degree at least 2, K∗2,n−2 is the unique graph with minimum

χα value, where α0 is the unique root of 4(4x − 5x) = 6x.
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Theorem 153. [176] If −1 ≤ α < β0 ≈ −0.817 and n ≥ 4, then among connected

triangle-free n-vertex graphs with minimum degree at least 2, the complete bipartite graph

K2,n−2 is the unique graph with minimum χα value, where β0 is the unique root of 5 ·4x =

6 · 5x.

Since every 2–connected graph has degree at least 2 and both the extremal graphs

mentioned in Theorems 152 and 153 are 2–connected, thereby Theorems 152 and 153

remains valid if we replace the condition “connected” with “2–connected”.

Conjecture 154. [176] If −1 ≤ α < β0 ≈ −0.817 and 2 ≤ k ≤ n/2, then among

connected triangle-free n-vertex graphs with minimum degree at least k, the complete

bipartite graph Kk,n−k is the unique graph with minimum χα value, where β0 is the unique

root of 5 · 4x = 6 · 5x.

If m ≥ k(n− k), then Conjecture 154 holds due to Theorem 161.

Tomescu [177] surveyed extremal results concerning general sum–connectivity index,

established till 2014.

Tomescu et al. [180] determined the unique species having maximal χα value, α ≥

1, among graphs with fixed order and connectivity (and with fixed order and edge-

connectivity).

Theorem 155. [180] If n ≥ 3 and κ ≥ 1, then among n-vertex graphs with connectivity

κ, Kκ + (K1 ∪Kn−κ−1) is the unique graph with maximal χα value for α ≥ 1.

Corollary 156. [180] If the connectivity “κ” is replaced by the edge-connectivity “λ”

throughout Theorem 155, then the resulting statement remains true.

The next result is also due to Tomescu et al. [180].

Theorem 157. [180] Let G be a 2-connected or 2-edge-connected graph with n ≥ 3

vertices. Then for α > 0, χα(G) is minimal if and only if G ∼= Cn.

The problem of characterizing graphs having extremum χα values over the collection

of certain polyomino chains, with fixed number of squares, was solved in [17] for α > 1.

The same problem was also addressed in [14] and its solution for the case 0 < α < 1 was

reported there.
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Theorem 158. [57] If α > 1 or α < 0 (respectively, if 0 < α < 1), then among

catacondensed benzenoid systems with h hexagons,

• the linear benzenoid chain Lh has minimum (respectively, maximum) χα value;

• the benzenoid system with bh/2c − 1 branched hexagons and dh/2 − bh/2ce kinks, has

maximum (respectively, minimum) χα value.

Some extremal results concerning general sum–connectivity index of benzenoid sys-

tems (not necessarily, catacondensed benzenoid systems) can also be obtained from the

results established in [57]. Also, some extremal results related to the general sum–

connectivity index of particular systems (e.g., fluoranthenes, phenylenes etc.) can be

found in [10,85,92,127,185].

Theorem 159. [214] If G is an (n,m)-graph with m ≥ 1, then

χα(G)


≤ m

(
2m
n−1

+ n− 2
)α

for 0 < α < 1

≥ m
(

2m
n−1

+ n− 2
)α

for α < 0.

The equality sign in either of the above inequalities holds if and only if G is isomorphic

to Kn, Sn or K1 ∪Kn−1.

Theorem 160. [214] If G is an (n,m)-graph and α > 1, then

χα(G) ≥ m1−α
[
2m

(
2

⌊
2m

n

⌋
+ 1

)
− n

⌊
2m

n

⌋(⌊
2m

n

⌋
+ 1

)]α
with equality if and only if G is isomorphic either to a regular graph or a bipartite semireg-

ular graph. Also, the following inequality holds

χα(G) ≥ 4αmα+1 n−α

with equality if and only if G is isomorphic to a regular graph. Furthermore,

χα(G) ≤ 2αm(n− 1)α

with equality if and only if G is isomorphic to either Kn or Kn.

Theorem 161. [214] If G is an (n,m)-graph with m ≥ 1, then

χα(G)


≤ mnα for α > 0

≥ mnα for α < 0.

The equality sign in either of the above inequalities holds if and only if G is isomorphic

to a complete bipartite graph.
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Theorem 162. [214] If G is a non-trivial n-vertex graph, then

χα(G)



≤ 2α−1n(n− 1)α+1 − χα(G) for α > 0

≥ 2α−1n(n− 1)α+1 − χα(G) for α < 0

≥ 2−1n(n− 1)α+1 − χα(G) for α ≥ 1

< 2αn(n− 1)− χα(G) for α < 0

> 2−αnα(n− 1)2α − χα(G) for 0 < α < 1.

The equality sign in either of the first two inequalities holds if and only if G is isomor-

phic to either Kn or Kn. The equality sign in third inequality holds if and only if G is

isomorphic to a regular graph of degree (n− 1)/2.

Theorem 163. [55] If G is a non-trivial connected n-vertex graph and µ1 is the largest

eigenvalue of the general sum–connectivity matrix Sα(G), then

χ2α(G) ≥ n(µ1)2

2(n− 1)
and χα(G) ≤ nµ1

2
.

The equality sign in the first inequality holds if and only if G ∼= Kn and the equality sign

in second inequality holds if and only if G is a regular graph.

The first inequality in Theorem 163 is an extended version of the one, given in Theorem

67.

Bianchi et al. [23] derived an upper bound and a lower bound on the general sum–

connectivity index using a majorization technique.

Theorem 164. [55] Let µn and µ1 be the smallest and largest, respectively, eigenvalues of

the general sum–connectivity matrix Sα(G), where G is a non-trivial connected n-vertex

graph. The following inequality holds

χ2α(G) ≥
(
µ1 − µn

2

)2

with equality if and only if G is a complete bipartite graph.

Theorem 165. [55] Let θt and θ1 be the smallest and largest, respectively, positive eigen-

values of the general sum–connectivity Laplacian matrix Lα(G), where G is a non-trivial

connected n-vertex graph. The following inequality holds

n− 1

2
θt ≤ χα(G) ≤ n− 1

2
θ1
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with equality if and only if G ∼= Kn. If the graph G is bipartite with bipartition (A,B)

then it holds that
|A||B|
|A|+ |B|

θt ≤ χα(G) ≤ |A||B|
|A|+ |B|

θ1 .

Réti and Felde [159] derived several bounds on χα with some particular values of α.

Various bounds on the general sum–connectivity index χα, for several graph operations,

were reported in [3, 5].

Wang et al. [190] established bounds on the general sum–connectivity index for several

graph transformations.

Theorem 166. [107] For α < 0, the general sum–connectivity index χα of almost every

n-vertex tree is among (rα± ε)n, where rα is some constant and ε is an arbitrary positive

number.

Bounds on χ2 can bound in the references [70,71,75,101,133,144,145,148,191].

5.4 Relations between the general sum–connectivity index
and other topological indices

Theorem 167. [214] If G is a graph with m ≥ 1 edges and M1 is its first Zagreb index,

then

χα(G)


≤ (M1)αm1−α for 0 < α < 1

≥ (M1)αm1−α for α < 0 or α > 1.

The equality sign in either of the above inequalities holds if and only if du+dv is a constant

for every edge uv ∈ E(G).

Theorem 168. [214] If G is a non-trivial n-vertex graph and M1 is its first Zagreb index,

then

χα(G)


≥ (M1)α for 0 < α < 1

≤ 2α−1n(n− 1) for α < 0.

The equality sign in the first inequality holds if and only if G is isomorphic to either

K2∪Kn−2 or Kn. The equality sign in the second inequality holds if and only if G ∼= K2.

Various bounds on the general sum–connectivity index in terms of different graph

parameters, including several other topological indices, were obtained in [69,134,162].
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Theorem 169. [129] If G is a non-trivial n-vertex graph with minimum degree δ, max-

imum degree ∆, second Zagreb index M2, first geometric–arithmetic index GA and size

at least 1, then
(GA)2

4M2

≤ χ−2(G) ≤
(

(∆2 + δ2)GA

4δ∆
√
M2

)2

with left equality if and only if there is a constant λ such that dudv(du + dv)
2 = λ for

every edge uv ∈ E(G), and the right equality holding if and only if G is regular. Also, it

holds that

χ−2(G) ≤ 1

4
M∗

2 (G) .

Theorem 170. [44] If G is an n-vertex graph and α ≥ 1, then

χα(G) ≥ 0Rα(G)

with equality if and only if G ∼= nK1 or G ∼= tK2 ∪ (n− 2t)K1 (t ≤ n
2
) with α = 1.

Acknowledgements. Lingping Zhong thanks the National Natural Science Foundation of

China (No.11501291) for support of this work.

References

[1] I. R. Abdolhosseinzadeh, F. Rahbarnia, M. Tavakoli, A. R. Ashrafi, Some vertex-

degree-based topological indices under edge corona product, Ital. J. Pure Appl.

Math. 38 (2017) 81–91.

[2] S. Akhter, M. Imran, On degree based topological descriptors of strong product

graphs, Canad. J. Chem. 94 (2016) 559–565.

[3] S. Akhter, M. Imran, The sharp bounds on general sum–connectivity index of four

operations on graphs, J. Inequal. Appl. 2016 (2016) #241.

[4] S. Akhter, M. Imran, Z. Raza, On the general sum–connectivity index and general
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the sum–connectivity index, Appl. Math. Comput. 274 (2016) 585–589.

[45] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Com-

mun. Math. Comput. Chem. 52 (2004) 103–112.

[46] J. C. Dearden, The use of topological indices in QSAR and QSPR modeling, in: K.

Roy, Advances in QSAR Modeling , Springer, Cham, 2017, pp. 57–88.

[47] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic

graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007)

597–616.

[48] H. Deng, S. Balachandran, S. K. Ayyaswamy, On two conjectures of Randić index
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[61] T. Došlić, Vertex–weighted Wiener polynomials for composite graphs, Ars Math.

Contemp. 1 (2008) 66–80.
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