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Abstract 

 The reaction mechanism of palladium-catalysed oscillatory carbonylation of 

poly(ethylene glycol)methyl ether acetylene (PEGA) was examined by stoichiometric 

network analysis (SNA) of the stability of the dynamic states. The previously published 

simplified reaction network proposed to account for the experimentally observed results was 

modified in order to obtain a more realistic reaction network for the investigated process. In 
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the modified reaction network, the direct autocatalytic steps were replaced with autocatalytic 

loops. In this procedure some complex net reactions had to be resolved, while some new 

reactions had to be taken into account, altering the reaction mechanism responsible for the 

appearance of oscillation. Moreover, in the modified reaction network, the expressions for 

reaction rates correspond formally to their stoichiometry in accordance to mass action 

kinetics. The SNA identified the instability condition which was further tested and confirmed 

by numerical simulation. 

 

Nomenclature 

CH3OH – methanol 

CO – carbon monoxide 

O2 - oxygen 

HI – hydroiodic acid 

I2 – iodine 

Pd – palladium 

PEGA– poly(ethylene glycol)methyl ether acetylene,  

n

O

O
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O

O

CH
 

PEGP – poly(ethylene glycol)methyl ether (Z)-5-methoxy-3-(methoxycarbonyl)-5-oxopent-3-

enoate; ester product, 

n
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Int =  IPdCOOCH3 – Methoxycarbonylpalladium(II) iodide, 
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Int1 = (I3PdCOOCH3)
2- – Triiodo(methoxycarbonyl)palladate(II) anion,  
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Int2 = (I3Pd(H)C=C(PEG)COOCH3)
2- –(2-(poly(ethylene glycol)methyl ether)-3-methoxy-3-

oxoprop-1-en-1-yl)triiodopalladate(II) anion  
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Int3 = ((H3CO(I2Pd)(CO))(H)C=C(PEG)COOCH3)
2- – (3-(poly(ethylene 

glycol)methyl ether)-4-methoxy-4-oxobut-2-enoyl)diiodo(methoxy)palladate(II) anion  
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1. Introduction  

Oscillatory chemical reactions continue to draw attention and spark imagination. Ever since 

the Belousov-Zhabotinsky (BZ) reaction[1,2] firmly set the scene for what is now known as 

the area of Nonlinear Dynamics in Chemical Systems, the broad variety of spatiotemporal 

phenomena in solution, developed understanding and associated research directions continue 

to astonish.[3] The past five decades have brought to light numerous variations of oscillatory 

chemical reactions initially discovered by chance [1,2,4] as well as greater recognition of such 

phenomena with biological origins.[5] It is now readily accepted that some nonlinear 

chemical, physicochemical and biochemical reactions can exhibit different dynamic states 

from non-oscillatory to oscillatory and chaotic ones.[6–14] Therefore, in these nonequilibrium 

states their time evolutions are different which influences their net reactions and response to 

perturbations.[15] This is particularly important for all catalytic processes whether in living or 

non-living systems. Among more recent additions to the growing family of known oscillatory 

chemical reactions, oscillatory carbonylation reactions stand out in numerous ways. Firstly 

reported by Temkin and co-workers employing phenylacetylene as substrate, it has been 

shown that, in addition to oscillations in pH, this reaction system exhibits correlated 

oscillations in turbidity as well as the pulsatile release of reaction heat.[16–23] Further studies 
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of the oxidative carbonylation of phenylacetylene demonstrated that the presence or absence 

of oscillations has an effect on product selectivity with reaction temperature playing a major 

role.[22,24] In addition to the oscillatory phenomena captured when the reaction employed 

methanol as both reactant and solvent, it has been recently shown that pH oscillations prevail 

when a significant volume percent of methanol is replaced with water (up to 30 vol% under 

conditions reported.[23] An exciting step forward in oscillatory carbonylation reactions was 

made when the small phenylacetylene molecule was substituted with mono-alkyne-terminated 

poly(ethylene glycol) methyl ether (PEGA) and subsequently with di-alkyne-terminated 

poly(ethylene glycol) methyl ether (PEGDA).[25,26] The most recent advances have used 

polymeric catalysts in place of PdI2.[27] The PEGA and PEGDA systems are the only 

reported polymeric substrates oscillatory chemical reactions under laboratory conditions so 

far. Linking these results together with the BZ reaction employing p(NIPAAm-r-Ru(bpy)3) 

gels as catalysts[28–33], it can be seen that 20th century oscillatory chemical reactions studied 

in solution have paved the way for new research avenues. While the BZ reaction system and 

variants have been extensively studied and widely published for over 60 years, oscillatory 

carbonylation reactions have more recent origins and only a few dozen publications. 

 Aiming to further enhance our understanding of oscillatory carbonylation reactions, 

and in particular polymeric substrate oscillatory systems, the reaction network previously 

proposed to account for the oscillatory dynamics in the poly(ethylene glycol)methyl ether 

acetylene (PEGA) reaction system[25] has been examined in this study. Stability analysis was 

done by using Stoichiometric Network Analysis (SNA)[34] with the aim of confirming the 

reported oscillatory dynamics and obtaining a better understanding of the instabilities in this 

system. Firstly, as explained in Section 2, we examine the reaction network of palladium-

catalysed oscillatory carbonylation of PEGA proposed by Donlon and [25] by SNA. This 

reaction network is approached in two ways: a) using the stoichiometry proposed by Donlon 

and Novaković but with the rate equations that follow the mass action law (Section 2.1) and 

b) using the rate equations Donlon and Novaković based on their interpretation of phenomena 

experimentally observed (Section 2.2). As a result of these analyses, a new, more realistic 

reaction network is proposed (Section 3) and subsequently examined by SNA (Section 3.1). 

 The reaction mixture consisting of PEGA as substrate, PdI2/KI as a catalyst and 

methanol as both reactant and solvent, when purged with CO and air (semibatch 

configuration) under certain initial conditions is reported to yield several hours of oscillatory 

dynamics [25] A simplified reaction network was proposed to account for the experimentally 
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observed results (Table 1) and a simulation using this network is presented in Donlon and 

.[25] The reaction network is composed of six reactions. Reactions R1.1 and R1.4 are 

postulated to be autocatalytic. Reaction R1.1 is postulated to be autocatalytic in hydrogen 

iodide species which is considered to be the source of oscillations in hydrogen ions and 

therefore oscillations in pH in this system. It should be noted that the standard pH scale is 

based on measurements in water, therefore pH values experimentally recorded in methanol 

solution need to be adjusted prior to being converted to hydrogen ion concentration. It has 

been reported that in neat methanol, pH values can be adjusted by adding 2.3 to the observed 

pH measurements to obtain the equivalent pH value in water.[35] Reaction R1.1 also accounts 

for catalyst reduction (from PdI2 to Pd) and product (PEGP) formation where PEGP denotes 

all molecules that form from PEGA in the oscillatory carbonylation reaction. Reaction R1.2 

describes formation of iodine, which is subsequently considered to be responsible for 

regeneration of the palladium catalyst (Reactions R1.3 and R1.4). Reaction R1.2 also 

accounts for consumption of hydrogen iodide. Catalyst recycling is postulated to proceed in 

both a non-catalytic and autocatalytic manner in reactions R1.3 and R1.4, respectively. They 

are introduced in the proposed forms to support the experimentally recorded oscillatory 

behaviour of solution turbidity attributed to autocatalytic changes in the oxidation state of the 

palladium (from soluble Pd2+ to insoluble Pd0) during the course of the reaction. Reactions 

R1.5 and R1.6 form one reversible reaction. Reaction R1.5, experimentally confirmed as a 

slow process[36], is included to account for the initial formation of hydrogen iodide required 

to initiate Reaction R1.1. Due to the excess of CH3OH, and purging by O2 and CO, their 

concentrations were considered constant[20,36–39] and were not included in the reaction 

rates associated with the proposed reaction network but were incorporated in the rate 

constants ki. Thus, in some steps, the rate equations do not follow the mass action law. PEGA 

is consumed by the reaction R1.1 and hence, its concentration decreases with time, but it 

happens much slower than other reactions in the overall process. 

Structural formulae for intermediate Int, and other, more complex structures 

mentioned later on are shown in Nomenclature.  
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  HI
2 3PEGA PdI {2CH OH 2CO} PEGP Pd 2HI+ + + ⎯⎯→ + +    2

1 1 6 1 3r k c c c=  (R1.1) 

2 2 22HI {0.5O } I H O+ ⎯⎯→ +  
2

2 2 3r k c=  (R1.2) 

2 2Pd I PdI+ ⎯⎯→  3 3 2 4r k c c=  (R1.3) 

2PdI
2 2Pd I PdI+ ⎯⎯⎯→  4 4 1 2 4r k c c c=  (R1.4) 

2 3PdI {CH OH CO} Int HI+ + ⎯⎯→ +  5 5 1r k c=  (R1.5) 

2 3Int HI PdI {CH OH CO}+ ⎯⎯→ + +  6 6 3 5r k c c=  (R1.6) 

Table 1. Reaction network associated with the palladium-catalysed 

oscillatory carbonylation of PEGA. Adopted from Donlon and Novakovic 

[25] Concentrations of species j denoted in the subscript with values 1 - 6 

correspond to the species PdI2, Pd, HI, I2, Int and PEGA, respectively. Rate 

equations in several steps of this Model do not follow the mass action law. 

 

 Although the reaction network presented in Table 1 could produce oscillatory 

dynamics it can be noted that the associated expressions for the reaction rates of reactions 

R1.1 and R1.4 do not correspond to their stoichiometry in accordance with the mass action 

kinetics. For that reason, two cases, as detailed in Table 2 and Table 3, were considered and 

analysed using SNA with the aim to determine if the oscillatory dynamics can be obtained by 

either of them. In Table 2 the reaction network consisting of chemical reactions as proposed 

by Donlon and Novakovic[25] (Table 1) is given, but with the kinetic equations that follow 

the mass action law. Table 3 contains the kinetic equations used by Donlon and 

Novakovic[25] based on their interpretation of experimentally observed phenomena together 

with chemical reactions adapted to them. In other words, in Table 2 reactions R2.3 and R2.4 

are now identical, while in Table 3 two molecules of HI are added to both sides of reaction 

R3.1, whereas in reaction R3.4 one molecule of PdI2 is added to both sides. 

 

  2 3PEGA + PdI +{2CH OH + 2CO} PEGP + Pd + 2HI⎯⎯→  1 1 6 1= [ ]r k c c  (R2.1) 

2 2 22HI {0.5O } I H O+ → +  2
2 2 3r k c=

 
 (R2.2) 

Pd I PdI+ →2 2  3 3 2 4r k c c=
 
 (R2.3) 

Pd I PdI+ →2 2  4 4 2 4=r k c c  (R2.4) 

2 3PdI {CH OH CO} Int HI+ + → +  5 5 1r k c=
 
 (R2.5) 

3Int HI PdI {CH OH CO}+ → + +2  6 6 3 5r k c c=  (R2.6) 

Table 2. Palladium-catalysed oscillatory carbonylation of PEGA. Reaction 

network consists of chemical reactions as proposed by Donlon and Novakovic[25] 

(Table 1) but with the rate equations that follow the mass action law.  
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  2 3PEGA PdI 2HI {2CH OH 2CO} PEGP Pd 4HI+ + + + → + +    2
1 1 6 1 3r k c c c=  (R3.1) 

2 2 22HI {0.5O } I H O+ → +  2
2 2 3r k c=  (R3.2) 

2 2Pd I PdI+ →  3 3 2 4r k c c=  (R3.3) 

2 2 2Pd I PdI 2PdI+ + →  4 4 1 2 4r k c c c=  (R3.4) 

2 3PdI {CH OH CO} Int HI+ + → +  5 5 1r k c=  (R3.5) 

2 3Int HI PdI {CH OH CO}+ → + +  6 6 3 5r k c c=  (R3.6) 

Table 3. Palladium-catalysed oscillatory carbonylation of PEGA. Reaction 

network consists of chemical reactions adapted to fit the rate equations as 

proposed by Donlon and Novakovic[25] (Table 1) 

 

 

2. Stoichiometric network analysis (SNA) of reaction network of 

oscillatory PEGA carbonylation  

SNA is a powerful mathematical method for steady-state-stability analysis and, consequently, 

for the examination of the oscillatory dynamic states of reaction systems.[40–42] In this 

Section, SNA will be briefly explained in general and applied to the reaction networks of 

PEGA carbonylation given in Tables 2 and 3. 

Dynamic states of the reaction systems must be analysed through the reaction kinetics. 

The kinetic equations associated with any reaction network given in the form of a 

stoichiometric model can be presented by the set of the following differential equations,  

 
d

=
d t

S
c

r  (1) 

 

where dc/dt is the time derivative of the concentration vector c, r is the reaction rate vector 

and S the matrix of the stoichiometric coefficients that can be taken directly from the reaction 

networks (See Eq. 2).[14,43–45] Moreover, in the reaction networks presented in Tables 2 

and 3 there are 11 chemical species: CH3OH, CO, PEGP, O2, H2O, PEGA, PdI2, Pd, HI, I2 

and Int. Some of these species are only present as products that are not involved in further 

reactions, and therefore do not influence reaction rates and dynamic states of the system. In 

the reaction networks analysed here such species are H2O and PEGP. Furthermore, some 

species are present in nearly constant concentrations. Most often this is the case with reactants 

added in large surplus at the beginning of the reaction, like PEGA and CH3OH, or reactants 

continuously fed in excess to the reaction mixture, like CO and O2. Dynamic states depend on 
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such reactants only in a weak, parametrical sense. Only intermediate species are truly 

dynamical variables and state functions. The intermediate species in the reaction networks are 

Pd, HI, I2, and Int. PdI2 is one of the basic constituents of the reaction system, i.e. reactants, 

but since the main iodine intermediate species are not included in this abbreviated reaction 

mechanism, it was chosen to depict autocatalysis in the present reaction network. Therefore, 

PdI2, may be essential for the instability of the steady state and hence, it is also taken as 

intermediate in SNA and variable species in numerical simulations. Thus, for the intermediate 

species of both reaction networks (Tables 2 and 3) PdI2, Pd, HI, I2, and Int are taken into 

account and the corresponding matrix S has the form: 

 

2

2

R.1 R.2 R.3 R.4 R.5 R.6

1 0 1 1 1 1 PdI

1 0 1 1 0 0 Pd

2 2 0 0 1 1 HI

0 1 1 1 0 0 I

0 0 0 0 1 1 Int

− − 
 − −
 

= − − 
 

− − 
 − 

S
 (2) 

 

Here, the species on the right-hand side and reactions above the matrix are added for 

clarity and they are not part of this matrix. 

The corresponding kinetic equations for both reaction networks that will be used in 

SNA are then given by Eq. 3, although reaction rates are different for the cases given in 

Tables 2 and 3.  

 

1

1
2

2

33

4

4 5

6

5

d

d

d 1 0 1 1 1 1
d 1 0 1 1 0 0
d

2 2 0 0 1 1
d

0 1 1 1 0 0
d

0 0 0 0 1 1
d

d

d

c

t
r

c
rt
rc

rt

c r

t r
c

t

 
 
   

− −     
     − −
     
  = − −   
     − −     
   −   

    
 
  

 (3) 

 

Here cj is the concentration of species j denoted in the subscript with values 1 - 5 

corresponding to the species PdI2, Pd, HI, I2 and Int, respectively. 

-12-



 

 

For stability analysis of the reaction network, the basic steady state must be defined. 

Therefore, the reaction rates in the steady state, rss, are necessary. They are solutions of the 

relation 

 

ss 0S r =  (4) 

 

These rates at a steady state rss can be expressed by means of the current rates ji, which 

are the contributions of the elementary reaction pathways with non-negative 

coefficients.[40,46,47] So, the overall process can be represented as a linear combination of 

several elementary reaction pathways with non-negative coefficients, known as extreme 

currents Ei and they all contribute to the steady state values of reaction rates. The 

contributions of the extreme currents Ei, denoted as the current rates ji, are the components of 

the corresponding current rate vector j, whereas the extreme currents Ei are the columns of the 

extreme current matrix.[14,34,40,43,44,46–50]  

Since the matrix S is the same in the considered cases (Tables 2 and 3), the common 

matrix E is 

 

1 2 3            

0 1 1 R.1

0 1 1 R.2

0 1 0 R.3

0 0 1 R.4

1 0 0 R.5

1 0 0 R.6

E E E

 
 
 
 

=  
 
 
 
  

E

 
(5) 

 

By analyzing the extreme current matrix E the following net reactions were obtained:  

 

E1: (R.5) + (R.6)  

     0 → 0  
(6) 

E2: (R.1) + (R.2) + (R.3)  

     3 2 2PEGA CH OH CO .  O  PEGP H O+ + + → +2 2 0 5  
(7) 

E3: (R.1) + (R.2) + (R.4)  

     3 2 2PEGA CH OH CO .  O  PEGP H O+ + + → +2 2 0 5  
(8) 
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From Eq. 6-8 it can be noted that the first net reaction denotes the equilibrium between 

reactions R.5 and R.6 and that there are two possible reaction pathways besides this chemical 

equilibrium which allows the same transformation of the reactants into the products. Further 

details on calculation of all extreme currents can be found elsewhere.[40,46,47,51,52] 

The extreme currents are essential for finding the relation between steady-state 

reaction rates and current rates using the basic equation of SNA 

 

ss =Er j  (9) 

 

Using Eq. 9, rss can be represented as following linear combinations of current rates ji, 

where i = 1, 2, 3. These relations have the form:  

 

1,ss 2 3r j j= +  

(10) 

2,ss 2 3r j j= +  

3,ss 2r j=  

4,ss 3r j=  

5,ss 1r j=  

6,ss 1r j=  

 

 Moreover, the significance of extreme currents lies in their role in analysis of stability 

of the basic steady state. The stability of a steady state is usually examined through the 

response of the reaction system to some arbitrary small perturbation.  

 The time evolution of small concentration perturbations ∆c = c – css near a steady state 

css is given by the equation  

 
d /dc t c = M  (11)  

 

obtained by linearization of the general equation of motion about the steady state, where 

matrix M is the Jacobian of the system given by the following equation: 

 

( ) ( ) ( )T –1 T
ss ss ss( ) diag diag dia diaggssc h= =M S K S Kr r r  (12)  
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where h stands for a vector of reciprocal steady-state concentrations of the intermediate 

species and diag h is its diagonal matrix, while K is the matrix of the orders of reactions and 

KT is its transpose. If we assume the mass action law for the reaction rates, the elements of 

matrix K are stoichiometric coefficients of a species standing on the left side of the particular 

reaction step (See Eq. 15). 

The Jacobian matrix M, written in SNA (Clarke 1980)[40], as a function of the SNA 

parameters ji and hi has particular advantages for the stability analysis since the parameters ji 

and hi are non-negative, which is an essential feature of SNA. The steady-state stability is 

determined by the eigenvalues of M, which are the roots  of the characteristic polynomial 

 

  n n 1 n 2
1 2 n

0

... 0
n

n i
i

i

Det         − − −

=

− = = + + + + =I M  (13) 

 

where n is the number of independent intermediate species and coefficients αi are the sums of 

all diagonal minors of dimensions i of matrix M multiplied by the product of the 

corresponding hi values. Each diagonal minor of the matrix M, as the determinant of square 

matrix having dimension i, can be formed of any combination of i independent intermediate 

species. In one αi the number of minors is equal to the number of different combinations of i 

intermediates. 

If the real parts of all eigenvalues are negative, a steady state is stable. If one or more 

eigenvalues have positive real parts the steady state is unstable. The sign of the real part of the 

eigenvalues of the Jacobian matrix can be evaluated by using several criteria such as Hurwitz 

determinants [53,54] or α-approximation. According to the α-approximation, the eigenvalue 

with positive real part occurs when some coefficient α of the characteristic polynomial is 

negative.[40,53,54] Moreover, if we find negative minors in one coefficient αi and we want to 

discuss its sign, then we ask if the sum of negative terms can be larger than the sum of 

positive terms in the same αi. The applicability of each approach depends on the model 

complexity.  

Since the matrix K in the reaction networks given in Tables 2 and 3 are different, we 

can expect different results with respect to their network stability. Corresponding results for 

the reaction network given in Table 2 are presented in Section 2.1., and for the reaction 

network given in Table 3 see Section 2.2. 
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2.1. Stability analysis with matrix K obtained from the reaction network 

given in Table 2 

For the full set of intermediary species in the reaction network given in Table 2, the K matrix 

is: 

 

2

2

R.1R.2 R.3R.4 R.5R.6

1 0 0 0 1 0 PdI

0 0 1 1 0 0 Pd

0 2 0 0 0 1 HI

0 0 1 1 0 0 I

0 0 0 0 0 1 Int

 
 
 

=  
 
 
  

K
 (14) 

 

while the calculated matrix M(j) is: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 2 3 1 2 3 2 1 3 2 3 4 1 5

2 3 1 2 3 2 2 3 4

1 2 3 1 1 2 3 3 1 5

2 3 2 2 3 3 2 3 4

1 1 1 3 1 5

       

–

– 0 – 0

( ) 2 2 0 – 4 4 0 –

0 – 2 2 – 0

0 – 0 –

j j j h j j h j h j j h j h

j j h j j h j j h

j j j h j j j h j h

j j h j j h j j h

j h j h j h

+ + + + 
 

+ + +
 
 = − + + + +
 

+ + + 
  

M j

 
(15) 

 

where h(h1, h2, h3, h4, h5) = h (1/c1, 1/c2, 1/c3, 1/c4, 1/c5).  

The obtained coefficients of the corresponding characteristic polynomial are given in 

Eq. 16-20. 

 

1 1 1 1 2 1 3 2 2 3 1 2 3 3 2 3 3 4 2 5 1 4 34 4h j h j h j h j h j h j h j h j h j h j h j = + + + + + + + + + +  (16) 

( )
1 2 1 1 3 1 1 3 2 1 4 1 2 3 1 1 3 3 1 4 2

2 2 3 1 5 1 2 3 2 1 4 3 2 3 3 2 5 1 3 4 1 3 4 2

3 5 1 3 4 3 4 5 1

3 4 4

4 4 4  

4 4

h h j h h j h h j h h j h h j h h j h h j

j j h h j h h j h h j h h j h h j h h j h h j

h h j h h j h h j



+ + + + + + 
 

= + + + + + + + +
 
 + + + 

 (17) 

2
1 2 3 1 2 3 1 3 4 1 3 5 1 4 5 2 3 5 3 4 53 ( ) (2 4 4 4 )j j j h h h h h h h h h h h h h h h h h h + + + + + +=  (18) 

4 0 =  (19) 

5 0 =  (20) 
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Coefficients α4 and α 5 are equal to zero since matrix S has a rank 3 due to the law of 

conservation of total concentration of palladium (ctot(Pd)) and iodine (ctot(I)) species, and 

consequently the linear dependence among the corresponding kinetic equations. If c1, ... c5, 

are the concentrations of PdI2, Pd, HI, I2, and Int respectively, it is easy to show that c1 + c2 + 

c5 = const = ctot(Pd), whereas 2 c1 + c3 + 2 c4 + c5 = const = ctot(I). Therefore, for stability 

evaluation we have used only the coefficients αi where i ≤ 3 and Hurwitz determinants ∆i 

where i ≤ 3, which are always positive. Thus the basic state of the reaction network given in 

Table 2 cannot be unstable and a sustained oscillatory dynamic state of this reaction system is 

impossible.  

 

2.2. Stability analysis with matrix K obtained from the reaction network 

given in Table 3  

For the full set of intermediary species in the reaction network given in Table 3, the K matrix 

is: 

 

2

2

R.1R.2 R.3R.4 R.5R.6

1 0 0 1 1 0 PdI

0 0 1 1 0 0 Pd

2 2 0 0 0 1 HI

0 0 1 1 0 0 I

0 0 0 0 0 1 Int

 
 
 

=  
 
 
  

K
 (21) 

 

while the calculated matrix M(j) is: 

 

1 2 1 2 3 2 1 2 3 3 2 3 4 1 5

2 1 2 3 2 2 3 3 2 3 4

1 2 3 1 1 3 1 5

3 1 2 3 2 2 3 3 2 3 4

1 1 1 3 1 5

       

(  + ) ( ) ( 2 2 ) ( )

( + ) (2 2 ) ( + ) 0

( ) ( 2 2 ) 0 0

( + ) (2 2 ) ( + ) 0

0 0

j j h j j h j j j h j j h j h

j h j j h j j h j j h

j j j h j h j h

j h j j h j j h j j h

j h j h j h

− + − − + + 
 − + −
 

= + + − 
 

− − + − 
 − − 

M j

 
(22) 

 

The coefficients of the corresponding characteristic polynomial are given in the 

following equations: 
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1 1 1 1 2 2 2 3 1 2 3 4 2 5 1 4 3h j h j h j h j h j h j h j h j = + + + + + + +  (23) 

2 2 2 2
1 3 2 1 3 3 1 4 2 1 4 3 1 2 1 2 1 2 1 3 1 3 1 2

1 4 1 2 2 3 1 2 1 3 2 3 1 4 1 3 1 5 1 2 2 3 1 3 1 4 2 3

2 5 1 2 3 4 1 2 2 5 1 3 3 4 1 3 4 5 1 2

2

4 5 1 3

4 4

8 2

h h j h h j h h j h h j h h j j h h j j h h j j

h h j j h h j j h h j j h h j j h h j j h h j j h h j j

h h j j h h j j h h j j h h j j h h j j h h j j

 + + + + + +

+ + + + + + +

+ + + + + +

=

 (24) 

2
1 1 2 3 23 3 3 4 3 5 4 5( ) (2 4 )h j j j h h h h h h h h − + + − −=  (25) 

4 0 =  (26) 

5 0 =  (27) 

 

As expected, coefficients α4 and α5 are equal to 0. As can be seen from Eq. 23-27, 

negative terms can only be found in α3. Therefore, in the reaction network presented in Table 

3, an instability region was obtained, and some type of oscillatory dynamics can be found. 

Thus, the oscillatory dynamic states can be generated by the rate equations given in 

Donlon and Novakovic[25] (Tables 1 and Table 3). However, since the expressions for the 

reaction rates in reactions R1.1 and R1.4 do not correspond formally to their stoichiometry in 

accordance to mass action kinetics, whereas chemical reactions R3.1 and R3.4 adapted to the 

rate equations used in numerical simulations are obviously net reactions of a more complex 

mechanism, further modifications were desired in order to obtain a more realistic model of the 

investigated process. To reach this goal two things had to be resolved: the reaction network's 

stoichiometry and the mechanism responsible for the appearance of oscillations. Hence, the 

first step was to modify the reaction network (Table 1) in such a way that all reaction rates 

follow mass action kinetics corresponding to the reaction stoichiometry and, at the same time, 

produce oscillatory dynamic states.  

 

 

3. Modified reaction network of oscillatory PEGA carbonylation  

In the reaction network (Table 1), instabilities, and hence oscillatory dynamics, are the result 

of direct autocatalytic steps, which, although a very useful mechanism for the modelling of 

oscillatory chemical reactions are not a realistic representation of the investigated process. 

Hence, to make the reaction network more convincing, direct autocatalytic steps were 

replaced by feedback loops as an alternative source of instabilities which are the result of 
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interactions between several species. By doing so, new species with the related chemical 

reactions which are recognised to occur had to be added to the initial reaction network of the 

reaction mechanism. As a result of these modifications the new reaction network was 

proposed.  

The modified reaction network based on results of SNA analysis of reaction networks 

presented in Tables 2 and 3, and experimental observations [22] is given in Table 4. New 

intermediary species, Int1, Int2 and Int3 (see Nomenclature), were added to the model instead 

of one intermediate, Int, aiming to explain the stoichiometry and kinetics of the complex 

reaction step R1.1. Reaction steps R1.5 and R1.6 from Table 1 represent the initial step of the 

more complex mechanism given here, and roughly correspond to the new reactions R4.1 and 

R4.-1. Concentrations of the remaining species are denoted by cj. 

 

2
4 3 1PdI {CH OH CO} Int HI− + + +  

 

2-
4

1 1 PdI
r k c=  

11 1 Int HIr k c c− −=  

(R4.1) 

(R4.-1) 

1 2Int PEGA Int+ →   
12 2 PEGA Intr k c c=  (R4.2) 

 2 3 3Int CH OH CO Int HI+ + → +  
23 3 Intr k c=  (R4.3) 

3Int PEGP + Pd 2I−→ +  
34 4 Intr k c=  (R4.4) 

2 2Pd I PdI+ →  
25 5 Pd Ir k c c=  (R4.5) 

2
2 4PdI  + 2I  PdI− −→  

2

2
6 6 PdI I

r k c c −=  (R4.6) 

2 2
4 2 4PdI  + Pd Pd I− −→  2-

4
7 7 PdPdI

r k c c=  (R4.7) 

2 2
2 4 2 2 6Pd I + I  Pd I− −→  2- 22 4

8 8 IPd I
r k c c=  (R4.8) 

2 2
2 6 4Pd I + 2HI 2PdI 2H− − +→ +  2-

2 6

2
9 9 HIPd I

r k c c=  (R4.9) 

2 2 22HI {0.5O } I H O+ → +  2
10 10 HIr k c=  (R4.10) 

2 2I +H O HIO+HI  
2 211 11 H O Ir k c c =    

11 11 HIO HIr k c c− −=  

(R4.11) 

(R4.-11) 

HI I+ −+H  12 12 HIr k c=  

12 12 H I
r k c c+ −− −=  

(R4.12) 

(R4.-12) 

 

3 3 2HI + CH OH CH I+H O  
13 13 HIr k c=  

2 313 13 H O CH Ir k c c− −
 =    

(R4.13) 

 

(R4.-13) 

Table 4. Modified reaction network of the palladium-catalysed oscillatory 

carbonylation of PEGA.  
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This reaction network, consisting of thirteen chemical reactions, four of which are 

reversible (R4.1, R4.11, R4.12 and R4.13), is proposed to explain the complex reaction in 

which PEGA, in the presence of methanol, oxygen and carbon monoxide, and PdI2/KI as a 

catalytic mixture transforms to several products denoted as PEGP. In particular, the proposed 

reaction scheme acknowledges (See R4.6) that PdI2 in the presence of KI reacts to form 

K2PdI4 which in dissociated form exists as the species PdI4
2−. Reaction R4.1 represents the 

process in which PdI4
2− reacts with methanol and CO to form Int1 and HI [38,55,56]. The 

following reaction (R4.2) takes into account the insertion of substrate (PEGA) into the Pd−C 

bond in Int1, to form Int2.[55,56] In the next step (R4.3), further addition of CO and methanol 

takes place enabling formation of the diester Int3, seen as a major product in this type of 

carbonylation reaction [22,57]. It can be noted that this reaction occurs with the release of HI. 

Subsequently, reaction R4.4 leads to product formation with the release of catalyst in the 

reduced form (Pd). Reactions R4.5-R4.9 are proposed to explain recycling of the catalytic 

species to PdI4
2– through binuclear complexes. The palladium has strong affinity to form 

binuclear complexes and, although the existence of Pd2I4
2– is not confirmed, we use reactions 

R4.7 and R4.8 to bridge the gap between known species in the mechanism which are all 

probable intermediates. The existence of Pd2I6
2- has been experimentally determined using 

UV-Vis. After mixing Pd with CH3OH, KI and I2 a peak at 340 nm is noted, suggesting 

formation of Pd2I6
2- species, as suggested by the literature. [58] While the reaction network is 

not to be treated as a proven mechanism, it represents a possible pathway which explains the 

oscillations in a simplified manner. Reactions R4.10-R4.12 acknowledge a route to form 

water in the system, subsequent reaction of the water and iodine and existence of the acid 

dissociation process. It should be noted that the reaction pathway formed by the reaction steps 

R4.7-R4.9 actually forms the autocatalytic loop which results from the net reaction:  

 

2PdI  + Pd + I  + 2HI 2PdI H
k− − +⎯⎯→ +72 2

4 4 2  (R4.14) 

 

3.1. Stoichiometric network analysis of the modified reaction network 

Reaction network given in Table 4. describes interactions between 20 chemical species: 

CH3OH, CO, PEGA, H2O, H+, O2, PEGP, PdI4
2–, Int1, HI, Int2, Int3, Pd, I–, I2, PdI2, Pd2I4

2–, 

Pd2I6
2–, HIO, CH3I. As we already mentioned, PEGA is the reactant which transforms to the 

products denoted by PEGP in the presence of CH3OH, CO, O2 and catalytic mixture PdI2/KI. 
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The concentrations of CH3OH, CO and O2 are in excess, whereas concentration of PdI2, 

quickly decreases such that we have to consider it as intermediate species when the reaction 

system under consideration is in the oscillatory dynamic state. Moreover, although H2O is a 

product as well as a reactant the concentration of H2O is approximately zero at the beginning 

and quickly increases such that it ought to be considered as a product although reaction rates 

do parametrically depend on it. The remaining species together with PdI2 will be considered 

in SNA as the intermediate ones. They are: H+, PdI4
2–, Int1, HI, Int2, Int3, Pd, I–, I2, PdI2, 

Pd2I4
2–, Pd2I6

2–, HIO and CH3I. 

 For the reaction network given in Table 4 matrix S has the following form 

 

0 0 0 0 0 0 0 0 0 2 0 0 0

-1 1 0 0 0 0 1 -1 0 2 0 0 0

1 -1 -1 0 0 0 0 0 0 0 0 0 0

1 -1 0 1 0 0 0 0 0 -2 -2 1 -1

0 0 1 -1 0 0 0 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0 0 0 0

0 0 0 0 1 -1 0 -1 0 0 0 0 0

0 0 0 0 2 0 -2 0 0 0 0 0 0

0 0 0 0 0 -1 0 0 -1 0 1 -1 1

0 0 0 0 0 1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 -1 0 0 0 0

0 0 0 0 0 0 0 0 1 -1 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

=S

2
4

2

2

2
2 4

2
2 6

3

1

2

3

H1 -1 0 0

PdI0 0 0 0

0 0 0 0

HI-1 1 -1 1

0 0 0 0

0 0 0 0

Pd0 0 0 0

1 -1 0 0 I

0 0 0 0 I

0 0 0 0 PdI

0 0 0 0 Pd I

0 0 0 0 0
Pd I

-1 0 0 0 0
HIO

0 0 0 1 -1

Int

Int

Int

CH I

+

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

(28) 

 

The rank of the matrix S is 11. This means that there are 11 independent intermediate 

species and three conservation constraints between these species. However, we have shown 

[59] that we can calculate the E matrix with all 14 species. The result for stability will be 

equal to the one obtained with 11 species and three conservation equations, but the 

mathematical procedure is simpler in the first case which will be applied here. Thus, by 

means of the matrix S given in Eq. 28, the following matrix E is obtained: 
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1 2 3 4 5 6               

1 0 0 0 1 1 R4.1

1 0 0 0 0 0 R4.-1

0 0 0 0 1 1 R4.2

0 0 0 0 1 1 R4

0 0 0 0 1 1

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 1 1

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 2

0 0 0 1 0 0

0 0 0 1 0 0

E E E E E E

 
 
 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 
 
 
  

E

.3

R4.4

R4.5

R4.6

R4.7

R4.8

R4.9

R4.10

R4.11

R4.-11

R4.12

R4.-12

R4.13

R4.-13

 

(29) 

 

 By analyzing the elementary reaction pathways in the extreme current matrix E the 

following net reactions are obtained:  

 

E1: (R4.1) + (R4.-1)  

     0 → 0  
(30) 

E2: (R4.11) + (R4.-11)  

     0 → 0  
(31) 

E3: (R4.12) + (R4.-12)  

     0 → 0  
(32) 

E4: (R4.13) + (R4.-13)  

     0 → 0  
(33) 

E5: (R4.1) + (R4.2) + (R4.3) + (R4.4) + (R4.5) + (R4.6) + (R4.10)  

     3 2 2PEGA CH OH CO .  O  PEGP H O+ + + → +2 2 0 5  
(34) 

E6: (R4.1) + (R4.2) + (R4.3) + (R4.4) + (R4.7) + (R4.8) + (R4.9) + (R4.10)  

      + 2(R4.-12)  

     3 2 2PEGA CH OH CO .  O  PEGP H O+ + + → +2 2 0 5  

(35) 
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Analyzing the extreme currents E1 - E6 or the corresponding Eq. 30-35, it can be noted 

that the first four net reactions denote the equilibrium between related reactions and that there 

are two possible reaction pathways given in Eq. 34 and 35 which allow same transformation 

of the reactants into the products. Besides, these net reactions are equal to the ones obtained 

analysing the reaction networks given in Tables 2 and 3. This result confirms that the new 

reaction network in Table 4 is a properly extended variant of the previous one given in Table 

1.  

 Using relation (9), rss can be represented as following linear combinations of current 

rates ji, where i = 1, 2, 3, 4, 5:  

 

1,ss 1 5 6r j j j= + +  

(36) 

1,ss 1r j− =  

2,ss 5 6r j j= +  

3,ss 5 6r j j= +  

4,ss 5 6r j j= +  

5,ss 5r j=  

6,ss 5r j=  

7,ss 6r j=  

8,ss 6r j=  

9,ss 6r j=  

10,ss 5 6r j j= +  

11,ss 2r j=  

11,ss 2r j− =  

12,ss 3r j=  

12,ss 3 62r j j− = +  

13,ss 4r j=  

13,ss 4r j− =  
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As explained in Section 2, besides the matrices S and E calculated above, for the 

examination of the dynamic state stability we need the matrix of the orders of reactions K: 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 2 2 0 1 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

=K

2
4

2

2

2
2 4

1

2

2

3

2 6

3

H0 0

PdI0 0

0 0 0

HI0 1 0

0 0 0

0 0 0

Pd0 0 0

1 0 0 I

0 0 0 I

0 0 0 PdI

0 0 0 Pd I

0 0 0
Pd I

0 0 0
H

Int

IO
0 0 1

C

In

H I

t

Int

+

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

(37) 

 

 Theoretically, we could now calculate the Jacobian matrix M(j,h).  

 

( ) T( ) diag diag, =   M S E Kj h hj  (38) 

 

 As here we consider fourteen intermediate species, we need to use a much simpler 

method to examine the steady-state stability based on the fact that diag h in matrix M 

introduces only scaling factors. Hence, Eq. 38 can be written as a function of the matrix of 

current rates V(j) given by the expression: 

 

( ) ( )( ), –  diag= VM j h j h  (39) 

where 

 

( ) ( )T T
ssdia(  ) g diag= − −  =  V S K S E Krj j  (40) 

 

Since any αi is the sum of minors of V(j) with dimension i multiplied by the product of 

the corresponding hi values, we look for negative diagonal minors of V(j). The steady state is 

considered unstable if there is at least one negative diagonal minor of V(j).[40] It is possible 
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only if a polynomial corresponding to the determinant of the aforementioned negative 

diagonal minor contains at least one negative term, and if the sum of negative terms is larger 

than the sum of positive terms. A negative minor actually represents a destabilizing term since 

all the coefficients of the current rates in the V(j) matrix are positive numbers. Although it is 

an approximation, this SNA criterion often gives very good results. [41,42,60–65] 

 In the case considered here matrix V is given by the next equation:  

 

1,1 1,

,1 ,

V V

( )

V V

q

p p q

 
 

=  
 
 

V j  (41) 

 

with coefficients Vp,q equal to 

 

1,1 1,8 4,1 4,8 8,1 3 6V V V V V 2j j= = − = − = = +   

1,4 3 6V 4j j= − −   

1,12 2,12 4,12 12,4 6V V V V 2 j= = − = − = −   

2,2 1 5 6V 2j j j= + +   

2,3 3,4 4,3 1V V V j= − = − = −   

2,4 1 6V 4j j= − −   

2,7 7,2 9,11 11,2 11,7 11,9 11,11 12,9 12,11 12,12 6V V V V V V V V V V j= = = − = − = = = − = − = =   

2,8 8,10 10,8 5V V V 2 j= − = − = −   

2,10 7,9 10,7 10,9 10,19 0 5,7VV V V V V j== − = = − = −− =   

3,2 3,3 4,2 1 5 6V V V j j j= − = = − − −   

4,4 1 2 3 4 5 6V 4 8j j j j j j= + + + + +   

4,5 5,3 5,5 6,5 6,6 7,6 7,7 5 6V V V V V V V j j= = − = = − = = − = − −   

4,9 4,13 9,13 13,4 13,9 13,13 2V V V V V V j= − = = − = = − = −   

4,14 14,4 14,14 4V V V j= = − = −   

8,4 3V j= −   

8,6 5 6V 2 2j j= − −   

8,8 3 5 6V 4 2j j j= + +   

9,4 2 5 6V 2 2j j j= − − −   

9,9 2 5 6V j j j= + +   

 

The other coefficients are equal to zero.  

 

The minimal negative diagonal minor of V(j) has dimension 5×5. In fact, there are 

three of them. They are: 
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+ 2-
4 2

3 3 3 3 3 2 2
3 6 2 5 2 6 4 6 5 6 5 6 5 6

2 2 2 2 2 2 2 2
1 2 5 1 2 6 1 4 6 2 4 5 1 5 6 1 5 6 2 4 6 2 5 6

2 2 2
2 5 6 4

H , Pd

5 6 4 5 6 1 2 4 5 1 2 4 6 1 2 5 6 1

I , HI, Pd, I
( 2 )(2 6 6 12

2 3 6

5 4 2 2

M j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j

= + − + + + +

+ − + + + + + −

+ + + + + + + 4 5 6

2 4 5 63 )

j j

j j j j+

 

 

(42) 

2- 2-
4 2 2 4

3 3 3 3 2 2 2
6 2 5 2 6 5 6 5 6 5 6 1 2 5

2 2 2 2 2 2 2 2
1 2 6 2 3 5 2

PdI , HI, Pd, 

3 6 2 4 5 1 5 6 1 5 6 2 4 6 2 5 6

2
2 5 6 1 2 3 5 1 2 3 6 1 2 4 5 1 2 4 6 1 2

I , Pd

5 6

I
(2 2 2 2 4 2

2 2 2 11

7 4

M j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j j j j j j j j j

= + − − − +

+ + + + − − + +

+ + + + + +

+ 2 3 5 6 2 4 5 63 3 )j j j j j j j j+

 

 

(43) 

2- 2-
2 2 4 2 6

2 2 2 2 2
6 2 5 2 6 5 6 5 6 1 2 5 1 2 6

2 3 5 2 3 6 2 4 5 2 4 6 2 5

HI, Pd, I , Pd I , Pd I

6

(2 2 4 4

2 )

M j j j j j j j j j j j j j j j

j j j j j j j j j j j j j j j

= + − − + +

+ + + + +
 (44) 

 

By using Eq 36, Eq. 42-44 can be presented as a function of rss Eq. 45-47. The "ss" in 

the subscript is not written with the aim of shortening the expressions. 

 

+ 2-
4 2

12 1 5 7 10 1 5 7 9 1 5 8 9 1 5 8 10 1 7 8 9

1 5 7 13 1 5 9 11

H , PdI , HI, 

1 7 8 10 1 5 8 13 1 5 10 11 1 7 9 11 1 7 8 13

1 7 10 11 1 5 11 13 5 7 8 10 1 7 11 1

Pd,

3

 I
(2 4 4 4 4

4 4 2 4

2 4

M r r r r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r

−= − − + −

+ − + + + − +

+ + + + 5 7 9 11 5 7 8 13 5 7 10 11

5 7 11 13 5 7 8 1 1 5 8 11 1 7 8 11 5 7 8 11

4 2

)

r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r r r r− − − −

− + +

+ + + + +

 

 

(45) 

2- 2-
4 2 2 4

8 1 5 10 11 1 5 7 10 1 5 11 12 1 7 10 11 1 5 11 13

1 7 11 12 1 7 11 13 5 7 9 11 5 7 10 11 5 7 11 12 5 7 11 13

1 5 7 11 5 7 1

PdI , HI, Pd, I ,

1

I

1

Pd
(2 2 2

4 2

)

M r r r r r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r r r r r r r r r r

r r r r r r r r− −

= − + + +

+ + + + + +

− +

 

 

(46) 

2- 2-
2 2 4 2 6

8 9 5 10 11 5 7 10 5 11 12 7 10 11 5 11 13

7 11 12 7 11 13 5 11 1 7 11 1 5 7 11

HI, Pd, I , Pd I , Pd I
(2 4 2

2 )

M r r r r r r r r r r r r r r r r r

r r r r r r r r r r r r r r r− − −

= − + + +

+ + + + −
 (47) 

 

 The basic steady state can be unstable if the polynomial corresponding to the only one 

of these three diagonal minors satisfies the condition that the sum of negative terms is larger 

than the sum of positive terms, for selected values of the parameters. In the case considered 

here, the mentioned instability condition can be satisfied which is presented in the next 

section. 
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 Hence, instability of the steady state, and consequently oscillations, may occur for the 

reaction network given in Table 4, if any of expressions in Eqs. 45-47 passes through the zero 

and become negative. 

 

3.2. Numerical simulation 

In order to validate the results of the SNA we carried out numerical simulations of the 

reaction network presented in Table 4. Essential part of this analysis was to find an example 

set of rate constants which produces oscillatory dynamics and to test if any of the conditions 

(Eq 45-47) are satisfied and consequently detect feedback loop responsible for oscillations. 

Numerical simulations were carried out by solving kinetic equations associated with the 

reaction network given in Table 4 which is represented by the set of differential equations Eq 

48-63. 

 

H
9 12 12

d
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d

c
r r r
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+

−= + −  (48) 
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1 1 6 7 9
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1 1
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r r r r r

t
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2

d

d

c
r

t
= −  (63) 

 

Although there are 20 chemical species in the considered model (Eq. 48-63) not all of 

them are necessary for performing numerical simulations. Since the concentrations of 

CH3OH, CO and O2 are in excess they were considered to be constant and consequently 

incorporated in the appropriate rate constants. On the other hand, PEGP is a typical product 

and does not affect kinetics since its concentration does not participate in any expressions for 

the reaction rates. Therefore, it is not required for performing numerical simulations while its 

concentration can be calculated from conservation relations. 

 As can be seen from Figure 1, numerical simulations of the reaction network given in 

Table 4 have shown that the modified reaction network can reproduce the anticipated 

oscillatory dynamics and therefore, our primary goal was reached. Dampened oscillations of 

[Pd] (Fig.1a) and [H+] (Fig.1b) are consequence of slow and approximately continuous 

depletion of the [PEGA] from nearly 2 10-3 M to about 0.5 10-3 M within the time interval 

used in this simulation. 
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Figure 1. Result of the numerical simulations of the model presented in Table 4. 

a) [Pd] vs time b) [H+] vs time). Values of the rate constants and initial conditions 

are following: k1 = 40.3704 min–1, k–1 = 9.5288 × 102 mol–1 dm3 min –1, k2 = 

6.0089 mol–1 dm3 min–1, k3 = 1.1992 × 108 min–1, k4 = 2.3984 × 108
 min–1, k5 = 

0.20000 mol–1 dm3 min–1, k6 = 5.2008 × 103 mol–2 dm6 min–1, k7 = 4.6080 × 106 

mol–1 dm3 min–1, k8 =9.6000 × 105 mol–1 dm3 min–1, k9 = 4.7220 × 1014 mol–2 dm6 

min–1, k10 = 4.7220 × 108 mol–1 dm3 min –1, k11 = 2.8000 mol–1 dm3 min–1, k–11 = 

2.4874 × 104 mol–1 dm3 min–1, k12 = 3.7637 × 10–4 min–1, k–12 = 5.1072 × 102 mol–

1 dm3 min–1, k13 = 18.8192 min–1, k–13 = 3.1165 × 103 mol–1 dm3 min–1, [PEGA]0 = 

2.03 × 10–3 mol dm–3,   [PdI2]0=  4.05 × 10–5 mol dm–3, [I–]0 = 2.28 × 10–3 mol 

dm–3.  

 

Additionally, our numerical calculations confirmed that minor + 2-
4 2H , PdI , HI, Pd, I

M , 

given by Eq. 45 becomes negative under the conditions where oscillations occur in numerical 

simulations, while other two (Eq. 46 and Eq. 47) remain positive. Therefore, we may 

conclude that feedback loop responsible for oscillations in this model, is contained in 

reactions between the species H+, PdI4
2–, HI, Pd and I2. 

 

4. Conclusion 

The previously modelled reaction mechanism of the palladium-catalysed oscillatory 

carbonylation of PEGA was represented by two reaction networks, Tables 2 and 3. The first 

one, Table 2, consisted of chemical reactions as proposed by Donlon and Novakovic (Table 

1)[25], whereas the second one, presented in Table 3, consisted of chemical reactions adapted 

to fit the rate equations used by Donlon and  (Table 1) in numerical simulations of the 

experimentally observed phenomena. Their stabilities were both examined by stoichiometric 

network analysis. It was found that the basic steady state can be unstable and consequently 

oscillations may occur only in the second variant of the reaction network (Table 3). However, 
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since in this reaction network, which consists of chemical reactions adapted to fit in the rate 

equations given in Table 3, there were several details that had to be resolved, a more realistic 

reaction network was proposed. In the modified reaction network the direct autocatalytic steps 

were replaced with autocatalytic loops. In this procedure some complex net reactions were 

resolved and some new ones were added, in other words, the reaction network's stoichiometry 

and the mechanism responsible for the appearance of oscillations was changed. Moreover, in 

the modified reaction network, the expressions for reaction rates corresponds formally to their 

stoichiometry in accordance with mass action kinetics. The instability condition, obtained by 

SNA, was further tested and confirmed by numerical simulation.  

 Finally, we would like to highlight that, besides all the modifications of the initial 

reaction networks (Table 2 and 3), the obtained net reaction of the new reaction network 

(Table 4), that is (Eq.35) is equivalent to the initial one (Eq.8). Thus, the new reaction 

network in Table 4 is a suitably extended variant of the previous one given in Table 1. In this 

context, the direct autocatalytic steps are replaced in the new variant of the reaction network 

by a reaction loop including reactions R4.7, R4.8, and R4.9 with the net reaction R4.14. 
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