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Abstract

In this paper, the analysis is performed for a mathematical model of the coupled
homogeneous-catalytic reaction, which consists of two strongly nonlinear second-
order partial differential equations. Based on the Adomian decomposition method,
the approximate analytical solutions of the model can be obtained by making use of
the boundary conditions appropriately and selecting the search direction of solution
accurately. Assigning values to the dimensionless parameters properly in the model,
we can get an objective description of the solutions for the distributions of the
temperature and fluid concentration.

1 Introduction

Nonlinear partial differential equations (PDEs) are of vital significance in science and

engineering because the great majority of physical systems are essentially nonlinear. In

order to gain the solutions of nonlinear PDEs, a large number of numerical methods have

been developed in the past few decades, such as finite difference method (FDM) [1], finite

elements method (FEM), finite volume method (FVM) [2,3], spectral method [4,5], Taylor

meshless method (TMM) [6], homotopy analysis method (HAM) [7] and so on. Among

them, Adomian decomposition method (ADM) is regarded as one of the most effective
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ways to obtain the solutions of many nonlinear PDEs, which can solve various equations

in the absence of discretization or invalidation. In this article, we mainly employ ADM to

deal with a model which is composed of nonlinear PDEs. It has attracted much attention

in recent years in the applications of ADM. For example, ADM has been widely applied to

deal with some sorts of systems of equations in algebraic, differential, partial differential,

differential-difference, linear, nonlinear, integral and integro-differential operations [8–23].

The concept of ADM was originally proposed by Adomian [8, 24, 25] in the early 1980s.

The major technique of ADM is that the solution of a given equation represented in the

form of the sum of an infinite series converges to exact solutions rapidly.

On the other side, due to the complexity of solving the second-order PDEs [18,19,22],

there are few papers to solve them. However, as a matter of fact, some problems are sim-

ulated by second-order PDEs or systems of equations which usually accompany boundary

conditions. To solve second-order PDEs by ADM, it is of vital importance to study and

analyze boundary conditions. In a coordinate direction, the given boundary conditions

can be the standard boundary conditions or the nonstandard boundary conditions. If the

boundary condition is a standard boundary condition, then the solution of the equations

is existent and unique. Obviously, in order to obtain a fully deterministic approximate an-

alytical solution, we should choose standard boundary conditions instead of non-standard

boundary conditions. In addition, if more than one boundary condition is given in a

model, we can select the conditions needed to solve the model according to the influence

of the boundary condition on the model to some extent.

The mathematical model of the coupled homogeneous-catalytic reaction is one of the

classical models in chemical reaction engineering [18, 19, 26–28]. Because of its strong

nonlinearity, numerical solution is difficult to realize. Unlike classical two-phase models

that contain a single inter-phase transfer coefficient, the 3-mode models contain three

transfer coefficients representing the inter and intra-phase heat/mass transfer [26]. For

this situation, a reduced order 3-mode model which analyzes the problem of flow in a

channel with homogeneous reaction(s) in the bulk and catalytic reaction(s) on the wall

is needed, in order to forecast the temperature and fluid concentration distribution in

the reactor in more detail. With reference to the classical coupled homogeneous-catalytic

reaction model [26], a dimensionless coupled homogeneous-catalytic reaction model is

established, which describes the distributions of the dimensionless temperature θ(x, y)

and the fluid concentration c(x, y) in the homogeneous-catalytic reactor. The model is
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where x and y are the dimensionless coordinate along the length of the channel and

dimensionless first transverse coordinate, Pe is the axial Peclet number, p is the transverse

Peclet number, s is the solid phase, φ is the Thiele modulus for the homogeneous reaction,

γh is the dimensionless activation energy for the homogeneous reaction, λ is the ratio of

effective thermal conductivity in the direction of flow to fluid thermal conductivity with

boundary conditions, Lef is the fluid Lewis number, β is the dimensionless adiabatic

temperature rise, and all of these are positive numbers. f(y) is the velocity profile. It

should be pointed out that for the homogeneous-catalytic reaction, there is a coefficient
of s

y
and this coefficient has a singularity [29].

The given boundary conditions are as follows
1

Pe

∂c

∂x
= f(y)(c− 1), (2)

x = 0, λ
Lef
Pe

∂θ
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= f(y)(θ − θin), (3)

x = 1,
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c
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y = 1,
∂θ

∂y
=

β

Lef

φ2
c

(1 + s)
c exp

[
γcθ

1 + θ

]
, (7)

y = 0,
∂c

∂y
= 0, (8)

y = 0,
∂θ

∂y
= 0, (9)

c(0, y) = b0, (10)

θ(0, y) = d0, (11)

where θin is the inlet temperature, φc is the Thiele modulus for the catalytic reaction,
and γc is the dimensionless activation energy for the catalytic reaction.

Eqs. (1)–(11) establish a dimensionless mathematical model for the coupled homoge-

neous-catalytic reaction. There may not be an exact mathematical solution to this model,

that is to say, c and θ that satisfy exactly Eqs.(1)-(11) and are continuous in the closed
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domain {(x, y) | 0 ≤ x, y ≤ 1} are nonexistent, and there are no c and θ that make their

second-order partial derivatives continuous in the domain {(x, y) | 0 < x, y < 1}. In order

to find out the solution of Eq.(1), it is necessary to satisfy the boundary conditions (2)-(11)

to various degrees. The boundary condition (8) must be satisfied when the first-order

partial derivative of c(x, y) is continuous on the closed domain {(x, y) | 0 ≤ x, y ≤ 1},

otherwise, the first equation in Eq.(1) will have s
y
∂c
∂y

→ ∞(y → 0+). Similarly, the

condition (9) must also be satisfied. Moreover, the variation of c(x, y) and θ(x, y) is greatly

affected by the heat transfer at the boundary, so condition (7) should be satisfied. From

the above analysis, we can know that (7)-(9) are exactly satisfied. To find the solutions of

c(x, y) and θ(x, y), (10) and (11) should also be exactly satisfied. The conditions (2)-(6)

for describing the boundary changes of c(x, y) and θ(x, y) in the natural state can be

regarded as reference conditions.

In this paper, we use ADM to solve the model of the coupled homogeneous-catalytic

reaction. The main framework of this article is as follows: in Section 2, we devote ourselves

to deduce the approximate analytic solutions of the model by ADM; in Section 3, we

give the concrete expressions of approximate analytical solutions and draw the graphs of

approximate analytic solutions with MATLAB; in Section 4, we summarize and comment

our paper.

2 Derivation process for approximate analytic solu-
tions by ADM

In this section, the ADM is used to find the approximate analytic solutions for Eq.(1).

Define the following linear operators Lx = ∂
∂x
, Ly =

∂
∂y
, Lxx = ∂2

∂x2 and Lyy =
∂2

∂y2
, and

N(θ) denotes the strong non-linear function exp[ γhθ
1+θ

], Eq.(1) can be written as
f(y)Lxc =

1

Pe
Lxxc+

1

p

(
Lyyc+

s

y
Lyc

)
− φ2

p
cN(θ),

f(y)Lxθ = λ
Lef
Pe

Lxxθ +
Lef
p

(
Lyyθ +

s

y
Lyθ

)
+ β

φ2

p
cN(θ) .

(12)

In order to obtain the solutions satisfying (7), (8), and (9), we choose the y-direction

as the search direction of solution. Furthermore, the inverse operator L−1
yy is defined as

below

L−1
yy (·) =

∫ y

1

[∫ u

0

(·)dt
]
du. (13)
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According to [26], let f(y) = 1. By applying the inverse operator L−1
yy to Eq.(12), the

following results are obtained

c = pL−1
yy Lxc−

p

Pe
L−1
yy Lxxc− sL−1

yy

(
1

y
Lyc

)
+ pDaL−1

yy [cN(θ)] + A(x)y

+B(x), (14)

θ =
p

Lef
L−1
yy Lxθ − λ

p

Pe
L−1
yy Lxxθ − sL−1

yy

(
1

y
Lyθ

)
− p

Lef
βDaL−1

yy [cN(θ)]

+ C(x)y +D(x), (15)

where Da = φ2

p
, and A(x), B(x), C(x), D(x) are the undetermined functions. Implement-

ing the first-order partial derivative operations on both sides of (14) about y and combining

with the boundary condition y = 0, ∂c
∂y

= 0, we can figure out A(x) = 0. Then, letting

y = 1, 0 ≤ x ≤ 1 on both sides of (14), we have c(x, 1) = B(x), 0 ≤ x ≤ 1. Similarly, on the

basis of (15) and the boundary condition y = 0, ∂θ
∂y

= 0, we can get C(x) = 0, 0 ≤ x ≤ 1.

Letting y = 1, 0 ≤ x ≤ 1 on both sides of (15), θ(x, 1) = D(x), 0 ≤ x ≤ 1 can be obtained.

Now Eqs.(14) and (15) can be rewritten as

c = pL−1
yy Lxc−

p

Pe
L−1
yy Lxxc− sL−1

yy

(
1

y
Lyc

)
+ pDaL−1

yy [cN(θ)] +B(x), (16)

θ =
p

Lef
L−1
yy Lxθ − λ

p

Pe
L−1
yy Lxxθ − sL−1

yy

(
1

y
Lyθ

)
− p

Lef
βDaL−1

yy [cN(θ)]

+D(x). (17)

The ADM decomposes the unknown functions c(x, y) and θ(x, y) as

c(x, y) =
∞∑
n=0

cn(x, y), (18)

θ(x, y) =
∞∑
n=0

θn(x, y). (19)

To execute the recursive algorithm that will be involved below in the ADM and make use

of the double decomposition method [30], B(x) and D(x) can also be decomposed into

B(x) =
∞∑
n=0

bnx
n, (20)

D(x) =
∞∑
n=0

dnx
n, (21)

where

b0 = B(0) = c(0, 1), (22)

d0 = D(0) = θ(0, 1). (23)
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The nonlinear function N(θ) is decomposed as

N(θ) =
∞∑
n=0

An(n = 0, 1, 2, · · · ), (24)

where An (n = 0, 1, 2, · · · ) are known as Adomian polynomials. In this case, they are

presented by the following formula [8, 31].

An =
1

n!

[
dn

dλn
N

(
∞∑
k=0

λkθk

)]
λ=0

=
1

n!

[
dn

dλn
N

(
n∑

k=0

λkθk

)]
λ=0

(n = 0, 1, 2, · · · ) (25)

Hence, we obtain

A0(θ0) = N(θ0) = exp(γhθ0/(θ0 + 1)), (26)

A1(θ0, θ1) = γh exp(γhθ0/θ0 + 1))(θ1/(θ0 + 1)− (θ0θ1)/(θ0 + 1)2), (27)

. . .

Then cN(θ) can be expressed as an infinite series form of Adomian’s polynomials

cN(θ) =
∞∑
n=0

An(n = 0, 1, 2, · · · ), (28)

where the An (n = 0, 1, 2, · · · ) are calculated by the following formula

An(c0, c1, . . . , cn; θ0, θ1, . . . , θn) =
n∑

k=0

ckAn−k(n = 0, 1, 2, · · · ). (29)

According to (16), (17), (22), and (23), it is easy to choose the values of c0 and θ0 and
write the recursive relations as follows

c0 = b0, (30)
θ0 = d0, (31)
... (32)

cn = pL−1
yy Lxcn−1 −

p

Pe
L−1
yy Lxxcn−1 − sL−1

yy

(
1

y
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)
+ pDaL−1
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Let u = p
Pe
, v = p

Lef
, then (33) and (34) can be changed into

cn = pL−1
yy Lxcn−1 − uL−1

yy Lxxcn−1 − sL−1
yy

(
1

y
Lycn−1

)
+ pDaL−1

yy An−1 + bnx
n, (35)

θn = vL−1
yy Lxθn−1 − λuL−1

yy Lxxθn−1 − sL−1
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(
1

y
Lyθn−1

)
− vβDaL−1

yy An−1

+ dnx
n, (36)
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where n ≥ 1. Generally speaking, from many examples [24, 32], we can know that a

very few terms are enough. On the other hand, since the convergence speed is fast [33],

several terms can substantially represent an accurate solution. Moreover, the more the

number of terms, the higher the accuracy. At this point, in view of the simplicity of later

numerical computation, we take six terms to approximate the exact solution and suppose

the expressions

c = c(x, y; p, s, λ, u, v,Da, β, γh, b0, b1, . . . , b5, d0, d1, . . . , d5)

= b0 +
5∑

n=1

cn(x, y; p, s, λ, u, v,Da, β, γh, b0, b1, . . . , b5, d0, d1, . . . , d5) (37)

and

θ = θ(x, y; p, s, λ, u, v,Da, β, γh, b0, b1, . . . , b5, d0, d1, . . . , d5)

= d0 +
5∑

n=1

θn(x, y; p, s, λ, u, v,Da, β, γh, b0, b1, . . . , b5, d0, d1, . . . , d5) (38)

refer to the six-term approximation to c and θ separately. A set of values of dimen-

sionless parameters p, s, λ, u, v,Da, β, γh, φc, γc are given, then Eqs.(37) and (38) can be

transformed into

c = c(x, y; p, s, λ, u, v,Da, β, γh, b0, b1, . . . , b5, d0, d1, . . . , d5)

= c(x, y; b0, b1, . . . , b5, d0, d1, . . . , d5)

= b0 +
5∑

n=1

cn(x, y; b0, b1, . . . , b5, d0, d1, . . . , d5), (39)

θ = θ(x, y; p, s, λ, u, v,Da, β, γh, b0, b1, . . . , b5, d0, d1, . . . , d5)

= θ(x, y; b0, b1, . . . , b5, d0, d1, . . . , d5)

= d0 +
5∑

n=1

θn(x, y; b0, b1, . . . , b5, d0, d1, . . . , d5). (40)

Substituting (39) and (40) into (7) yields

5∑
n=1

∂θn
∂y

(x, 1, b0, b1, . . . , b5, d0, d1, . . . , d5)

−α

[
5∑

n=1

cn(x, 1, b0, b1, . . . , b5, d0, d1, . . . , d5) + b0

]

exp

[
γc
(∑5

n=1 θn(x, 1, b0, b1, . . . , b5, d0, d1, . . . , d5) + d0
)

1 + d0 +
∑5

n=1 θn(x, 1, b0, b1, . . . , b5, d0, d1, . . . , d5)

]
= 0, (41)
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where α = β
Lef

φ2
c

(1+s)
. The left side of (41) is a polynomial of order 5 in x, so

P (x, b0, b1, . . . , b5, d0, d1, . . . , d5) =
5∑

n=1

∂θn
∂y

(x, 1, b0, b1, . . . , b5, d0, d1, . . . , d5)

− α

(
5∑

n=1

bnx
n + b0

)
exp

[
γc(
∑5

n=1 dnx
n + d0)

1 + d0 +
∑5

n=1 dnx
n

]
= 0. (42)

By comparing the coefficients of x on both sides of (42), a set of nonlinear algebraic

equations can be obtained
P (0, b0, b1, . . . , b5, d0, d1, . . . , d5) = 0,

1

n!

∂nP

∂xn
(0, b0, b1, . . . , b5, d0, d1, . . . , d5) = 0 (n = 1, 2, . . . , 5).

(43)

In order to meet the boundary conditions (10) and (11), let

b0 +
5∑

n=1

cn(0, y, b0, b1, . . . , b5, d0, d1, . . . , d5) = b0, (44)

d0 +
5∑

n=1

θn(0, y, b0, b1, . . . , b5, d0, d1, . . . , d5) = d0. (45)

The left sides of (44) and (45) are the 10 order polynomials about y, so comparing the

coefficients of y on both sides of (44) and (45) respectively yields

5∑
n=1

cn(0, 0, b0, b1, . . . , b5, d0, d1, . . . , d5) = 0,

1

k!

5∑
n=1

∂kcn
∂yk

(0, 0, b0, b1, . . . , b5, d0, d1, . . . , d5) = 0 (k = 1, 2, . . . , 10),

(46)



5∑
n=1

θn(0, 0, b0, b1, . . . , b5, d0, d1, . . . , d5) = 0,

1

k!

5∑
n=1

∂kθn
∂yk

(0, 0, b0, b1, . . . , b5, d0, d1, . . . , d5) = 0 (k = 1, 2, . . . , 10).

(47)

Solving (43), (46), and (47), we can gain all values of b0, b1, . . . , b5, d0, d1, . . . , d5. For all

the values, they satisfy (43), (46) and (47). At last, supposing

c(x, y) = c(x, y, b0, b1, . . . , b5, d0, d1, . . . , d5) (48)

and

θ(x, y) = θ(x, y, b0, b1, . . . , b5, d0, d1, . . . , d5) (49)

are used as approximate analytic solutions of c(x, y) and θ(x, y).
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3 Detailed expressions and graphs for approximate
analytic solutions

In order to solve the system of Eq.(1), a large number of mathematical operations are

needed. We choose MATLAB as the calculation tool and refer to the relevant datas of the

coupled homogeneous-catalytic reaction [26] to determine the dimensionless parameter

values of the model.

Take the values appropriately and assign the set of values to the dimensionless pa-

rameters p, s, λ, u, v,Da, α, β, γh, φc, γc, e.g. p = 0.02, s = 0, λ = 0.9, u = 0.0004, v =

0.04, Da = 5, α = 0.3, β = 0.15, γh = 26.47, φ2
c = 1.0, γc = 15, and these values are

substituted into (39) and (40) respectively, then the following equations are generated
c(x, y, b0, b1, . . . , b5, d0, d1, . . . , d5) = b0 + b1x

+ (b0 exp((2647d0)/(100(d0 + 1)))(y2 − 1))/20

+
5∑

n=2

cn(x, y, b0, b1, . . . , b5, d0, d1, . . . , d5) (50)

θ(x, y, b0, b1, . . . , b5, d0, d1, . . . , d5) = d0 + d1x

− (3b0 exp((2647d0)/(100(d0 + 1)))(y2 − 1))/200

+
5∑

n=2

θn(x, y, b0, b1, . . . , b5, d0, d1, . . . , d5). (51)

After all the parameter values have been confirmed, the solution of Eq.(43) is searched

near the initial point

(b0, b1, b2, b3, b4, b5, d0, d1, d2, d3, d4, d5) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1) (52)

by applying the MATLAB function fsolve (), the solution is

(b0, b1, b2, b3, b4, b5, d0, d1, d2, d3, d4, d5) = (0.0004,−0.0027, 0.0268, 0.0366, 0.0037,

− 0.0246, 0.0021, 0.0033,−0.0067, 0.0777, 0.0827, 0.1000). (53)

When fsolve () is used to solve nonlinear equations, what initial values are set will lead

to what kind of solution is obtained. Furthermore, the algorithm starts with initial values

and looks for values on both sides (iterative process). Once certain precision is satisfied,

the result will be outputted. In this article, by trying different initial values many times,

we find that (52) is a set of very good initial values. Through this set of values, we use

fsolve () to calculate the solution of (43).
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The maximum absolute value of 0.000069 is generated by substituting (53) into the left

side of each equation of (46) and (47), which can therefore be educed that (53) is not only

the solution of (43), but also an approximate solution of (46) and (47). Substituting (53)

into (50) and (51) respectively obtains expressions of the approximate analytic solutions

c(x, y) and θ(x, y). These expressions are so long that we don’t actually give them here,

and their graphs are given in Figure 1 and Figure 2.
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Similarly, when assigning a set of values p = 0.02, s = 0, λ = 0.9, u = 0.0004, v =

0.04, Da = 5, α = 0.3, β = 0.15, γh = 100, φ2
c = 1.0, γc = 15 to dimensionless parameters,

we can use MATLAB to get Figures 3 and 4; When assigning a set of values p = 0.02, s =

0, λ = 0.9, u = 0.0004, v = 0.04, Da = 5, α = 0.3, β = 0.15, γh = 26.47, φ2
c = 1.0, γc = 100

to dimensionless parameters, Figures 5 and 6 can be obtained.
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From Figures 1, 2, 3 and 4 above, we can see that when γh increases from 26.47 to 100,

that is, when dimensionless activation energy for the homogeneous reaction increases, the

concentration of the fluid decreases, and the temperature basically does not change. That

is to say, the fluid concentration decreases with the increase of the activation energy for the

homogeneous reaction, and the temperature is not essentially affected by the activation

energy for the homogeneous reaction. In the same way, from Figures 1, 2, 5 and 6 above,

we can see that when γc increases from 15 to 100, that is, when dimensionless activation

energy for the catalytic reaction increases, the concentration of the fluid decreases, and

the temperature also drops. That is to say, the fluid concentration and temperature

decrease with the increase of dimensionless activation energy for the catalytic reaction,

but the effect on temperature is slight; At the same time, from these graphs above, we

can know that the effect of dimensionless activation energy for the catalytic reaction on

concentration and temperature is greater than that of dimensionless activation energy for

the homogeneous reaction on concentration and temperature.

The purpose of the coupled homogeneous-catalytic reaction model is to determine

the coupling effects of various transport and kinetic parameters, and to illustrate their

effects on the reactor performance. The prediction of dimensionless temperature and

concentration distribution will lay a good foundation for the design and optimization of

the coupled homogeneous-catalytic reaction.
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4 Conclusion

In this work, the coupled homogeneous-catalytic reaction model composed by a system of

strongly nonlinear second-order partial differential equations has been analyzed by ADM.

In engineering problems, there are often systems of second-order partial differential equa-

tions with multiple boundary conditions. The exact solutions of these equations may not

exist. At this time, it is necessary to analyze the boundary conditions and use ADM

to obtain approximate analytical solutions satisfying the given boundary conditions in

varying degrees. The ADM is a powerful method to solve many problems in some scien-

tific applications modeled by nonlinear differential equations and are well worth studying

further.
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