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Abstract

With the rapid development of DNA nanotechnology, DNA polyhedra have been
reported and widely applied in chemical biology, analytical chemistry, medicine and
materials science. Our goal in this paper is to determine all permissible topological
structures for DNA tetrahedra with double-helical edges, which have been partially
realized by multiple appropriately designed oligonucleotides. Here four types of
oriented twist tangles with even or odd number are designed as basic building blocks
to assemble tetrahedral links as the mathematical models for DNA tetrahedra.
As a result, there are a total of 26 different link types to be identified from all
generated tetrahedral links. Each type includes infinite many tetrahedral links by
changing the number of building blocks on each edge. Furthermore, the chirality
of these links is discussed and all determined by calculating some invariants such
as crossing number, twist number and HOMFLY polynomial. In particular, four
achiral tetrahedral links are firstly given by employing the association of tetrahedral
link diagrams and their dual link diagrams. Our work provides a list of candidates
for further synthesized DNA tetrahedra with required topological structures.

1 Introduction

Molecular recognition capability, rigidity and flexibility of DNA make it an attractive,

versatile and highly programmable building block for constructing 3D nanoscale mate-

rials [1–3]. Over the past decades, DNA molecules with polyhedral shapes have been

successfully synthesized and commonly studied such as tetrahedra [4–9], cubes [10, 11],
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octahedra [12–14], dodecahedra [15], icosahedra [16, 17], truncated octahedra [18] and so

on. Tetrahedra, as the simplest Platonic polyhedra, were realized mainly using three
methods including individual strands-based assembly, tiled-based hierarchical assembly

and scaffoled DNA origami [19]. In these works, DNA tetrahedra with a double helix

on each edge [5, 6], assembled by multiple synthetic DNA single strands with designed

sequences, become a popular candidate for various applications such as nuclear mag-

netic resonance imaging, molecular diagnosis and targeting drug delivery because they

are easily synthesized and also have very high yield, fairly good stereoselectivity as well

as outstanding stability [19–21]. Moreover, these tetrahedral molecules can be easily

targeted decoration in multiple sites and also be used as the building blocks for more

complicated nanostructures [4,19]. We note that such molecules all have nontrivial topo-

logical structures embedded in three dimension space R3, which has a close influence on

structural stablility, the number of oligonucleotides used in the experiment, dependency

on stoichiometry and so on. Hence it becomes necessary to answer which topological

structures these DNA molecules will possibly allow. This question is addressed in the

present study.

Knot theory [22], the study of simple closed curves in R3, has been proven to be

successful in describing knotted and linked molecules [23,24]. Polyhedral links [25], intro-

duced as the mathematical models for DNA polyhedra, are the interlocked and interlinked

architectures formed by simply treating DNA as a strand. To date, a variety of polyhedral

links [26–43] have been constructed to describe the topological structures of polyhedral

molecules with complete helical-turn edges. However, there is very little research ad-

dressed to model DNA polyhedra with incomplete helical-turn edges due to the uncertain

orientations of the constructed mathematical links [44]. Hence it is almost impossible to

give all possible existing polyhedral links based on any given polyhedron. In this paper,

four oriented twist tangles, each designed as two antiparallel oriented strands with even

or odd twist number, are used as basic building blocks to assemble all permissible topo-

logical structures for DNA tetrahedra with double-helical frames. As a result, there are

26 different link types for oriented link diagrams constructed from tetrahedral graph.

Link invariants, as important tools in knot theory to determine whether two links

are equivalent, play the significant roles in classifying and predicting molecular catenanes

and knots [39, 45, 46]. In this paper, the component number and crossing number as two

-210-



link invariants, and the twist number as a regular isotopy invariant of oriented link dia-

grams are all given, which provide a sketchable description and classification for oriented

tetrahedral links. Furthermore, there is an inequality in terms of the crossing number

and twist number for alternating link diagrams, giving a necessary condition for chiral

links [47]. Using this inequality, the chirality of most tetrahedral links can be easily de-

terminated. However, there are six types of chiral tetrahedral links, we have to resort to a

more powerful invariant, the HOMFLY polynomial [48–50]. Here the lowest-degree terms

of z for HOMFLY polynomials are calculated and shown to be asymmetrical in order to

prove the chirality of these links. For achiral links, there is still no an effective approach

to identifying them. In this paper, we employ the association between tetrahedral link

diagrams and their dual link diagrams by using the well-known Reidemeister moves [22],

and show that there are four types of tetrahedral links to be achiral. It is worth noting

that these achiral links are constructed firstly, which affords an expectation for synthe-

sizing achiral catenanes. Hence our works provide a theoretical framework for assembling

DNA tetrahedra with required topological structures, and also give new insight into the

topological structures for DNA Tetrahedra with double-helical frames.

2 Construction method of tetrahedral links
In this section, a mathematical method is proposed to determine all topological structures

of tetrahedral links. We will begin with some notations and basic definitions [22, 51].

2.1 Graphs and link diagrams
In graph theory, a planar graph G is a graph that can be drawn in the plane with no edge

crossings. Such a drawing is called a plane graph of G. Since all convex polyhedra are

3-connected planar graphs [52], each of them has an embedding on the plane. Such an

embedding is called a polyhedral graph.

A knot is an embedding of a circle in three dimensional space R3. A link L is a

collection of knots which may be linked or knotted together without intersections. Each

knot is called a component of L. A knot is considered as a link with one component. The

link L can be oriented by giving one of the two directions along each component. L with

the opposite orientation, denoted by −L, is called the reverse of L. The mirror image of

L is denoted by L∗ and the link −L∗ is called the inverse of L. A link diagram is a regular
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projection of a link onto a plane such that the corresponding space curve crosses over or

under at each crossing is indicated by creating broken strands.

Two links L1 and L2 are equivalent, denoted by L1 = L2, if there exists an ambient

isotopy that maps one to the other. An oriented link L is called achiral link if it is

equivalent to its mirror image L∗. Otherwise, it is called chiral. It is well-known that

ambient isotopy is an equivalence relation on links. Each equivalence class of links is

called a link type, and the link type of a link diagram means the equivalence class of the

link represented by this diagram. Here two links are considered to be the same if they are

equivalent (or belong to the same link type). Otherwise, they are considered different.

With some abuse of terminology, the word ‘ link ’ is applied to mean a whole equivalence

class (a knot type) or a particular representative member.

2.2 The construction of tetrahedral links

A twist tangle of length m, denoted by T , is two parallel strands with m half-twists for

any positive integer m. Four endpoints of T are marked by NW , NE, SW and SE, as

shown in Fig.1(a). There are four possible ways to twist two strands of T , hence we have

four types of twist tangles denoted by am, bm, a∗m and b∗m. Note that a∗m and b∗m are the

mirror images of am and bm respectively, hence we only consider the tangles am and bm

as building blocks to obtain alternating links.

A twist tangle can be oriented by assigning a direction to its each strand. Then T

allow three possible orientations α, β, γ and their reverse orientations −α, −β and −γ,

as shown in Fig. 1(b). Note that the orientation −β (or −γ) overlaps the orientation β

(or γ) for T by rotating it by 180 degrees in the plane. Hence we only need to consider

the orientations α, β, γ and −α for T .

We note that the twist tangles am and bm can be oriented respectively with α and

−α when m = 2n (n ∈ Z+). The twist tangles am can be oriented with β and bm can be

oriented with γ when m = 2n− 1 (n ∈ Z+). As a result, we obtain six types of oriented

twist tangles, denoted by aα2n, a−α
2n , aβ2n−1, bα2n, b−α

2n and bγ2n−1, such that each type has

an antiparallel orientation on its two strands (Fig. 1(c)). Here the twist tangle a−α
2n (or

b−α
2n ) can be obtained from aα2n (or bα2n)by reversing the orientations on two strands. In

fact, any other oriented twist tangle with such antiparallel orientation must be one of the

mirror images of the above six types.
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Figure 1. (a) Four types of twist tangles: am, a∗m, bm and b∗m; (b) Six orientations:
α, β, γ, −α, −β and −γ; (c) Four types of oriented twist tangles: aα2n,
aβ2n−1, bα2n and bγ2n−1.

Given a tetrahedral graph G, each edge ei is replaced by an oriented twist tangle

Ti, where Ti is one of the above six types of oriented twist tangles for 1 ≤ i ≤ 6 (Fig.

2). And then we connect the endpoints of two twist tangles along the boundary of each

face. At a result, an oriented tetrahedral link diagram D(G), called an OT-link diagram,

is obtained. Clearly, D(G) is alternating. For convenience, D(G) is also denoted as

D(T1, T2, T3, T4, T5, T6) by recording the twist tangle on each edge in a sequence from left to

right and top to bottom. Also, the orientation of D(G) is denoted as o(τ1, τ2, τ3, τ4, τ5, τ6),

where τi is the orientation of Ti for 1 ≤ i ≤ 6. Here there exists only one oriented

tetrahedral link in R3, denoted by L(T1, T2, T3, T4, T5, T6), corresponding to the diagram

D(G) such that D(G) is a spherical embedding of L(T1, T2, T3, T4, T5, T6). In Fig. 2,

we take the diagram D(bα2 , 3a
β
1 , a

−α
2 , aβ1 ) for an example and give the corresponding link

L(bα2 , 3a
β
1 , a

−α
2 , aβ1 ).
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Figure 2. The construction of D(G), D(bα2 , 3a
β
1 , a

−α
2 , aβ1 ) and L(bα2 , 3a

β
1 , a

−α
2 , aβ1 ).

In the above construction process, we must avoid the conflict orientations for any two

oriented twist tangles whose endpoints are connected. The following theorem provides an

approach to giving all OT-link diagrams.

Theorem 2.1. Let G be a tetrahedral graph. Then there are 27 link types of OT-link

diagrams constructed from G, as listed in Table 1.

D c(D) µ(D) w(D) c or ac D∗

D(6bα2n) 12n 4 12n c D(6aα2n)
D(aα2n, 5b

α
2n) 3 8n c D(bα2n, 5a

α
2n)

D(2aα2n, 4b
α
2n) 2 4n c D(2bα2n, 4a

α
2n)

D(aα2n, 3b
α
2n, a

α
2n, b

α
2n) 2 4n c D(bα2n, 3a

α
2n, b

α
2n, a

α
2n)

D(3bα2n, 3a
α
2n) 3 0 ac

D(3aα2n, 3b
α
2n) 1 0 ac

D(aα2n, 3b
α
2n, 2a

α
2n) 1 0 ac D(2aα2n, 3b

α
2n, a

α
2n)

D(3bα2n, 3b
γ
2n−1) 12n-3 2 12n-3 c D(aα2n, a

β
2n−1, a

α
2n, 2a

β
2n−1, a

α
2n)

D(2aα2n, b
α
2n, 3b

γ
2n−1) 2 4n-3 c D(bα2n, a

β
2n−1, b

α
2n, 2a

β
2n−1, a

α
2n)

D(aα2n, 2b
α
2n, 3b

γ
2n−1) 1 8n-3 c D(aα2n, a

β
2n−1, b

α
2n, 2a

β
2n−1, a

α
2n)

D(3aα2n, 3b
γ
2n−1) 1 -3 c D(bα2n, a

β
2n−1, b

α
2n, 2a

β
2n−1, b

α
2n)

D(bα2n, 3b
γ
2n−1, a

−α
2n , bγ2n−1) 12n-4 3 8n-4 c D(aα2n, 3a

β
2n−1, b

−α
2n , aβ2n−1)

D(bα2n, 3b
γ
2n−1, b

−α
2n , bγ2n−1) 2 12n-4 c D(aα2n, 3a

β
2n−1, a

−α
2n , aβ2n−1)

D(aα2n, 3b
γ
2n−1, a

−α
2n , bγ2n−1) 2 4n-4 c D(bα2n, 3a

β
2n−1, b

−α
2n , aβ2n−1)

D(2bγ2n−1, a
β
2n−1, b

γ
2n−1, 2a

β
2n−1) 12n-6 3 0 ac

Table 1. The invariants of any OT-link diagram D ( Here ‘c’ and ‘ac’ mean chirality
and achirality respectively).
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Proof: First, each edge of G is labeled with ei for 1 ≤ i ≤ 6, as shown in Fig. 2. Let
D(G) be an OT-link diagram obtained from G by replacing each edge ei with an oriented

twist tangle Ti with the orientation τi (1 ≤ i ≤ 6).

Claim 1. The OT-link diagram D(G) only possibly allow these six orientations o(6α),

o(3α, 3γ), o(α, β, α, 2β, α), o(α, 3γ,−α, γ), o(α, 3β,−α, β), o(2γ, β, γ, 2β) or their reverses.

Proof: Without loss of generality, D(G) is oriented starting from the twist edge T1.

Hence there are two cases we need to consider according to the orientation of D(G).

Case 1. Assume that in D(G), there is no twist tangle with the orientation α. If D(G)

has an twist tangle with the orientation γ, without loss of generality, we can assume

that this twist tangle is T1. Then its adjacent twist tangle T2 only possibly has the

orientations γ and β (Fig. 3(a)). Once the orientation of T2 is given, the orientations

of the remaining twist tangles for D(G) will be determined. Thus, in this case, two

orientations o(2γ, β, γ, 2β) and o(γ, β, γ, 2β, γ) can be obtained for D(G).

If D(G) has no twist tangle with the orientation γ, each twist tangle of D(G) will be

oriented with β. It doesn’t happen in this case due to the conflict orientation produced

by two adjacent twist tangles for D(G).

Case 2. Assume that in D(G), there is at least an twist tangle with the orientation

α. If D(G) has a twist tangle with the orientation α, without loss of generality, we can

assume that this twist tangle is T1. Then its adjacent twist tangle T2 has three possible

orientations α, β and γ shown in Fig. 3(b). When the twist tangle T2 is oriented with α,

the adjacent twist tangle T3 will be possibly oriented with α and β respectively. At last,

three orientations o(6α), o(3α, 3γ) and o(2α, β, α, 2β) of D(G) are obtained.

Similarly, when the twist tangle T2 is oriented with β, the orientations o(α, β, α, 2β, α)

and o(α, 3β,−α, β) of D(G) are obtained. When T1 is oriented with γ, the orientations

o(α, 2γ, α, γ, α) and o(α, 3γ,−α, γ) of D(G) are obtained (Fig. 3(b)).

At last, we can obtain nine orientations of D(G), that are o(2γ, β, γ, 2β), o(γ, β, γ, 2β,

γ), o(6α), o(3α, 3γ), o(2α, β, α, 2β), o(α, 2γ, α, γ, α), o(α, 3γ,−α, γ), o(α, β, α, 2β, α) and

o(α, 3β,−α, β). Note that the orientation o(3α, 3γ) is the same as the orientation o(α, 2γ,

α, γ, α) for D(G). Moreover, when D(G) is embedded into R3 as an oriented link L(G),

the orientation o(2α, β, α, 2β) overlaps the orientation o(α, β, α, 2β, α), and o(2γ, β, γ, 2β)

is the reverse orientation of o(γ, β, γ, 2β, γ). Then we only need to consider the following

six orientations, that are o(6α), o(3α, 3γ), o(α, β, α, 2β, α), o(α, 3γ,−α, γ), o(α, 3β,−α, β)
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and o(2γ, β, γ, 2β). Hence the OT-link diagram D(G) only possibly allow the above six
orientations or their reverses.
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Figure 3. (a) There are two orientations for D(G) in case 1; (b) There are seven
orientations in case 2.

All OT-link diagrams will be constructed by using the above six orientations as below.

First, for the orientation o(2γ, β, γ, 2β) of D(G), the twist tangles oriented with β (or γ)

must be aβ2n−1 ( or bγ2n−1), hence we obtain an OT-link diagram D(2bγ2n−1, a
β
2n−1, b

γ
2n−1,

2aβ2n−1).

For the orientation o(6α), each twist tangle with the orientation α must be aα2n or bα2n,

thus the number of the resulting OT-link diagrams can be calculated by the following

formula

2C0
6 + 2C1

6 + 2C2
6 + C3

6 = 64.

Among these link diagrams, many of them are equivalent since they are corresponding

to the same link in R3. First, when all twist tangles of D(G) are all aα2n or all bα2n,

we will obtain the OT-link diagram D(6aα2n) or D(6bα2n). When a twist tangle is bα2n

and the remaining edges are all aα2n, we will obtain OT-link diagrams of C1
6 , that are

D(bα2n, 5a
α
2n), D(aα2n, b

α
2n, 4a

α
2n), D(2aα2n, b

α
2n, 3a

α
2n), D(3aα2n, b

α
2n, 2a

α
2n), D(4aα2n, b

α
2n, a

α
2n) and
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D(5aα2n, b
α
2n). Since these six link diagrams are corresponding to the same OT-link in R3,

we use D(bα2n, 5a
α
2n) to represent this link type. Similarly, when a twist tangle is aα2n and

the remaining tangles are all bα2n in D(G), we will obtain the OT-link diagram D(aα2n, 5b
α
2n).

Furthermore, when two twist tangles are both of aα2n and the remaining twist tangles

are all bα2n in D(G), we will obtain OT-link diagrams of C2
6 . These diagrams can be divided

into two classes such that, in each class, all diagrams are corresponding to the same link

in R3. One class has three OT-link diagrams D(bα2n, 3a
α
2n, b

α
2n, a

α
2n), D(aα2n, b

α
2n, 3a

α
2n, b

α
2n)

and D(2aα2n, 2b
α
2n, 2a

α
2n), where two aα2n aren’t adjacent in each link diagram. The remain-

ing link diagrams consist of the other class, including D(2bα2n, 4a
α
2n), D(aα2n, 2b

α
2n, 3a

α
2n),

D(2aα2n, b
α
2n, a

α
2n, b

α
2n, a

α
2n), D(3aα2n, 2b

α
2n, a

α
2n), D(4aα2n, 2b

α
2n), D(bα2n, a

α
2n, b

α
2n, 3a

α
2n), D(bα2n,

2aα2n, b
α
2n, 2a

α
2n), D(aα2n, b

α
2n, a

α
2n, b

α
2n, 2a

α
2n), D(bα2n, 4a

α
2n, b

α
2n), D(2aα2n, b

α
2n, 2a

α
2n, b

α
2n), D(3aα2n,

bα2n, a
α
2n, b

α
2n) and D(4aα2n, 2b

α
2n). Here we use the diagrams D(2bα2n, 4a

α
2n) and D(bα2n, 3a

α
2n,

bα2n, a
α
2n) to represent the above two link types respectively. Similarly, when two twist

tangles are both of bα2n and the remaining four edges are all aα2n in D(G), we will obtain

the OT-link diagrams D(aα2n, 3b
α
2n, a

α
2n, b

α
2n) and D(2aα2n, 4b

α
2n).

At last, in D(G) when three edges are all aα2n and the remaining three edges are

all bα2n, we obtain OT-link diagrams of C3
6 in total. These diagrams are divided into

four classes such that, in each class, all diagrams are corresponding to the same link

in R3. In the first class, for each diagram, three aα2n forms a face of D(G), which

includes four members D(3bα2n, 3a
α
2n), D(bα2n, 2a

α
2n, b

α
2n, a

α
2n, b

α
2n), D(aα2n, b

α
2n, a

α
2n, 2b

α
2n, a

α
2n)

and D(2aα2n, b
α
2n, a

α
2n, 2b

α
2n). In the second class, for each diagram, three bα2n forms a face of

D(G), which includes four members D(3aα2n, 3b
α
2n), D(2bα2n, a

α
2n, b

α
2n, 2a

α
2n), D(bα2n, a

α
2n, b

α
2n,

2aα2n, b
α
2n) and D(aα2n, 2b

α
2n, a

α
2n, b

α
2n, a

α
2n). The third class includes D(aα2n, 3b

α
2n, 2a

α
2n), D(2bα2n,

3aα2n, b
α
2n), D(bα2n, 2a

α
2n, 2b

α
2n, a

α
2n), D(bα2n, a

α
2n, b

α
2n, a

α
2n, b

α
2n, a

α
2n), D(aα2n, b

α
2n, 2a

α
2n, 2b

α
2n) and

D(2aα2n, 2b
α
2n, a

α
2n, b

α
2n). The remaining links consists of the forth class, that are D(2aα2n, 3b

α
2n,

aα2n), D(bα2n, 3a
α
2n, 2b

α
2n), D(2bα2n, 2a

α
2n, b

α
2n, a

α
2n), D(bα2n, a

α
2n, 2b

α
2n, 2a

α
2n), D(aα2n, 2b

α
2n, 2a

α
2n,

bα2n) and D(aα2n, b
α
2n, a

α
2n, b

α
2n, a

α
2n, b

α
2n). We use the diagrams D(3bα2n, 3a

α
2n), D(3aα2n, 3b

α
2n),

D(aα2n, 3b
α
2n, 2a

α
2n) and D(2aα2n, 3b

α
2n, a

α
2n) to represent the above four link types respectively.

For the orientation o(3α, 3γ) for D(G), three twist tangles with the orientation γ are

all bγ2n−1, then the number of the obtaining OT-link diagrams is calculated as follows

C0
3 + C1

3 + C2
3 + C3

3 = 8.

When there is only one twist tangle aα2n in D(G), we obtain three OT-link dia-
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grams (2bα2n, a
α
2n, 3b

γ
2n−1), D(bα2n, a

α
2n, b

α
2n, 3b

γ
2n−1) and D(aα2n, 2b

α
2n, 3b

γ
2n−1). They are all

equivalent since they are corresponding to the same link in R3. We use the diagram

D(aα2n, 2b
α
2n, 3b

γ
2n−1) to represent this link type. Similarly, when there are only two aα2n in

D(G), we will obtain the diagram (2aα2n, b
α
2n, 3b

γ
2n−1). When there are three aα2n in D(G), we

will obtain the OT-link diagrams (3aα2n, 3b
γ
2n−1) and (3bα2n, 3b

γ
2n−1). At last, we obtain four

link types of OT-link diagrams, that are (3aα2n, 3b
γ
2n−1), (3bα2n, 3b

γ
2n−1), (2aα2n, bα2n, 3b

γ
2n−1)

and D(aα2n, 2b
α
2n, 3b

γ
2n−1). Similarly for the orientation (α, β, α, 2β, α), we also obtain four

link types of OT-link diagrams D(aα2n, a
β
2n−1, a

α
2n, 2a

β
2n−1, a

α
2n), D(bα2n, a

β
2n−1, b

α
2n, 2a

β
2n−1,

bα2n), D(aα2n, a
β
2n−1, b

α
2n, 2a

β
2n−1, a

α
2n) and D(bα2n, b

α
2n, 2a

β
2n−1, a

α
2n, a

β
2n−1).

For the orientation o(α, 3γ,−α, γ) of D(G), four twist tangles with the orientation γ

are all aβ2n−1. Also, the twist tangle oriented with −α will be a−α
2n or b−α

2n . Hence there will

be four OT-link diagrams with the orientation o(α, 3γ,−α, γ), that are D(aα2n, 3b
γ
2n−1, a

−α
2n ,

b−γ
2n−1), D(bα2n, 3b

γ
2n−1, b

−α
2n , b

γ
2n−1), D(bα2n, 3b

γ
2n−1, a

−α
2n , b

γ
2n−1) and D(aα2n, 3b

γ
2n−1, b

−α
2n ,

bγ2n−1). Note that the last two diagrams have reverse orientations as the the same link

in R3. Here we don’t distinguish these two link diagrams and only consider the dia-

gram D(bα2n, 3b
γ
2n−1, a

−α
2n , b

γ
2n−1). At last, we obtain three link types of OT-link diagrams,

that are D(aα2n, 3b
γ
2n−1, a

−α
2n , b

γ
2n−1), D(bα2n, 3b

γ
2n−1, a

−α
2n , b

γ
2n−1) and D(bα2n, 3b

γ
2n−1, b

−α
2n , b

γ
2n−1).

Similarly, for the orientation o(α, 3β,−α, β), we also obtain three link types of OT-link di-

agrams, that are D(aα2n, 3a
β
2n−1, a

−α
2n , a

β
2n−1), D(aα2n, 3a

β
2n−1, b

−α
2n , a

β
2n−1) and D(bα2n, 3a

β
2n−1,

b−α
2n , a

β
2n−1).

At last, we obtain 27 link types of OT-link diagrams. Also, by the above construction

process, each OT-link diagram must be one of these 27 link types or one of their reverse.

Thus we complete the proof for this theorem.

In the following two sections, we will show that the 27 link types of OT-link diagrams

contains a mirror pair of the achiral links (D(aα2n, 3b
α
2n, 2a

α
2n) and D(2aα2n, 3b

α
2n, a

α
2n)), and

hence further show that there are exactly 26 different link types for OT-link diagrams.

3 Results
3.1 Duality of OT-link diagrams
In graph theory, the dual graph Gd of a plane graph G is a plane graph whose vertices

correspond to the faces of G. The edges of Gd corresponding to the edges of G as follows:

If e is an edge of G with face X on one side and face Y on the other side, then the
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endpoints of the dual edge ed are the vertices x, y of Gd that represent the faces X, Y of

G. Note that any polyhedral graph has a unique dual graph [51]. In particular, the dual

graph Gd of a tetrahedral graph G is still a tetrahedral graph (Fig. 4(a)).
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Figure 4. (a) Tetrahedral graph G and its dual graph Gd. (b) The twist tangles
(bα2n)

∗, (b−α
2n )∗, (bγ2n−1)

∗, (aα2n)∗, (a
−α
2n )∗ and (aβ2n−1)

∗ used to replace the
dual edge ed. (c) D(T1, T2, T3, T4, T5, T6) is transformed equivalently to
D(T

′
6, T

′
1, T

′
3, T

′
4, T

′
2, T

′
5).

Let D(G) and G be defined as in Fig. 4(a). Hereafter we use (∼)∗ to denote the mirror

image of a twist tangle ∼. An link diagram D(Gd) can be constructed from Gd such that

each edge ed is replaced by the twist tangles (bα2n)
∗, (b−α

2n )
∗, (aα2n)

∗, (a−α
2n )

∗, (bγ2n−1)
∗ or

(aβ2n−1)
∗ if the related edge e of G is replaced accordingly by aα2n, a−α

2n , bα2n, b−α
2n , aβ2n−1 or

bγ2n−1 (Fig. 4(b)). This diagram D(Gd) is called the dual link diagram of D(G). In fact,

according to the construction method of D(Gd), we have the following theorem.

Theorem 3.1. The OT-link diagrams D(G) and its dual link diagram D(Gd) are ambient

isotopic.

Proof: Let D(G) be described as the link diagram D(T1, T2, T3, T4, T5, T6) in Fig. 4(c),

where Ti is the oriented twist tangle aα2n, a−α
2n , bα2n, b−α

2n , aβ2n−1 or bγ2n−1.

First, D(T1, T2, T3, T4, T5, T6) is transformed into the link diagram D′(T1, T2, T3, T4, T5,

T6) by using a series of Reidemeister moves, as illustrated in Fig. 4(c). Hence D(T1, T2, T3,

T4, T5, T6) and D′(T1, T2, T3, T4, T5, T6) are equivalent.

For D′(T1, T2, T3, T4, T5, T6), the underlying graph G is replaced by the correspond-

ing dual graph Gd. Then each twist tangle Ti corresponding to the original edge ei is

corresponding to the edge edi , that is exactly the mirror image (Ti′)
∗ = T

′
i of some twist

-219-



tangle Ti′ (1 6 i′ 6 6) according to the relations described in Fig. 4(b). According to

this construction method, D′(T1, T2, T3, T4, T5, T6) corresponding to Gd is exactly the dual

link diagram D(Gd) of D(G). Then we have

D(G) = D′(T1, T2, T3, T4, T5, T6) = D(Gd).

In addition, D(Gd) is rotated 60 degrees clockwise in the plane, and then is stretched

to obtain the link diagram D(T
′
6, T

′
1, T

′
3, T

′
4, T

′
2, T

′
5) in Fig. 4(c). Hence D(Gd) is ambient

isotopic to D(T
′
6, T

′
1, T

′
3, T

′
4, T

′
2, T

′
5). Then we have

D(G) = D(T1, T2, T3, T4, T5, T6) = D(Gd) = D(T
′

6, T
′

1, T
′

3, T
′

4, T
′

2, T
′

5).

We finished the proof of this theorem.

By using the above theorem, we obtain the following results.

Theorem 3.2. The OT-link diagrams D(3bα2n, 3a
α
2n), D(3aα2n, 3b

α
2n), D(aα2n, 3b

α
2n, 2a

α
2n)

and D(2bγ2n−1, a
β
2n−1, b

γ
2n−1, 2a

β
2n−1) are all achiral.

Proof: First, the OT-link diagram D(3aα2n, 3b
α
2n) is equivalent to the link diagram

D((aα2n)
∗, 2(bα2n)

∗, (aα2n)
∗, (bα2n)

∗, (aα2n)
∗) according to the proof of theorem 3.1. On the other

hand, D((aα2n)
∗, 2(bα2n)

∗, (aα2n)
∗, (bα2n)

∗, (aα2n)
∗) can overlap the link diagram D∗(3aα2n, 3b

α
2n)

by rotating it 120 degrees clockwise. Then D(3aα2n, 3b
α
2n) and D∗(3aα2n, 3b

α
2n) are equivalent.

Hence the link diagram D(3aα2n, 3b
α
2n) is achiral. Similarly, the link diagram D(3bα2n, 3a

α
2n)

can be proved to be achiral in the same way.

For the link diagram D(aα2n, 3b
α
2n, 2a

α
2n), it is equivalent to the link diagram D(2(bα2n)

∗,

3(aα2n)
∗, (bα2n)

∗) by using theorem 3.1. Also, D(2(bα2n)
∗, 3(aα2n)

∗, (bα2n)
∗) and D∗(aα2n, 3b

α
2n,

2aα2n) are corresponding to the same link in R3. Then D(bα2n, 3a
α
2n, 2b

α
2n) and D∗(aα2n,

3bα2n, 2a
α
2n) are equivalent. Hence D(aα2n, 3b

α
2n, 2a

α
2n) is achiral. Similarly, the link diagram

D(2aβ2n−1, b
γ
2n−1, a

β
2n−1, b

γ
2n−1) can be proved to be achiral in the same way.

Note. In table 1, 27 link types of OT-link diagrams includes 11 mirror-image pairs ac-

cording to the theorem 3.1.

3.2 Crossing number and writhe number of OT-link diagrams

The crossing number of a link L is the minimum number of crossings in any diagram D

of L, and is denoted by c(L). It is well-known that the number of crossings in a reduced

alternating link diagram of L is a topological invariant of L. For any link diagram D, each
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crossing is given a sign of plus 1 or minus 1 according to the conventions shown in Fig. 5.

The twist number w(D) of D is the sum of the signs of all the crossings, that is the simplest

invariant of regular isotopy for oriented link diagrams. In 1989, Kauffman [47] give this

association among crossing number, twist number and chirality for a link diagram, which

is described as below:

Lemma 3.3. Let D be a simple alternating diagram which is not the unknotted circle

diagram, and T (D) = |w(D)|. If T (D) > c(D)
3

, then D is chiral.

Clearly, each OT-link diagram is simple, alternating and nontrivial, hence we obtain

the following theorem.

Theorem 3.4. The OT-link diagrams (6bα2n), (aα2n, 5b
α
2n), (2aα2n, 4b

α
2n), D(3bα2n, 3b

γ
2n−1),

(aα2n, 3b
α
2n, a

α
2n, b

α
2n), (aα2n, 2bα2n, 3b

γ
2n−1), (bα2n, 3b

γ
2n−1, a

−α
2n , b

γ
2n−1) and (bα2n, 3b

γ
2n−1, b

−α
2n , b

γ
2n−1)

are all chiral.

Proof: Note that the twist tangles aα2n, a−α
2n and aβ2n−1 only have negative sign for each

crossing while the twist tangles bα2n, b−α
2n and bγ2n−1 only have positive sign for each crossing.

Let xα, x−α, xβ, yα, y−α and yγ be the number of the twist tangles aα2n, a−α
2n , aβ2n−1, bα2n,

b−α
2n and bγ2n−1 in the OT-link diagram D(G) respectively. Hence we have

w(D(G)) =(−1) · 2n · (xα + x−α) + (−1) · (2n− 1) · xβ

+ 2n · (yα + y−α) + (2n− 1) · yγ (1)

and

c(D(G)) = 2n · (xα + x−α + yα + y−α) + (2n− 1) · (xβ + yγ). (2)

Then for the link diagram (aα2n, 2b
α
2n, 3b

γ
2n−1), we have

w(D(G)) = (−1) · 2n · 1 + 2n · 2 + (2n− 1) · 3 = 8n− 3

and

c(D(G)) = 2n · (1 + 2) + (2n− 1) · 3 = 12n− 3.

Hence we obtain

T (D(G)) = |w(D(G))| = 8n− 3 >
12n− 3

3
= 4n− 1.
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By using theorem 3.3, the diagram (aα2n, 2b
α
2n, 3b

γ
2n−1) is chiral. Similarly, the crossing

number and twist number of the remaining OT-link diagrams are all calculated by using

the above formulas, as listed in the table 1. Also by using theorem 3.3, they are all chiral.

3.3 HOMFLY polynomial of OT-link diagrams

Let fm
z denote the lowest-degree term of z in the multi-variable polynomial f taken

over terms with non-zero coefficients. Let µ(D) denote the component number for any

link diagram D. Hereafter, for the sake of convenience, when we talk about HOMFLY

polynomial, it is safe for us to use the link diagram D as a link. Our result begins with

the following definition.

Definition 3.5. [22] The HOMFLY polynomial H(L) = H(L; v, z) ∈ Z[v, z] for an

oriented link L is defined by the following relationships:

(1) H(L; v, z) is invariant under ambient isotopy of L.

(2) If L is a trivial knot, then H(L; v, z) = 1.

(3) Suppose that three link diagrams L+, L− and L0 are different only on a local region,

as shown in Fig. 5, then v−1H(L+; v, z)− vH(L−; v, z) = zH(L0; v, z).

+1
-1 0

Figure 5. Three link diagrams L+, L− and L0 differ locally at the site of a single
crossing.

The HOMFLY polynomial has the following properties:

(1) If L is the disjoint union of L1 and L2, denoted by L1 ∪ L2, then

H(L1 ∪ L2) =

(
v−1 − v

z

)
H(L1)H(L2).

(2) If L∗ is the mirror image of L, then

H(L∗; v, z) = H(L;−v−1, z).

According to this definition, to obtain the HOMFLY polynomial H(D), we need to

repeatedly apply the skein relations to the crossings of D until each new resulting link
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Di are all trivial for i = 1, 2, · · · , s (s ∈ Z+). In this process, we can assume that no

crossing is switched or smoothed more than once [22, 50], and the polynomial produced

by switching or smoothing the crossings of D to obtain the trivial link Di is denoted by

Pi(v, z) ∈ Z[v, z]. Then we have

H(D; v, z) =
s∑

i=1

Pi(v, z)H(Di).

Also, according to the definition and properties of HOMFLY polynomial, we have

Pi(v, z)H(Di) = hi(v)z
mi (3)

for hi(v) ∈ Z[v] and mi ∈ Z. Hence we have

H(D; v, z) =
s∑

i=1

hi(v)z
mi .

Let m0 be the lowest degree of z for H(D). Then there exist some trivial links Di′ for

1 6 i′ 6 s′ 6 s (i′, s′ ∈ Z) such that

minzH(D; v, z) =
s∑

i=1

Pi′(v, z)H(Di′) = [
s∑

i=1

hi′(v)]z
m0 . (4)

Thus, to obtain the lowest-degree term of z for H(D), we only need to find each diagram

Di′ , which is given in the following lemma.

Lemma 3.6. Each trivial link Di′ in the equation (4) can be obtained from D by only

switching some crossings c1, c2, · · · , ct (t ∈ N) or by first smoothing some of these crossings

such that each crossing is exactly on a component of D and then switching some of the

remaining crossings of G.

Proof: Clearly, there exist some crossings c1, c2, · · · , ct such that switching these crossings

enable D to become a trivial link diagram D1 (t ∈ N). These operations of switching will

result in a polynomial

P1(v, z) ∈ Z[v, z].

Without loss of generality, we assume s(c1) = +1. According to the definition (3) of

HOMFLY polynomial, switching the crossing c1 will produce a term v2, but the component

number µ(D) is unchanged. Hence for the diagram D1, the related polynomial P1(v, z)

only has the variable v, that is P1(v, z) = P1(v) ∈ Z[v].
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On the other hand, smoothing the crossing c1 will produce a term vz, and the resulting

link diagram is denoted by D′. Meanwhile the component number µ(D) is changed.

Let D2 be a trivial link diagram obtained from the diagram D′ by only switching some

crossings, and the related polynomial is denoted by P ′′(v) ∈ Z[v]. On the other hand,

according to the formula (3), there exists the polynomial P2(v, z)H(D2) corresponding to

D2. Then we have

P2(v, z)H(D2) = vz · P ′′(v) ·H(D2).

In the following, there will be two cases depending on µ(D). In one case when µ(D′) =

µ(D) + 1, we obtain

H(D2) = (v−1 − v)z−1H(D1).

Then

P2(v, z)H(D2) =vz · P ′′(v) ·H(D2)

=vz · P ′′(v) · (v−1 − v)z−1H(D1)

=(1− v2)P ′′(v)H(D1).

Hence P2(v, z)H(D2) and P1(v)H(D1) have the same degree over the variable z.

In other case when µ(D′) = µ(D)− 1, we obtain

H(D2) = (v−1 − v)−1zH(D1).

Then

P2(v, z)H(D2) =vz · P ′′(v) ·H(D2)

=vz · P ′′(v) · (v−1 − v)−1zH(D1)

=
vz2

v−1 − v
P ′′(v)H(D1).

Hence the degree of z is two higher in P2(v, z)H(D2) than in P1(v)H(D1).

Then P1(v, z)H(D1) is a lowest-degree term of z for H(D1). Therefore, if the crossing

c1 is on the same component of D, smoothing it will enable µ(D) to increase by one. As

shown above, the corresponding polynomial P2(v, z)H(D2) is also a lowest-degree term of

z for H(D).

In general, smooth any r crossings among the crossings c1, c2, · · · , ct such that each

crossing is exactly on a component of D, and then switch some of the remaining crossings
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of D to obtain a trivial link diagram D3. As shown above, the corresponding polynomial

P3(v, z)H(D3) is exactly a lowest-degree term of z for H(D). The lemma 7 holds.

On the other hand, using the definition of HOMFLY polynomial, we also obtain the

following lemmas.

Lemma 3.7. Let Daα2n
be a link diagram with an oriented twist tangle aα2n (n ∈ Z+),

and Daα2k
be the same as Daα2n

except the tangle aα2k for k = 1, 2, ..., n − 1. Let Daα0
and

Daα∞be two link diagrams obtained from the link diagram Daα2
by switching and smoothing

a crossing of aα2 respectively. Then

H(Daα2n
) = v−2nH(Daα0

)− v−1z
v−2n − 1

v−2 − 1
H(Daα∞). (5)

Proof: We proceed by induction on the crossing number 2n of aα2n. Obviously, this lemma

holds for n = 1. Now we suppose that n ≥ 2. Applying the skein relation of HOMFLY

polynomial to a crossing of aα2n, we obtain

H(Daα2n
) = v−2H(Daα2n−2

)− v−1zH(Daα∞).

By applying our induction hypothesis to the link diagram Daα2n−2
, we have

H(Daα2n
) =v−2

[
v−(2n−2)H(Daα0

)− v−1z
v−(2n−2) − 1

v−2 − 1
H(Daα∞)

]
− v−1zH(Daα∞) = v−2nH(Daα0

)− v−1z
v−2n − 1

v−2 − 1
H(Daα∞).

Similarly, we obtain the following lemma 2.

Lemma 3.8. Let Dbα2n
be a link diagram with an oriented twist tangle bα2n (n ∈ Z+),

and Dbα2k
be the same as Dbα2n

except the tangle bα2k for k = 1, 2, ..., n − 1. Let Dbα0
and

Dbα∞be two link diagrams obtained from Dbα2
by switching and smoothing a crossing of bα2

respectively. Then

H(Dbα2n
) = v2nH(Dbα0

) + vz
v2n − 1

v2 − 1
H(Dbα∞). (6)

Lemma 3.9. Let Dbγ2n−1
be a link diagram with an oriented twist tangle bγ2n−1 (n ∈ Z+),

and Dbγ2k−1
be the same as Dbγ2n−1

except the tangle b
γ

2k−1 for k = 1, 2, ..., n− 1. Let Dbγ−1

and Dbγ∞ be two link diagrams obtained from Dbγ1
by switching and smoothing a crossing
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of bγ1 respectively. Then

H(Dbγ2n−1
) = v2n−2H(Dbγ1

) + vz
v2n−2 − 1

v2 − 1
H(Dbγ∞) (7)

and H(Dbγ2n−1) = v2nH(Dbγ−1
) + vz

v2n − 1

v2 − 1
H(Dbγ∞). (8)

Proof: We proceed by induction on the crossing number 2n − 1 of bγ2n−1. Obviously,

the lemma holds for n = 1. Now we suppose that n ≥ 2. Applying the definition (3) of

HOMFLY polynomial to a crossing of bγ2n−1, we obtain

H(Dbγ2n−1
) = v2H(Dbγ2n−2

) + v−1zH(Dbγ∞).

By applying our induction hypothesis to the link diagram Dbγ2n−2
, we have

H(Dbγ2n
) = v2

[
v2n−4H(Dbγ1

) + vz
v2n−4 − 1

v2 − 1
H(Dbγ∞)

]
+ vzH(Dbγ∞) = v2n−2H(Dbγ1

) + (vz
v2n−2 − v2

v2 − 1
+ vz)H(Dbγ∞)

= v2n−2H(Dbγ1
) + vz

v2n−2 − 1

v2 − 1
H(Dbγ∞).

Also,

H(Dbγ1
) = v2H(Dbγ−1

) + vzH(Dbγ∞).

Hence we have

H(Dbγ2n
) = v2n−2

[
v2H(Dbγ−1

) + vzH(Dbγ∞)
]
+ vz

v2n−2 − 1

v2 − 1
H(Dbγ∞)

= v2nH(Dbγ−1
) + vz

v2n − 1

v2 − 1
H(Dbγ∞) .

By using the above lemmas and setting δ = v−1−v
z

, we obtain the following theorem.
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Theorem 3.10.

(1)Hm
z (D(aα2n, 3b

α
2n, a

α
2n, b

α
2n)) = v8nδ.

(2) Hm
z (D(2aα2n, b

α
2n, 3b

γ
2n−1)) = v2n−2δ.

(3) Hm
z (D(2aα2n, 4b

α
2n)) = (v8n + v2n − v4n)δ.

(4) Hm
z (D(3aα2n, 3b

γ
2n−1)) = v−6n − 3v−2n−2 + 3v−2.

(5) Hm
z (D(aα2n, 3b

γ
2n−1, a

−α
2n , b

γ
2n−1)) = (2v6n−4 − v4n−4)δ.

(6) Hm
z (D(3aα2n, 3b

α
2n)) = v6n − 3v2n − 3v−2n + 5 + v−6n.

(7) Hm
z (D(bα2n, 3b

γ
2n−1, b

−α
2n , b

γ
2n−1)) = (2v10n−4 − v12n−4)δ.

(8) Hm
z (D(3bα2n, 3b

γ
2n−1)) = (−v12n−2 − v12n−4 + 3v10n−2)δ.

(9) Hm
z (D(aα2n, 3b

α
2n, 2a

α
2n)) = v6n − 2v2n − 2v−2n + 3 + v−6n.

(10) Hm
z (D(aα2n, 2b

α
2n, 3b

γ
2n−1)) = −v10n−4 − v10n−2 + 3v8n−2 + 2v4n−2 − 2v6n−2.

Proof:(1) There is only one lowest-degree term of z for H(D(aα2n, 3b
α
2n, a

α
2n, b

α
2n)). First,

the link diagram D = D(aα2n, 3b
α
2n, a

α
2n, b

α
2n) is changed into a trivial link diagram D1 of two

components by switching n crossings of each twist tangle bα2n (Fig. 6(a) and (b)). The

resulting polynomial is denoted by P1(v, z). Since switching n crossings for each twist

tangle bα2n will produce a term v2n according to the lemma 3.8, we have

P1(v, z) = (v2n)4 = v8n.

Also, using the property (2) of HOMFLY polynomial, we have

P1(v, z)H(D1) = v8nδ.

In addition, each twist diagram bα2n for the link diagram D is composed of two different

components. By using the lemma 7, smoothing any crossing of bα2n-twist don’t result in a

lowest-degree term of z for H(D). Thus we have

Hm
z (D) = v8nδ.
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Figure 6. (a) For each twist tangle, each crossing switched is bounded by a circle.
(b-k) Each disk labeled with aα2n, bα2n, b−α

2n or bγ2n−1 represent the cor-
responding oriented twist tangle in each diagram Di for 1 ≤ i ≤ 6. In
particular, Di in the case of n = 1 is given in (b-d).

(2) There is only one lowest-degree term of z of H(D(2aα2n, b
α
2n, 3b

γ
2n−1)). First, the

link diagram D = D(2aα2n, b
α
2n, 3b

γ
2n−1) is changed into a trivial link diagram D1 of two

components by switching the crossings of all oriented twist tangles except a bγ2n−1 (Fig.

6(a) and (c)). In this process, we switch n crossings of each aα2n, n crossings of a bα2n,

n crossings of one bγ2n−1 and switching n − 1 crossings of the other bγ2n−1. By using the

lemmas 3.7-3.9, then the resulting polynomial P1(v, z) is given as

P1(v, z) = (v−2n)2 · v2n · v2n · v2n−2 = v2n−2.

Hence we obtain

P1(v, z)H(D1) = v2n−2δ.

In addition, for the link diagram D, each twist tangle except an unused bγ2n−1 is

composed of two different components. For each such tangle, smoothing its any crossing
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don’t result in a lowest-degree term of z for H(D) by using the lemma 3.6. Thus we have

Hm
z (D) = v2n−2δ.

(3) There are two trivial link diagrams, which both result in the lowest-degree terms

of z for H(D(2aα2n, 4b
α
2n)). First, the link diagram D = D(2aα2n, 4b

α
2n) will be changed into

a trivial link diagram D1 of two components by switching n crossings of each twist tangle

bα2n (Fig. 6(a) and (e)). The resulting polynomial is P1(v, z) = (v2n)4 by using the lemma

3.8. Then we obtain

H(D1)P1(v, z) = δ · (v2n)4 = v8nδ.

On the other hand, there is only one twist tangle bα2n on the same component of

D. Smoothing n crossings of this twist tangle bα2n, the link diagram D is changed into

a link diagram D′
2 of three components, which will produce a term vz v2n−1

v2−1
by using

the lemma 3.8. The diagram D′
2 is further changed into a trivial link D2 by switching n

crossings of the remaining each twist tangle (Fig. 6(e)), which will produce the polynomial

(v2n)3 · (v−2n)2 by using the lemmas 3.7 and 3.8. Then for the polynomial P2(v, z) related

to D2, we have

P2 = vz
v2n − 1

v2 − 1
· (v2n)3 · (v−2n)2 = vz

v4n − v2n

v2 − 1
.

Also, we have

H(D2) = δ2.

Then we obtain

P2(v, z)H(D2) =vz
v4n − v2n

v2 − 1
δ2 = (v2n − v4n)δ.

By using the lemma 3.7, the lowest-degree term of z for H(D) only contains the above

two cases, and then we have

Hm
z (D) = H(D1)P1(v, z) +H(D2)P2(v, z) = v8nδ + (v2n − v4n)δ = (v8n + v2n − v4n)δ.

(4) There are four trivial link diagrams, which all together result in the lowest-degree

term of z for H(D(3aα2n, 3b
γ
2n−1)). A trivial knot D1 is obtained from the diagram D =

D(3aα2n, 3b
γ
2n−1) by switching n crossings of each twist tangle aα2n (Fig. 6(a) and (d)).

These operations produce the polynomial P1(v, z) = (v−2n)3 by using the lemma 3.7.

Hence we have

P1(v, z) ·H(D1) = (v2)3n · 1 = v−6n.
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On the other hand, due to each twist tangle aα2n on the same component, three link

diagrams D′
2, D′

3 and D′
4 are obtained from the diagram D(3aα2n, 3b

γ
2n−1) by smoothing n

crossings of each twist tangle aα2n respectively. And then each link D′
i is further changed

into a trivial link Di for 2 ≤ i ≤ 4 by switching the crossings of the remaining twist

tangles except a twist tangle aβ2n−1 consisting of two components (Fig. 6(d)). In this

process, we switch n crossings of the remaining each aα2n, n − 1 crossings of one bγ2n and

n crossings of the other bγ2n (Fig. 6(a)). Also, switching or smoothing n crossings of a

twist tangle aα2n will result in a term v−2n or −v−1z v−2n−1
v−2−1

by using the lemma 3.7, and

switching n or n − 1 crossings of a twist tangle bγ2n−1 will result in a term v2n or v2(n−1)

by using the lemma 3. Then the resulting polynomial Pi(v, z) is given as

Pi(v, z) = −v−1z
v−2n − 1

v−2 − 1
· (v−2n)2 · v2n · v2n−2 = −v−3z

v−2n − 1

v−2 − 1
.

Also, each trivial link diagram Di consists of two components, then

H(Di) = δ.

Hence we have
4∏

i=2

Pi(v, z)H(Di) =
4∏

i=2

[(
−v−3z

v−2n − 1

v−2 − 1

)
· δ
]
= 3(−v−2n−2 + v−2).

According to the lemma 3.6, the lowest-degree term of z for H(3aα2n, 3b
γ
2n−1) only

contains the above four cases, hence we have

Hm
z (D) =

4∏
i=1

Pi(v, z)H(Di) = v−6n − 3v−2n−2 + 3v−2.

(5) There are two trivial link diagrams, which both result in the lowest-degree terms

of z for H(D(aα2n, 3b
γ
2n−1, a

−α
2n , b

γ
2n−1)). First, this link D = D(aα2n, 3b

γ
2n−1, a

−α
2n , b

γ
2n−1) is

changed into a trivial link D1 of two components by switching some crossings (Fig. 6(f)).

In this process, switch n crossings of each for two bγ2n−1 and a aα2n, and n− 1 crossings of

each of the remaining two bγ2n−1 (Fig. 6(a)). The resulting polynomial P1(v, z) is that

P1(v, z) = v−2n · (v2n)2 · (v2n−2)2.

by using the lemmas 3.7 and 3.9. Hence we have

P1(v, z)H(D1) = v6n−4 · δ.

-230-



On the other hand, for the above five twist tangles we used, there is only one aα2n on

the same component of D. Switching n crossings of this twist tangle aα2n, we can obtain

the link diagram D′
2 from D, which will produce a term −v−1z v−2n−1

v−2−1
by using lemma

3.7. Then D′
2 is further changed into a trivial link D2 by switching the crossings of the

remaining twist tangles. In this process, switch n crossings of each for two bγ2n and a aα2n,

and n− 1 crossings of each for the remaining two bγ2n. Hence for the polynomial P2(v, z)

corresponding to D2, we have

P2(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· v6n−4.

Hence we obtain

P2(v, z)H(D2) =
v6n−4 − v4n−4

v−1 − v
z · δ2 = (v6n−4 − v4n−4)δ.

Then

Hm
z (D) =P1(v, z)H(D2) + P2(v, z)H(D2)

=v6n−4 · δ + (v6n−4 − v4n−4)δ

=(2v6n−4 − v4n−4)δ.

(6) There are six trivial link diagrams, which all together result in the lowest-degree

term of z for H(D(3aα2n, 3b
α
2n)). A trivial knot D1 is obtained from the diagram D =

D(3aα2n, 3b
α
2n) by switching n crossings of each twist tangle aα2n (Fig. 6(a) and Fig. 7(d)).

The resulting polynomial P1(v, z) is given as

P1(v, z) = (v−2n)3

by using the lemma 3.7. Then we have

P1(v, z) ·H(D1) = (v2)3n · 1 = v−6n.

On the other hand, we note that three aα2n are all on the same component of D. First,

we smooth n crossings of a aα2n to obtain the link diagram D
′
2 from D. Then D′

2 is further

changed into a trivial link diagram D2 by switching n crossings of each bα2n (Fig. 7(d)).

Then the resulting polynomial P2(v, z) is given as

P2(v, z)H =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v2n)3
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by using the lemmas 3.7 and 3.8. Hence we obtain

P2(v, z)H(D2) =

(
−v−1z

v−2n − 1

v−2 − 1

)
v6n · δ = v6n − v4n.

Also, there is only one bα2n on the same component of D′
2. Then D′

2 is also changed

into a trivial link D3 by smoothing n crossings of the bα2n and switching n crossings of the

remaining each twist tangle (Fig. 7(d)). Then the resulting polynomial P3(v, z) is given

as

P3(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v−2n)2 · (v2n)2 · vz v

2n − 1

v2 − 1
.

Hence we obtain

P3(v, z)H(D3) =

(
−v−1z

v−2n − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
· δ = 2− v−2n − v2n.

Second, we smooth n crossings of another aα2n and keep switching n crossings of a aα2n

to obtain the link diagram D
′
4 from D. Then D′

4 is further changed into a trivial link D4

by switching n crossings of each bα2n(Fig. 7(d)). Then the resulting polynomial P4(v, z) is

given as

P4(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· v−2n · (v2n)3.

Hence we obtain

P4(v, z)H(D4) =

(
−v−1z

v−2n − 1

v−2 − 1

)
v4n · δ = v4n − v2n.

Also, there is a bα2n on the same component of the link diagram D
′
4. Then D′

4 is

further changed into a trivial link D5 by smoothing n crossings of the bα2n and switching

n crossings of the remaining each twist tangle (Fig. 7(d)). Then the resulting polynomial

P5(v, z) is given as

P5(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v−2n)2 · (v2n)2 · vz v

2n − 1

v2 − 1
.

Hence we obtain

P5(v, z)H(D5) =

(
−v−1z

v−2n − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
· δ = 2− v−2n − v2n.

At last, we smooth n crossings of the third twist tangle aα2n and keep switching n

crossings of each for the remaining two aα2n to obtain D
′
6 from D. Then D′

6 is further

-232-



changed into a trivial link D6 by switching n crossings of each for two bα2n(Fig. 7(d)).

Then the resulting polynomial P6(v, z) is given as

P6(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v−2n)2 · (v2n)2.

Hence we obtain

P6(v, z)H(D6) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· δ = 1− v−2n.

According to the lemma 3.6, the lowest-degree term of z for H(D(3aα2n, 3b
α
2n)) only

contains the above six cases, hence we have

Hm
z (D) =

6∏
i=1

Pi(v, z)H(Di)

=v−6n + (v6n − v4n) + (2− v−2n − v2n) + (v4n − v2n)

+ (2− v−2n − v2n) + (1− v−2n)

=v6n − 3v2n + 5− 3v−2n + v−6n.

(7) There are two trivial link diagrams, which both result in the lowest-degree term

of z for H(D(bα2n, 3b
γ
2n−1, b

−α
2n , b

γ
2n−1)). A trivial link diagram D1 of two component is

obtained from the diagram D = D(bα2n, 3b
γ
2n−1, b

−α
2n , b

γ
2n−1) by switching some crossings. In

this process, we switch n crossings of each for a bα2n and two bαγ , and switch n−1 crossings

of each for the other two bαγ (Fig. 6(a) and Fig. 7(c)). Then the resulting polynomial

P1(v, z) is given as

P1(v, z) = (v2n)3(v2n−2)2.

by using the lemmas 3.8 and 3.9. Hence we obtain

P1(v, z)H(D1) = v10n−4δ.

On the other hand, there is only one bα2n is on the same component of D. We smooth

n crossings of bα2n and switch n crossings of each for a b−α
2n and two bαγ , and then switch

n − 1 crossings of each for the remaining two bαγ to obtain a trivial link diagrams D2 of

three components (Fig. 7(c)). Then the resulting polynomial P2(v, z) is given as

P2(v, z) =vz
v2n − 1

v2 − 1
· (v2n)3 · (v2n−2)2.
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Hence we obtain

P2(v, z)H(D2) = vz
v2n − 1

v2 − 1
v10n−4 · δ2 = v10n−4(1− v2n)δ.

By using the lemma 3.6, hence we have

Hm
z (D) = P1(v, z)H(D1) + P2(v, z)H(D2)

= v10n−4δ + v10n−4(1− v2n)δ

= (2v10n−4 − v12n−4)δ.

(8) There are three trivial link diagrams, which all together result in the lowest-degree

term of z for H(D(3bα2n, 3b
γ
2n−1)). The diagram D = D(3bα2n, 3b

γ
2n−1) is changed into a

trivial link diagram D1 by switching some crossings. In this process, we switch n crossings

of each for three bα2n and a bγ2n−1, and switch n − 1 crossings of another bγ2n−1 (Fig. 6(a)

and Fig. 7(a)). Then the resulting polynomial P1(v, z) is given as

P1(v, z) = (v2n)4 · v2n−2.

by using the lemmas 3.8 and 3.9. Hence we have

P1(v, z)H(D1) = v10n−2δ.

Note that two bα2n in the above process are both on the same component of D. First, we

smooth n crossings of one bγ2n−1, and switch n crossings of each for three bα2n and another

bγ2n−1, and then switch n − 1 crossings of the remaining bγ2n−1 to obtain the trivial link

diagram D2 of three components from D (Fig. 6(a) and Fig. 7(a)). Then the resulting

polynomial P2(v, z) is given as

P2(v, z) = vz
v2n − 1

v2 − 1
· (v2n)4 · v2n−2.

Hence we obtain

P2(v, z)H(D2) = vz
v2n − 1

v2 − 1
v10n−2 · δ2 = v10n−2(1− v2n)δ.

On the other hand, we smooth n− 1 crossings of the other bγ2n−1 and keep switching

n crossings of each for three bα2n and a bγ2n−1, and then switch n − 1 crossings of the

remaining bγ2n−1 to obtain the trivial link diagram D3 of three components. Then the

resulting polynomial is given as

P3(v, z) = vz
v2n−2 − 1

v2 − 1
· (v2n)4 · v2n−2.
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Hence we obtain

P3(v, z)H(D2) = v10n−2(1− v2n−2)δ.

According to the lemma 3.6, the lowest-degree term of z for H(D(3bα2n, 3b
γ
2n−1)) only

contains the above three cases, hence we have

Hm
z (D) =

3∏
i=1

Pi(v, z)H(Di)

=v10n−2δ + v10n−2(1− v2n)δ + v10n−2(1− v2n−2)δ

=(3v10n−2 − v12n−2 − v12n−4)δ.

(9) There are six trivial link diagrams, which all together result in the lowest-degree

term of z for H(D(aα2n, 3b
α
2n, 2a

α
2n)). A trivial knot D1 is obtained from the diagram

D = D(3aα2n, 3b
α
2n) by switching n crossings of each twist tangle aα2n (Fig. 6(a) and Fig.

7(e)). Then the resulting polynomial P1(v, z) is given as

P1(v, z) = (v−2n)3

by using the lemma 3.7. Hence we have

P1(v, z) ·H(D1) = v−6n.

On the other hand, we note that three aα2n are all on the same component of D. First,

we smooth n crossings of a aα2n to obtain the link diagram D
′
2. Then D′

2 is further changed

into a trivial link diagram D2 by switching n crossings of each bα2n (Fig. 6(a) and Fig.

7(e)). The resulting polynomial P2(v, z) is given as

P2(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v2n)3

by using the lemmas 3.7 and 3.8. Hence we obtain

P2(v, z)H(D2) =

(
−v−1z

v−2n − 1

v−2 − 1

)
v6n · δ = v6n − v4n.

Also, there is only one bα2n on the same component of D′
2. Then D′

2 is further changed

into a trivial link diagram D3 by smoothing n crossings of the bα2n and switching n crossings

of the remaining each twist tangle. The resulting polynomial P3(v, z) is given as

P3(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v−2n)2 · (v2n)2 · vz v

−2n − 1

v2 − 1
.
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Hence we obtain

P3(v, z)H(D3) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· vz v

−2n − 1

v2 − 1
· δ2 = 2− v−2n − v2n.

Second, we smooth n crossings of another aα2n and keep switching n crossings of a aα2n

to obtain D
′
4. Then D′

4 is further changed into a trivial link D4 by switching n crossings

of each bα2n (Fig. 7(e)). Then the resulting polynomial P4(v, z) is given as

P4(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· v−2n · (v2n)3.

Hence we obtain

P4(v, z)H(D4) =

(
−v−1z

v−2n − 1

v−2 − 1

)
v4n · δ = v4n − v2n.

Also, there is only one bα2n on the same component of D′
4. Then D′

4 is changed into

a trivial link D5 by smoothing n crossings of the bα2n and switching n crossings of the

remaining each twist tangle (Fig. 7(e)). Then the resulting polynomial P3(v, z) is given

as

P5(v, z) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v−2n)2 · (v2n)2 · vz v

−2n − 1

v2 − 1
.

Hence we obtain

P5(v, z)H(D5) =

(
−v−1z

v−2n − 1

v−2 − 1

)
vz

v−2n − 1

v2 − 1
· δ2 = 2− v−2n − v2n.

At last, we smooth n crossings of the remaining twist tangle aα2n and keep switching

n crossings of each for the other two aα2n to obtain D
′
6. Then D′

6 is further changed into a

trivial link D6 by switching n crossings of each bα2n(Fig. 6(a) and Fig. 7(e)). The resulting

polynomial P6(v, z) is given as

P6(v, z)H(D6) =

(
−v−1z

v−2n − 1

v−2 − 1

)
· (v−2n)2 · (v2n)3.

Hence we obtain

P6(v, z)H(D6) =

(
−v−1z

v−2n − 1

v−2 − 1

)
v2n · δ = v2n − 1.

According to the lemma 3.6, the lowest-degree term of z for H(D(aα2n, 3b
α
2n, 2a

α
2n)) only

contains the above six cases, hence we have

Hm
z (D) =

6∏
i=1

Pi(v, z)H(Di)

=v−6n + (v6n − v4n) + (2− v−2n − v2n) + (v4n − v2n)

+ (2− v−2n − v2n) + (v2n − 1)

=v6n − 2v2n + 3− 2v−2n + v−6n.
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(10) There are five trivial link diagrams, which all together result in the lowest-degree

term of z for H(D(aα2n, 2b
α
2n, 3b

γ
2n−1)). The diagram D = D(aα2n, 2b

α
2n, 3b

γ
2n−1)) is changed

into a trivial knot D1 by switching some crossings. In this process, we switch n crossings

of each for two bα2n and a bγ2n−1, and switching n − 1 crossings of a bγ2n−1 (Fig. 6(a) and

Fig. 7(b)). Then the resulting polynomial P1(v, z) is given as

P1(v, z) = (v2n)3 · v2n−2

by using the lemmas 3.8 and 3.9. Then

P1(v, z)H(D1) = v8n−2.

On the other hand, we note that two bα2n and two bγ2n−1 in the above process are all

on the same component of D. First, we smooth n crossings of one bα2n, and switch n

crossings of each for the other bα2n, a aα2n and one bγ2n−1, and switch n − 1 crossings of

another bγ2n−1 to obtain the trivial link diagram D2 (Fig. 6(a) and Fig. 7(b)). Then the

resulting polynomial P2(v, z) is given as

P2(v, z) =vz
v2n − 1

v2 − 1
· v−2n · (v2n)2 · v2n−2

by using the lemmas 3.7-3.9. Hence we obtain

P2(v, z)H(D2) =vz
v2n − 1

v2 − 1
v4n−2 · δ = v4n−2 − v6n−2.

Second, we smooth n crossings of the other bα2n and keep switching n crossings of the

remaining bα2n, and then switch n crossings of each for a aα2n and one bγ2n−1, and switch

n− 1 crossings of another bγ2n−1 to obtain the trivial link diagram D3 of two components

from D (Fig. 6(a) and Fig. 7(b)). Then the corresponding polynomial P3(v, z) is given

as

P3(v, z) =vz
v2n − 1

v2 − 1
· v−2n · (v2n)2 · v2n−2.

Hence we obtain

P3(v, z)H(D4) =vz
v2n − 1

v2 − 1
v4n−2 · δ = v4n−2 − v6n−2.

Third, we smooth n crossings of one bγ2n−1 and keep switching n crossings of each bα2n,

and then switch n crossings of another bγ2n−1 , and switch n− 1 crossings of the remaining
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bγ2n−1 to obtain a trivial link D4 of two components from D (Fig. 6(a) and Fig. 7(b)).

Then the resulting polynomial P4(v, z) is given as

P4(v, z) = vz
v2n − 1

v2 − 1
· (v2n)3 · v2n−2

Hence we obtain

P4(v, z)H(D4) =vz
v2n − 1

v2 − 1
v8n−2 · δ = v8n−2 − v10n−2.

At last, we smooth n−1 crossings of the other bγ2n−1 and keep switching n crossings of

each bα2n and one bγ2n−1, and then switch n− 1 crossings of the remaining bγ2n−1 to obtain

a trivial link diagram D5 of two components from D (Fig. 6(a) and Fig. 7(b)). Then the

resulting polynomial P5(v, z)H(D5) is given as

P5(v, z)H(D5) =vz
v2n−2 − 1

v2 − 1
· (v2n)3 · v2n−2

Hence we obtain

P5(v, z)H(D5) =vz
v2n−2 − 1

v2 − 1
v8n−2δ = v8n−2 − v10n−4.

According to the lemma 3.6, the lowest-degree term of z for H(D(aα2n, 2b
α
2n, 3b

γ
2n−1))

only contains the above five cases, hence we have

Hm
z (D) =

5∏
i=1

Pi(v, z)H(Di)

=v8n−2 + (v4n−2 − v6n−2) + (v4n−2 − v6n−2) + (v8n−2 − v10n−2) + (v8n−2 − v10n−4)

=− v10n−2 − v10n−4 − 2v6n−2 + 3v8n−2 + 2v4n−2.

Theorem 3.11. The link diagrams D(2aα2n, b
α
2n, 3b

γ
2n−1), D(3aα2n, 3b

γ
2n−1) and D(aα2n,

3bγ2n−1, a
−α
2n , b

γ
2n−1) are all chiral.

Proof: For the link diagram D = D(aα2n, 3b
γ
2n−1, a

−α
2n , b

γ
2n−1), by using theorem 3.10, we

have

Hm
z (D) =Hm

z (D)(v, z) = (2v6n−4 − v4n−4)(v−1 − v)z−1.

According to the property (2) of HOMFLY polynomial, we have

Hm
z (D∗) = Hm

z (D)(−v−1, z) = (2v−6n+4 − v−4n+4)(v−1 − v)z−1.
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Then

Hm
z (D) 6= Hm

z (D∗).

Hence

H(D) 6= H(D∗).

Then D(aα2n, 3b
γ
2n−1, a

−α
2n , b

γ
2n−1) is chiral. Similarly, the other four links can be shown to

be chiral.

4 Discussion

In table 1, the crossing number, component number, twist number and chirality for 27

link types of OT-link diagrams are listed by using the results in last section. Note that

the OT-link diagram D(aα2n, 3b
α
2n, 2a

α
2n) is a achiral link and is also the mirror image of

D(2aα2n, 3b
α
2n, a

α
2n) by using theorem 3.1 and 3.2. Hence we obtain 26 link types for OT-link

diagrams, which are differentiated by the crossing number, the component number, the

chirality and HOMFLY polynomials. In table 1, for any two OT-link diagrams with the

same crossing number and component number, they can be differentiated by the lowest-

degree terms of z of HOMFLY polynomials provided in theorem 3.10. For example,

D(2aα2n, 4b
α
2n) and D(aα2n, 3b

α
2n, a

α
2n, b

α
2n) have the same crossing number and component

number. However, they represent two different link types due to their different HOMFLY

polynomials by using theorem 3.10. Similarly for D(aα2n, 3b
α
2n, 2a

α
2n) and D(2aα2n, 3b

α
2n, a

α
2n)

, D(3bα2n, 3b
γ
2n−1) and D(2aα2n, b

α
2n, 3b

γ
2n−1), D(aα2n, 2b

α
2n, 3b

γ
2n−1) and D(3aα2n, 3b

γ
2n−1), and

D(bα2n, 3b
γ
2n−1, b

−α
2n , b

γ
2n−1) and D(aα2n, 3b

γ
2n−1, a

−α
2n , b

γ
2n−1), each pair represent two different

link types respectively. Hence we obtain the following theorem.

Theorem 4.1. There are 26 different link types for OT-link diagrams listed in table 1.

Among the 26 link types of OT-link diagrams, there are 22 link types of chiral links,

which can be divided into 11 mirror-image pairs by using theorem 3.1. Note that any

two mirror-image links have the same crossing number, component number and chirality

except that their twist number have opposite signs. The remaining 4 link types for OT-

links are all achiral, as shown in table 1. Moreover, among these OT-link diagrams, there

are two link types with four components, five link types with three components, thirteen

link types with two components and six link types with one component.
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For the two link types of OT-link diagrams with four components, they have been syn-

thesized by using four rationally designed oligonucleotides such that each oligonucleotide

as a link component run around each face [5]. Note that these two link types of OT-link

diagrams are mirror images of each other and hence both of them are chiral. This result

confirms this possibility in experiment that there exists a pair of mirror isomers without

considering the twist number on each edge.

For the OT-link diagrams with two or three components, there are seven link types

such that each edge is composed of an oriented twist tangle aα2n or bα2n with even crossing

number. For the remaining each OT-link diagram, there is at least an edge consisting of

an oriented twist tangle with odd crossing number, that is aβ2n−1 or bγ2n−1. In particular

for the OT-link diagram D(2aβ2n−1, b
γ
2n−1, a

β
2n−1, 2b

γ
2n−1), each edge can be formed by a half

twist (for n = 1), which offer a possible candidate for synthesizing a smallest-size DNA

polyhedron and achiral DNA polyhedron.

For the OT-link diagrams with one component, there are four link diagrams whose

their twist number is a constant (0 or 3). Hence this number is independent on the

complete twist number n of the oriented twist tangle on each edge. Moreover, among

these OT-link diagrams, there are four link types of chiral links and two link types of

achiral links. We note that a DNA tetrahedron with one component was realized recently

by folding a single long strand of DNA [7]. However, this tetrahedron has a twin double

helix on one edge, which is not the most compact structure. Our results provide multiple

routes to assembled a DNA tetrahedron with the most compact structure by using a long

DNA chain.

These works provide a list of candidates for synthesizing tetrahedral links with required

topological structures, and also pave a way to design and determine the topological struc-

tures for polyhedral links with double-strands edges from theoretical viewpoint. However,

there are still open problems need to be solved. For example, replacing tetrahedron with

a polyhedron with low symmetry, it is also very hard to give all possible topological struc-

tures of the corresponding polyhedral links. Furthermore, it is still a challenge work to

realize a polyhedral catenane without chiral structure.

Acknowledgments: This work was supported by a grant from the National Natural Science
Foundation of China (No. 11501454).

-240-



References
[1] N. C. Seeman, DNA in a material world, Nature 421 (2003) 427–431.

[2] F. Zhang, J. Nangreave, Y. Liu, H. Yan, Structural DNA nanotechnology: state of
the art and future perspective, J. Am. Chem. Soc. 136 (2014) 11198–11211.

[3] M. R. Jones, N. C. Seeman, C. A. Mirkin, Programmable materials and the nature
of the DNA bond, Science 347 (2015) #1260901.

[4] R. P. Goodman, R. M. Berry, A. J. Turberfield, The single–steps synthesis of a DNA
tetrahedron, Chem. Commun. 12 (2004) 1372–1373.

[5] R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F.
Schmidt, A. J. Turberfield, Rapid chiral assembly of rigid DNA building blocks for
molecular nanofabrication, Science 310 (2005) 1661–1665.

[6] Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. D. Mao, Hierarchical
self–assembly of DNA into symmetric supramolecular polyhedral, Nature 452 (2008)
198–201.

[7] Z. Li, B. Wei, J. Nangreave, C. Lin, Y. Liu, Y. Mi, H. Yan, A replicable tetrahedral
nanostructure self-assembled from a single DNA strand, J. Am. Chem. Soc. 131
(2009) 13093–13098.

[8] T. Kato, R. P. Goodman, C. M. Erben, A. J. Turberfield, K. Namba, High–resolution
structural analysis of a DNA nanostructure by cryoEM, Nano Lett. 9 (2009) 2747–
2750.

[9] Y. Ke, J. Sharma, M. Liu, K. Jahn, Y. Liu, H. Yan, Scaffolded DNA origami of a
DNA tetrahedron molecular container, Nano Lett. 9 (2009) 2445–2447.

[10] J. Chen, N. C. Seeman, The electroophoretic properties of a DNA cube and its
substructure catenanes, Nature 350 (1991) 631–633.

[11] C. Zhang, S. H. Ko, M. Su, Y. J. Leng, A. E. Ribbe, W. Jiang, C. D. Mao, Symmetry
controls the face geometry of DNA polyhedra, J. Am. Chem. Soc. 131 (2009) 1413–
1415.

[12] W. M. Shih, J. D. Quispe, G. F. Joyce, A 1.7-kilobase single–stranded DNA that
folds into a nanoscale octahedron, Nature 427 (2004) 618–621.

[13] F. F. Andersen, B. Knudsen, C. L. P. Oliveira, R. F. Frøhlich, D. Krüger, J. Bungert,
M. Agbandje-McKenna, R. McKenna, S. Juul, C. Veigaard, J. Koch, J. L. Rubinstein,
B. Guldbrandtsen, M. S. Hede, G. Karlsson, A. H. Andersen, J. S. Pedersen, B. R.

-241-



Knudsen, Assembly and structural analysis of a covalently closed nano-scale DNA
cage, Nucleic Acids Res. 36 (2008) 1113–1119.

[14] Y. He, M. Su, P. A. Fang, C. Zhang, A. E. Ribbe, W. Jiang, C. D. Mao, On the
chirality of self assembled DNA octahedra, Angew. Chem. Int. Ed. 49 (2010) 748–751.

[15] J. Zimmermann, M. P. J. Cebulla, S. Möninghoff, G. V. Kiedrowski, Self-assembly of
a DNA dodecahedron from 20 trisoligonucleotides with C3h linkers, Angew. Chem.
Int. Ed. 47 (2008) 3626–3630.

[16] C. Zhang, M. Su, Y. He, X. Zhao, P. A. Fang, A. E. Ribbe, W. Jiang, C. D. Mao,
Conformational flexibility facilitates self-assembly of complex DNA nanostructures,
Proc. Natl. Acad. Sci. USA 105 (2008) 10665–10669.

[17] D. Bhatia, S. Mehtab, R. Krishnan, S. S. Indi, A. Basu, Y. Krishnan, Icosahedral
nanocapsules by modularassembly, Icosahedral DNA nanocapsules via modular as-
sembly, Angew. Chem. Int. Ed. 48 (2009) 4134–4137.

[18] C. L. P. Oliveira, S. Juul, H. L. Jøgensen, B. Knudsen, D. Tordrup, F. Oteri, M. Fal-
coni, J. Koch, A. Desideri, J. S. Pedersen, F. F. Andersen, B. R. Knudsen, Structure
of nanoscale truncated octahedral DNA cages: Variation of single stranded linker
regions and influence on assembly yields, ACS Nano. 4 (2010) 1367–13376.

[19] A. R. Chandrasekaran, O. Levchenko, DNA nanocages, Chem. Mater. 28 (2016)
5569–5581.

[20] N. Xie, S. Liu, X. Yang, X. He, J. Huang, K. Wang, DNA tetrahedron nanostructures
for biological applications: biosensors and drug delivery, Analyst 142 (2017) 3322–
3332.

[21] Y. Hu, Z. Chen, H. Zhang, M. Li, Z. Hou, X. Luo, X. Xue, Development of DNA
tetrahedron-based drug delivery system, Drug Delivery 24 (2017) 1295–1301.

[22] P. R. Cromwell, Knots and Links, Cambridge Univ. Press, Cambridge, 2004.

[23] P. D. Tumanskia, J. I. Sulkowskaa, Topological knots and links in proteins, Proc.
Nad. Acad. Sci. USA 114 (2017) 3415–3420.

[24] J. H. White, N. R. Cozzarelli, A simple topological method for describing stereoiso-
mers of DNA catenanes and knots, Proc. Nad. Acad. Sci. USA 81 (1984) 3322–3326.

[25] W. Qiu, Z. Wang, G. Hu, The Chemistry and Mathematics of DNA Polyhedra, Nova,
New York, 2010.

-242-



[26] W. Qiu, X. Zhai, Molecular design of Goldberg polyhedral links, J. Mol. Struct.
(Theochem) 756 (2005) 163–166.

[27] G. Hu, X. D. Zhai, D. Lu, W. Y. Qiu, The architecture of Platonic polyhedral links,
J. Math. Chem. 46 (2009) 592–603.

[28] G. Hu, W. Qiu, A. Ceulemans, A new Euler’s formula for DNA polyhedra, PLOS
One 6 (2011) #e26308.

[29] J. Duan, W. Qiu, Using dual polyhedral links models to predict characters of DNA
polyhedra, J. Mol. Struct. 359 (2013) 233–236.

[30] X. S. Cheng, W. Y. Qiu, H. P. Zhang, A novel molecular design of polyhedral links
and their chiral analysis, MATCH Commun. Math. Comput. Chem. 62 (2013) 725–
742.

[31] S. Liu, H. Zhang, Genera of the links derived from 2-connected plane graphs, J. Knot
Theory Ramif. 21 (2014) #1250129.

[32] X. Cheng, H. Zhang, X. Jin, W. Qiu, Ear decomposition of 3-regular polyhedral links
with applications, J. Theor. Biol. 359 (2014) 146–154.

[33] S. Jablan, L. Radović, R. Sazdanović, Knots and links derived from prismatic graphs,
MATCH Commun. Math. Comput. Chem. 66 (2010) 65–92.

[34] G. Hu, W. Qiu, X. Cheng, S. Liu, The complexity of Platonic and Archimedean
polyhedral links, J. Math. Chem. 48 (2010) 401–412.

[35] S. Liu, X. Cheng, H. Zhang, W. Qiu, The architecture of polyhedral links and their
Homfly polynomials, J. Math. Chem. 48 (2010) 439–456.

[36] X. Jin, F. Zhang, The Homfly polynomial for even polyhedral links, MATCH Com-
mun. Math. Comput. Chem. 63 (2010) 657–677.

[37] S. Liu, H. Zhang, W. Qiu, The Homfly polynomial for a family of polyhedral links,
MATCH Commun. Math. Comput. Chem. 67 (2012) 65–90.

[38] X. Cheng, X. Jiang, H. Dai, The braid index of polyhedral links, J. Math. Chem. 50
(2012) 1386–1397.

[39] S. Liu, H. Zhang, Some invariants of polyhedral links, MATCH Commun. Math.
Comput. Chem. 70 (2013) 383–400.

[40] X. Cheng, X. Jin, The braid index of complicated DNA polyhedral links, PLOS One
7 (2012) #e48968.

-243-



[41] M. Li, Q. Deng, X. Jin, A general method for computing the Homfly polynomial of
DNA double crossover 3-regular links, PLOS One 10 (2015) #e0125184.

[42] G. Hu, Z. Wang, W. Qiu, A survey on mathematical models for DNA polyhedra,
MATCH Commun. Math. Comput. Chem. 70 (2013) 725–742.

[43] X. Jin, A survey on several invariants of three types of polyhedral links, MATCH
Commun. Math. Comput. Chem. 76 (2016) 569–594.

[44] S. Liu, H. Zhang, The HOMFLY polynomials of odd polyhedral links, J. Math. Chem.
51 (2013) 1310–1328.

[45] M. Bon, G. Vernizzi, H. Orland, A. Zee, Topological classification of RNA structures,
J. Mol. Biol. 379 (2008) 900–911.

[46] C. Cerf, A. Stasiak, A topological invariant to predict the three–dimensional writhe
of ideal configurations of knots and links, Proc. Nad. Acad. Sci. USA 97 (2000)
3795–3798.

[47] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395–
407.

[48] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new
polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239–246.

[49] J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4
(1987) 115–139.

[50] F. Jaeger, A combinatorial model for the Homfly polynomial, Eur. J. Comb. 11
(1990) 549–558.

[51] D. B. West, Introduction to Graph Theory, Prentice Hall, New Jersey, 2001.

[52] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. (Geometrie) 3
(1922) 1–139.

-244-


