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Abstract

Since the traditional experimental methods are expensive and the computational
methods predict specific types of proteins, it is important to develop computational
methods to predict multiple types of proteins. In this paper, we propose a sequence-
based model called APGC using the compositional, physico-chemical and structural
information. Initially, we develop a novel sequence representation based on probabil-
ity distribution (PD) and n-gap index. Afterwards, combinations of auto covariance
(AC), probability distribution, n-gap index and composition of the moment vector
(CMV) features are used to map the peptide sequences onto numeric feature vec-
tors, which are subsequently used as input in support vector machine for prediction.
The prediction results obtained in this study are significantly more universal and
accurate than those of previously developed methods.

1 Introduction

Since predicting and classification of specific proteins is of fundamental importance to

cure cancer, design new drugs, and understand the molecular mechanism in biological sys-

tems, many researchers have focused on this area in postgenome era. With the explosive

growth of biological sequences in the post genomic era, one of the most important but also

most difficult problems in computational biology is how to express a biological sequence

with a discrete model or a vector, preserving considerable sequence order information or

key pattern characteristic.
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Most of the existing methods for predicting protein classification are based on the

amino acid composition (AAC) [1]. As is well known, by using AAC to represent the

sample of a protein, all its sequence-order information would be missing. To avoid com-

plete loss of the sequence order information, the pseudo amino acid (PseAA) composition
has been widely applied to various biomedical areas and computational proteomics [2,3].

Juan Mei et al. predict HIV-1 and HIV-2 proteins based on the concept of Chou’s [4]

PseAA composition and increment of diversity (ID), support vector machine (SVM), lo-

gistic regression (LR), and multilayer perception (MP) [5]. Using amino acid composition

and binary profiles as the input of SVM, Tyagi et al. [6] proposed a model to identify

anticnacer peptides (ACPs). Hajisharifi et al. [7], using Chou’s pseudo amino acid com-

position and the local alignment kernel based method, also proposed a model to do the

same. Leyi Wei et al. [8] present a sequence-based feature representation algorithm called

adaptive k-skip-n-gram that sufficiently captures the intrinsic correlation information of

Cell-penetrating peptides (CPPs). Y. Zhang et al. [9] put forward the so-called q-Wiener

index by using hypergeometric series. This concept has also been applied for performing

sequence analysis. In addition, more and more researchers have already studied physic-

ochemical properties of 20 amino acids, such as hydrophobicity values, isoelectric point,

relative molecular mass and ionization equilibrium constant (pKa values) [10-12] when it

comes to sequences comparison. Using indexes of some physicochemical properties of 20

amino acids, Liu [13], Randić [14], Wu [15], Czerniecka [16] have proposed a number of

different graphical representations of proteins, respectively. Extracting the features based

on the properties of amino acid is essential and reasonable to compare proteins and study

their function [17].

The above mentioned methods have their own advantages in generating knowledge

for the prediction of specific types of proteins. However, all of these methods are not

universal for multiple types of proteins. In this study we propose a novel model called

APGC for universal protein prediction with high accuracy. Initially, in order to capture

as much information of protein sequences as possible, we extract the 14 physicochemical

properties features from the 531 indices by principal component analysis (PCA) [18,19].

Then, combinations of auto covariance (AC), probability distribution (PD), n-gap index

and composition of the moment vector (CMV) features are used to map the peptide

sequences onto numeric feature vectors, which are subsequently used as input in SVM for
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prediction. The APGC model structure is shown in Fig. 1. Our results are interpreted

in the Section ’Results and Conclusions’.

Figure 1. APGC model structure.

2 Methods

2.1 Auto covariance features (AC)

In order to capture as much information of protein sequences as possible, a variety of

physicochemical properties are used in the procedure of feature extraction. All physic-

ochemical properties used can be found in the Amino Acid index (AAindex) database,

which store physicochemical or biochemical properties of amino acids or pair of amino

acids. For the purpose of amino acid sequence transformation, we only consider the 544

amino acid properties (i.e., indices in AAindex1). Of the 544 indices, 13 have incomplete

data or an over-representation of zeros, hence are removed. Thus 531 indices are evaluated

for potential use in the dimensionality reduction of PCA. The normalization ensures that

all properties are expressed as dimensionless numbers. Then, we extract the 14 features

from the 531 indices which accumulated contribution rate reach 95%.

As a statistical tool for analyzing sequences of vectors developed by Wold et al. [20],

AC has been adopted by more and more leading investigators for protein classification

[21-23]. Given a protein sequence, AC variables describe the average interactions between

residues, a certain lag apart throughout the whole sequence. Here, lag is the distance

between one residue and its neighbour, a certain number of residues away.

AClag,j =
1

n− lag

n−lag∑
i=1

(
Xi,j −

1

n

n∑
i=1

Xi,j

)
×

(
X(i+lag),j −

1

n

n∑
i=1

Xi,j

)
(1)
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where j represents one descriptor, i the position in the sequence X, n the length of the

sequence X and lag the value of the lag.

2.2 Probability distribution features (PD)

Initially, twenty different kinds of amino acids can be divided into four classes based

on DHP [24]: non-polar class (A): P, A, L, V, I, F, W and M; uncharged polar class (B):

Q, S, T, Y, C, N and G; positive polar class (C): H, K and R; negative polar class (D):

D and E.

Then, based on DHP,

protein I = {GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV}

can be represented as:

reduced sequence I = {BAABCACDABCDAACAAACAABCAAABAABDAA}

C. Yu et al. [25] proposed a DNA sequence comparison by a probabilistic method.

We improve his method and apply it to protein sequences. Fig.1 shows the four amino

acids classes A, B, C and D are as follows: A(1, 0.8), B(1, 0.6), C(1, 0.4), D(1, 0.2). The

points in the graphical representation are obtained by summing the vectors representing

descriptors in the reduced amino acid sequences. The endpoint of every vector represents

one descriptor. Fig. 2 shows the graphical representation of the reduced amino acid

sequences (BAABCACDAB).
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Figure 2. Amino acids vector system based on A(1,0.8), B(1,0.6), C(1,0.4),
D(1,0.2).
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Figure 3. Graphical representation of reduced amino acids sequence (BAAB-
CACDAB) based on the vector system.

For a reduced amino acids sequence of length n, we define its probability distribution

as (p1, p2, · · · , pn).

pi =
xi −−→y i

1
2
n(n+ 1)− yn

(2)

where (xi, yi) represents the position of the ith descriptor in the protein graphical curve,
−→y i represents the y-coordinate value at the ith descriptor in the protein graphical curve

according to Fig. 3. We can prove that this distribution is a discrete probability distri-

bution [25].

We transform a protein sequence into a discrete probability distribution using our

graphical representation. However, the probabilistic distribution of a protein sequence

(p1, p2, · · · , pn) is related to its length n. To overcome this limitation, we construct a

slipping window. For a protein sequence of length n and a specific N < n, consider the

n − N + 1 subsequences of length N . Thus we average these probabilistic distributions

(p1, p2, · · · , pN) that each of subsequences of length N.

2.3 N-gap index features

Considering previous reduced sequences based on DHP, we generate four types of

reduced amino acid sequences according to their physicochemical properties, including

polarity, acidity, charge and DHP [24]. The classifications of amino acids based on four

properties [26] are shown in Table 1.
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Table 1. amino acid classification.

Property Classification

Polarity/acidity DE RHK WYF SCMNQT GAVLIP
Acidity DE KHR ACFGILMNPQSTVWY
Charge KR AVNCQGHILMFPSTWY DE
DHP PALVIFWM QSTYCNG HKR DE

In order to contain as much of the sequence-order effects as possible, we propose a

simplified n-gap index model based on pseudo amino acid composition [27]. The sequence-

order-correlated indexes from Equations (3) and (4) extract the sequence features.

Suppose a reduced protein sequence of L amino acid residues:

R1R2R3R4R5R6R7 · · · · · ·RL (3)

where R1 represents the character at sequence position 1, R2 the character at position 2,

and so forth. Schematic of the extraction scheme for n-gap features is shown in Fig. 4.

Figure 4. Schematic of the extraction scheme for n-gap features.

Fn−gap = {∪L−i−1
i=1 RiRi+n+1 | i = 1, 2, · · · ,m} (4)

where m represents the number of amino acids groups of the reduced sequence, as well as

the number of characters types in reduced sequence. The occurrences of characters and

n-gap di-characters can be counted by |Ri| and |RiRj| in the set Fn−gap, where Ri and Rj

represent i-th and j-th kind of character of the reduced sequence.

The element in the n-gap index vector is defined as:

Vn−gap(i) =
|RiRj|Fn−gap

|Ri + c− n|Fn−gap

, i = 1, 2, · · · ,m; j = 1, 2, · · · ,m (5)
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where n = 0, 1, 2, · · · and c = max(n)+1. In this paper, n = 0, 1, 2, the overall dimension

of n-gap index is (52 + 32 + 32 + 42)× 3 = 177.

2.4 Composition of the moment vector features (CMV)

CMV’s [28-30] which can reflect the frequencies and composition of amino acid residues

have been widely used to predict certain protein sequences:

c
(k)
i =

1

L(L− 1) · · · (L− k)

l∑
j=1

pkij (i = 1, 2, · · · , 20) (6)

where k = 0, 1 is the level of CMV; L is the length of sequence; i is the ith amino acid; l

is the total number of i residues in the protein sequence; and pij is the position of the ith

amino acid. Then, we take the 0-level position vector and the 1-level position vector into

a 40-dimensional vector to characterize the protein sequence.

2.5 Features for prediction algorithms.

In the section “Auto Covariance(AC)”,we extract the 14 features from the 531 physic-

ochemical properties using PCA, then the AC features are created. In order to improve

the prediction accuracy, lag×14 AC, 8 PD, 177 n-gap and 40 CMV vectors are combined,

and these parameters are selected as the input parameters of SVM. Performance metrics

of SVM in predicting HIV proteins is shown in Table 2.

A standard set of parameters has been used to evaluate the performance of various

methods developed in this study. Following is a brief description of the parameters: (i)

sensitivity, also referred to as recall, is the percent of correctly predicted allergen epitopes;

(ii) specificity is the percent of correctly predicted non-allergen epitopes; (iii) accuracy

is the proportion of correctly predicted epitopes; (iv) Matthews correlation coefficient

(MCC).

AUC is equal to the probability that a classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative one (assuming positive ranks higher

than negative). AUC is between 0.1 to 1, which can be used to evaluate classifier visually.

The larger AUC is, the better classifier is [31]. The parameters may be calculated by the
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following equations. 

Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+TN
TP+FP+TN+FN

Mcc = (TP )(TN)−(FP )(FN)√
[TP+FP ][TP+FN ][TN+FP ][TN+FN ]

(7)

where TP and FN refer to true positive and false negatives and TN and FP refer to true

negatives and false positives; Sn, the sensitivity; Sp, the specificity; Acc, the accuracy;

Mcc, the Mathew’s correlation coefficient.

Table 2. Performance metrics of SVM in predicting HIV proteins.

Features Performance metrics
Sn Sp Acc Mcc AUC

AC 96.57 91.07 95.28 87.17 0.99
AC+PD 98.46 92.89 97.13 91.85 1

AC+PD+n-gap 99.92 98.53 99.56 98.84 1
AC+PD+n-gap+CMV 1 1 1 1 1

3 Materials
The HIV protein dataset. The dataset is downloaded from the Swiss-Prot [32]

(http://www.uniprot.org/). In order to get enough number of protein sequences, HIV-

1 dataset and HIV-2 dataset with ≤ 90% identity were used. In the final datasets, HIV-1

dataset consists of 260 non-redundant protein sequences and HIV-2 dataset consists of 81

non-redundant protein sequences.

The SPAAN dataset. Virulent protein datasets are taken from VirulentPred. The

SPAAN dataset contains 469 adhesins and 703 non-adhesins proteins [34].

The Eukaryotic virulent protein dataset. The dataset is generated by employing

the NTX-pred method randomly, consisting of 50 neurotoxins and 50 non-virulent proteins

[35].

The Anticancer dataset. Hajisharifi et al. originally generated the Anticancer

dataset [29]. Afterwards, the data was modified by Wei Chen [36]. It contains 138

anticancer peptides and 206 non-anticancer peptides.

RT proteins of HIV. HIV-1 and HIV-2 Reverse Transcriptase Proteins is down-

loaded from the Swiss-Prot (http://www.uniprot.org/). HIV-1 dataset with ≤ 50%
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identity and HIV-2 dataset with ≤ 90% identity are used. The final dataset includes 234

RT amino acid sequences from HIV-1 and 237 sequences from HIV-2 [37].

The GPCR dataset. The dataset of GPCR was originally generated by X.Xiao et

al. This is a dataset containing G protein coupled receptors (GPCR) and non-GPCRs.

None of the proteins included have ≥ 40% pairwise sequence identity to any other in

the same subset. The final dataset includes 365 GPCR sequences and 365 non-GPCR

sequences [38].

The HPV protein dataset. The HPV protein dataset is downloaded from the

NCBI database. This dataset contains 444 amino acids sequences from HPV-16 and 470

amino acids sequences from HPV-18.

The Crotonyllysine sites dataset. Qiu et al. originally generated the Crotonylly-

sine sites dataset [39]. Qiu’s training dataset is extracted from Uniprot database, and it

consists of 169 experimentally annotated crotonyllysine sites and 847 non-crotonyllysine

sites.

The EBNA protein dataset. The HPV protein dataset is downloaded from the

Swiss-Prot. This dataset contains 117 amino acids sequences from EBNA-1 and 72 amino

acids sequences from EBNA-2.

The N-formylated proteins. The N-formylated protein dataset is originally gener-

ated by Zhe Ju et al. It consists of 74 N-formylated sites and 69 non-N-formylated sites

[40].

The Hepatovirus proteins. The Hepatovirus protein dataset is downloaded from

the Swiss-Prot. This dataset contains 6888 amino acids sequences from Hepatovirus-a

and 147045 amino acids sequences from Hepatovirus-b.

The CPP proteins. Cell-penetrating peptides (CPPs) are short peptides (5-30

amino acids) that can enter almost any cell without significant damage. This is a dataset

containing 462 CPP proteins and 462 non-CPP proteins [8].

4 Results and Conclusions
4.1 Results

A ROC curve is created by plotting the true positive rate against the false positive

rate at various threshold settings. The Fig. 5 shows the performance of APGC approach

for different datasets. The prediction performance of previously mentioned datasets are
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shown in Table 3. The results that we have generated as a comparison with previously

mentioned approaches are shown in Table 4.
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Figure 5. The ROC curves of APGC approach for different datasets.

Table 3. Results of APGC for all datasets.

dataset Sn Sp Acc Mcc AUC

HIV 1.00 1.00 1.00 1.00 1.00
RTHIV 99.14 99.18 99.15 98.30 1.00

SPAAN adhesins 85.25 94.69 90.92 80.99 0.95
GPCR 95.54 91.68 93.63 87.37 0.98

Euk neurotoxins 98.55 89.72 94.10 88.22 1.00
Hepatovirus 1.00 99.80 99.90 99.80 1.00

Crotonyllysine 99.44 82.77 96.70 86.44 0.96
HPV 99.57 1 99.79 98.59 1.00

N-formylation sites 98.61 79.42 89.57 80.37 0.92
EBNA 90.23 84.48 87.47 74.33 0.93

Anticancer 82.65 94.11 89.50 78.13 0.96
CPP 88.52 92.28 90.41 80.74 0.96
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Table 4. Comparison of APGC with previous approaches.

method dataset Sn Sp Acc Mcc AUC

APGC SPAAN 85.25 94.69 90.92 80.99 0.95
VirulentPred [33] SPAAN 58.44 87.79 70.14 0.46 -

2Gram [41] SPAAN 49.17 99.30 79.35 0.59 0.94
APGC Neurotoxins 98.55 89.72 94.1 88.22 1

VirulentPred Neurotoxins 96 16 56 - -
NTXPred(FNN) [42] Neurotoxins 89.65 78.78 84.19 0.69 -
NTXPred(RNN) [42] Neurotoxins 89.12 96.35 92.75 0.86 -

AS [40] Neurotoxins 92.00 1 96.00 0.92 0.99
APGC HIV 1 1 1 1 1

ID(SVM) [5] HIV 97.47 98.59 98.48 96.04 -
ID(LR) [5] HIV 97.43 97.08 97.87 94.51 -

ID(MLP) [5] HIV 98.42 98.42 98.78 96.85 -
APGC GPCR 95.54 91.68 93.63 87.37 0.98

GPCR-CA [38] GPCR 91.08 92.22 91.64 0.8330
APGC Crotonyllysine 99.44 82.77 96.70 86.44 0.96

CrotPred [43] Crotonyllysine 79.41 77.78 78.23 0.5259 -
Qiu [39] Crotonyllysine 71.69 98.70 94.43 0.7780 -
APGC Nformylation 98.61 79.42 89.57 80.37 0.92

Zhou [44] Nformylation 77.78 95.06 90.74 0.7478 -
Binary [40] Nformylation 40.00 98.33 88.28 0.5256 0.90

APGC Anticancer 82.65 94.11 89.50 78.13 0.96
Hajisharifi [37] Anticancer 89.70 85.18 92.68 0.784 -

APGC CPP 88.52 92.28 90.41 80.74 0.96
NB [7] CPP 82.7 94.8 88.7 0.781 -

LibSVM [7] CPP 88.1 92.6 90.4 0.810 -
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4.2 Conclusions

This paper provides an alignment-free measure, developing a novel combination feature

model for analyzing protein sequences based on physicochemical properties of 20 amino

acids. We propose a novel probabilistic method for protein sequence comparison that

uses a graphical representation. After constructing the graphical representation, we are

able to construct a probability distribution for a protein sequence. Then, we extracted a

combined vector by mixing normalized features together (AC, CMV and PD and n-gap

index features) for each sequence and used it as input of SVM. The results show that our

approach provides a new, powerful tool to predict various types of protein sequences for

both molecular biologists and computational scientists.

As pointed out in and realized in a series of recent publications, user-friendly and

publicly accessible web-servers represent the future direction for developing practically

more useful computational tools and enhancing their impact. Our future efforts will be

to establish a web-server for the prediction method reported in this paper.
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