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Abstract 

Evolution, tends to build complex structures out of protein molecules which has advantages for 
protein function. Few reasons have been proposed to explain this event. Some protein multimers 
show cooperativity in which binding of a ligand to a chain affect on the binding of other ligands. 
But it has remained unclear why cooperativity arises in positive or negative forms and what is 
the advantage of each of these forms. Our analysis, using deterministic and stochastic 
approaches, shows that the average and the standard deviation of ligand binding capacity indeed 
differ between positive and negative cooperativity. Considering standard deviation as a measure 
of noise in the system, our results demonstrate that the transition from negative to positive 
cooperativity is accompanied by an increase in the level of noise in the system. This source of 
noise enables the system to adapt in a fluctuating environment and could be subject to selection 
during evolution. 
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1  Introduction 
It would be easier to contemplate the evolutionary process at different levels of life by taking 

into account the molecular diversity of vital biological elements. Since cellular scaffold is 

mostly composed of proteins, dealing with the development of protein structures during 

evolution would be a worthy starting point [1]. Protein molecules have been evolved to be more 

[2]. Evolutionary modifications in ribosome [3], cytoskeleton [4], spliceosome [5], ion channels 

[6], and nuclear pore complex [7] are some examples in which higher structural stability and 

significantly longer half-lives have evolved [8-10]. Proteins transition rates from monomers to 

multimers have also increased, and more than 50% of proteins in eukaryotes and prokaryotes 

are multimer complexes [11]. Why does a protein molecule should become more complex? 

During past decades, a myriad of studies have been performed to answer this question; being 

easier for multiple number of small proteins to be folded compared to folding a single long 

protein, increasing opportunities for allosteric regulation of protein activity, reducing protein’s 

defenselessness to denaturation because of smaller surface to volume ratio, increasing the 

frequency of productive encounters due to removal of unnecessary protein surfaces, and 

protection of unstable proteins from aggregation are some of the reasons espoused for the 

observed increase in protein complexity in nature [12-15]. In addition, gaining new features 

would be also possible after oligomerization, which affects both stability and function [16]. For 

example, enhancing diversity could create some opportunities for proteins to represent 

allosteric regulation functions, enabling them to perform cooperativity behaviors [11, 14, 17, 

18]. Cooperativity is a biochemical phenomenon in which identical or near-identical elements 

change their performance. This was first discovered in hemoglobin by C. Bohr et al., where 

they found that the affinity of hemoglobin binding sites increases when an oxygen atom binds 

to one of four binding sites (called positive cooperativity) [19]. Later, it was discovered that 

cooperativity could also be negative in some proteins. However, transition into multimers (in 

order to gain cooperativity function) inevitably enforces an energetic cost and increases the 

probability of certain diseases related to inappropriate protein aggregation [14]. Consequently, 

one cannot simply conclude that positive cooperativity should always be favored by selection 

[20, 21]. Some studies suggested a thermodynamic-based selective preference for cooperativity 

[22, 23]. Another interesting method is dealing with the kinetic models of cooperativity using 

calculated experimental parameters for kinetic constant rates. However, finding analytical 

solution (deterministic approach) for the differential equations derived in a kinetic model is 

always challenging, especially when there is a paucity of experimental data  [24]. It becomes 

-178-



 

more problematic when dealing with low number of proteins in different cells where stochastic 

effects play an important role [25]. Therefore, various features seem to be relevant to proteins 

to adjust their cooperativity: some proteins prefer positive cooperativity which increases 

affinity at a lower cost, some choose negative cooperativity which decreases affinity but 

enhances the transition speed, and some proteins utilize a more advanced strategy that involves 

choosing cooperative behaviors (negative and positive) based on the environmental conditions 

[20]. 

So why does cooperativity arise in positive or negative forms? What is the advantage for each 

forms? Are they dependent on the role of proteins in the cell? Is a negative or positive 

cooperative behavior of a protein related to the effect of natural selection in a fluctuating 

environment? 

In this study, we have explored some possible reasons for the development of multimer proteins 

with cooperative functions, using different approaches such as exploring frequency distribution 

of cooperative proteins, structural stability investigation in the context of thermodynamics, and 

performing kinetic modeling to measure variation in positive/negative cooperativity using 

deterministic and stochastic approaches. 
 

2  Material and Methods 

2.1  Deterministic Approach 

For a deterministic insight into the cooperative binding of a protein, we have applied a mass 

action kinetic model. Here we use the simplest model, which consists of a protein complex (M) 

with two binding sites where 2 ligand molecules (L) could attach [26]: 
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where ML and ML2 are proteins contain one and two ligands, respectively. 

If K1=K2 (where i
i

i

k
K

k−

= , i=1,2, and ki and k-i are forward and reverse rate constants for 

reactions in the eq. 1, respectively), a protein is non-cooperative. In this case, the value of Hill 

coefficient (nH) would be 1. One could obtain nH value by plotting log
1

Y

Y
 
 − 

versus log (L) 

where 
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The Hill coefficient would be the slope of the graph [27]. If K1<K2, a protein contains positive 

cooperativity and the Hill coefficient (nH) would be greater than 1. Finally, if K1>K2, a protein 

contains negative cooperativity and the Hill coefficient (nH) would be less than 1. 

One could also write Ordinary Differential Equations (ODEs) for eq. 1 as follow: 

[ ] [ ][ ] [ ]1 1

d M
k M L k ML

dt −= − +  

[ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]1 1 2 2 2 3 2  
d L

k M L k ML k ML L k ML k ML L
dt − −= − + − + −  

[ ] [ ][ ] [ ] [ ][ ] [ ]1 1 2 2 2

d ML
k M L k ML k ML L k ML

dt − −= − − +  

[ ] [ ][ ] [ ]2
2 2 2

d ML
k ML L k ML

dt −= − ,        (3) 

where [M], [L], [ML], and [ML2] are concentrations of different species, and k1, k-1, k2, and k-2 

are equilibrium constants of forward and reverse reactions. 

Similar strategy could be used for proteins with more binding sites. All equations related to 

protein complexes with 3 and 4 binding sites are available in the supplementary file S1-A. 

It should also be noted that a statistical correction on the rate constants is necessary since the 

binding sites are indistinguishable – i.e., it is only possible to count total number of the occupied 

binding sites regardless of their positions [28]. The correction equation would be: 

' 1
i i

n i
K K

i

− += ,           (4) 

where 
'
iK  is statistically corrected rate constant, n is total number of protein binding sites, 

i
i

i

k
K

k−

=  (for i=1,…,n), and ki and k-i are forward and reverse rate constants for every reactions 

in the model, respectively. 

For solving ODEs, Copasi software (ver. 4.16) [29] was used on a computer with the Intel Core-

i7-3770k CPU and 8 GB of RAM. 

 

2.2  Stochastic Approach 

To explore the stochastic behavior of a biochemical reaction, we utilized Chemical Master 

Equations (CMEs). CMEs belong to a class of statistical Markov formalism in which the 
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number of species in each state is considered as random variables where their transition matrices 

are defined by probability methods. Therefore, number of species in each step only depends on 

the number of species in the previous step [30, 31]. Here a stochastic modeling approach for 

the simplest case (a protein complex with two binding sites) is show. The reactions are identical 

to eq. (1). Transition probabilities for each kind of molecule is shown in Table 1 [30]. 
 

Table 1. Transition probability of different molecules in eq. (1) where m, l, ml, and ml2 are the number 
of free proteins, free ligands, proteins with one ligand, and proteins with two ligands, 
respectively. 

 
t + dt t reaction probability 

M (t + dt) = m m – 1 

m + 1 

k-1 

k1 

( )1 1k ml dt− +  

( )( )1 1 1k m l dt+ +  

L (t + dt) = l l – 1 

l + 1 

k-1 or k-2 

k1 or k2 

( )1 2 21 ( 1)k ml dt k ml dt− −+ + +  

( )( ) ( )( )1 21 1 1 1k l m dt k l ml dt+ + + + +  

ML (t + dt) = ml ml - 1 

ml + 1 

k1 or k-2 

k-1 or k2 

( )( )1 2 21 1 ( 1)k m l dt k ml dt−+ + + +  

( ) ( )( )1 21 1 1k ml dt k l ml dt− + + + +  

ML2 (t + dt) = ml2 ml2 - 1 

ml2 + 1 

k2 

k-2 

( )( )2 1 1k l ml dt+ +  

( )2 2 1k ml dt− +  

 

 

Based on Table 1, the probability that none of the reactions occur would be: 

( )1 1 2 2 21 .k ml k ml k ml k ml l dt− −− + + +        (5) 

Now we could write: 

( ) ( ) ( )
( ) ( )

( )( ) ( )
( ) ( )

( )( ) ( )

2 2 1 1 2 2 2

1 2

1 2

2 2 2

2 2

, , , ; , , , ; 1 .

1 1, 1, 1, ;

 1 1 1, 1, 1, ;  

1 , 1, 1, 1;

1 1 , 1, 1, 1;

P m l ml ml t dt P m l ml ml t k ml k ml k ml k ml l dt

k n P m l ml ml t dt

k m l P m l ml ml t dt

k ml P m l ml ml t dt

k l ml P m l ml ml t dt

− −

−

−

 
 + = − + + +

+ + − − +

+ + + + + −

+ + − − +

+ + + + + −

 (6) 

where P(m,l,ml,ml2;t + dt) is the probability of being in a state in which there are m, l, ml, and 

ml2 number of molecules at time t + dt. So, this could lead to: 
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    (7) 

where m, l, ml, and ml2 are the number of free proteins, free ligands, proteins with one ligand, 

and proteins with two ligands, respectively. 

Equation (7) is treated as Stochastic Differential Equation (SDE) that is continues in time and 

discontinues in regards to the number of species. 

Similar strategy could be used for protein complexes with 3 and 4 binding sites. (For all the 

transition probabilities and SDEs see the supplementary file S1-B.) 

We used Numerical Stochastic Simulation Algorithm (SSA) to solve the eq. (7), since finding 

an analytical solution is daunting and has not been feasible in more complicated cases [32, 33]. 

In addition, using the standard SSA method (Gillespie Algorithm) is time-consuming. So, we 

have used the most recent version called the Tau-leaping algorithm which is much faster and 

more suitable for our case [34].  We have used MATLAB software (ver. R2015b) on a computer 

with the Intel Core-i7-3770k CPU and 8 GB of RAM for running the Tau-leaping algorithm. 

 

3  Results and Discussion 

3.1  Cooperativity Distributions and Ligand Concentrations 

First, we browsed the literature (data not shown) to figure out whether any particular type of 

cooperativity (positive/negative) is more prevalent in nature. Then, we explored ligand 

concentrations where cooperativity occurs. Our results show that neither types of cooperativity 

(positive and negative) is more common in nature. In addition, both positive and negative 

cooperativity exist in a wide range of ligand concentrations. However, it seems that negative 

cooperativity occurs more between 10-5-10-1 (mol/litre) of ligand concentrations, while positive 

cooperativity occurs more between 10-10-10-6 (mol/litre) of ligand concentrations (Figure 1). 
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Figure 1. Frequency of the experimentally-verified positive and negative cooperativity behaviors in 
different ligand concentrations.  

 

3.2  Deterministic Approach 

In the deterministic method, proteins with four binding sites (detailed equations are available 

in supplementary file S1-A) were considered. Simulations were done for 3 different cases; 

negative cooperativity (K1 > K2 > K3 > K4), non-cooperativity (K1 = K2 = K3 = K4), and positive 

cooperativity (K1 < K2 < K3 < K4), where i
i

i

k
K

k−

=  (for i=1,2,3,4) are statistically corrected 

rate constants, and ki and k-i are forward and reverse rate constants for every reaction in the 

model, respectively. Results are shown in Table 2 and Figure 2. 

All models can be found in the supplementary file S2, and the results are found in the 

supplementary file S3_Table2. 

As illustrated in Table 2, the average ligand binding number (Mave) and standard deviation (std. 

dev.) increase when moving from negative to positive cooperativity. 

In another simulation, we explored the effect of rate constant values on Mave and std. dev. values 

while a protein retains its cooperativity type. 

For the first case, a with non-cooperative protein with different rate constants values was 

considered. Results are shown in Table 3. The results show an incremental behavior in Mave and 

std. dev. while increasing rate constant values. 
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Figure 2. Distribution histogram of values obtained for average ligand binding number at the end of 
every simulation, i.e. for 21 different initial ligands number: A) Negative cooperativity, B) Non-
cooperativity, C) Positive cooperativity. The fitted line indicates normal distribution. 
 

 Table 2.  Results of different types of cooperativity using deterministic approach. NH is Hill coefficient, 
Mave is average ligand binding number of proteins, and std. dev. is standard deviation value. Parameters 
for the simulations are: initial protein concentration (M0) = 8×10-5 mol/litre, ligand concentrations (L0) 
= 0.0001 to 0.0003 mol/litre, number of points=21. 
 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Negative 1.4×105 7.5×104 4.5×103 3.6×103 0.57 1.86 0.395 

Non-cooperativity 4.5×104 4.5×104 4.5×104 4.5×104 1 2.13 0.572 

Positive 3.6×103 4.5×104 7.5×105 1.4×106 3.78 2.37 0.746 

 
Table 3.  Results of effect of rate constant values on a protein with non-cooperativity, using 
deterministic approach. NH is Hill coefficient, Mave is average ligand binding number of proteins, and 
std. dev. is standard deviation value. Other parameters for the simulations are the same as Table 2. 
 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Non-cooperative 4.5×102 4.5×102 4.5×102 4.5×102 1 0.29 0.955 

Non-cooperative 4.5×103 4.5×103 4.5×103 4.5×103 1 1.22 1.84 

Non-cooperative 4.5×104 4.5×104 4.5×104 4.5×104 1 2.13 1.95 

 

The effect of adding a constant value (ε) to the rate constants of a protein on positive 

cooperativitywas investigated. Results are shown in Table 4. The results show an incremental 

behavior in Mave and std. dev. while increasing rate constant values. 
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Table 4. Results of effect of rate constant values on a protein with positive cooperativity using 
deterministic approach. The ε value was 10,000 which means ki values in lower rows are 10,000 more 
that the above ones.  NH is Hill coefficient, Mave is average ligand binding number of proteins, and std. 
dev. is standard deviation value. Other parameters for the simulations are the same as Table 2. 
 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Positive 3.6×103 4.5×104 7.5×105 1.4×106 3.78 2.37 0.746 

Positive 1.36×104 5.5×104 7.6×105 1.41×106 3.625 2.41 0.754 

Positive 2.36×104 6.5×104 7.7×105 1.42×106 3.526 2.43 0.756 

 

Similarly, we investigated the effect of the rate constant values on a protein with negative 

cooperativity. We subtracted a constant value (ε) from the rate constants of a protein in a 

negative cooperativity behavior while the protein retained its negative copperativity. Results 

are shown in Table 5. In this case, the results show that Mave and std. dev. would decrease while 

the rate constant values decreased. 

 

Table 5 Results of effect of rate constant values on a protein with negative cooperativity using 
deterministic approach. The ε value was 1,000 which means ki values in lower rows are 1,000 less than 
the upper ones. NH is Hill coefficient, Mave is average ligand binding number of proteins, and std. dev. is 
standard deviation value. Other parameters for the simulations are the same as Table 2. 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Negative 1.4×105 7.5×104 4.5×103 3.6×103 0.57 1.86 0.395 

Negative 1.39×105 7.4×104 3.5×103 2.6×103 0.52 1.83 0.368 

Negative 1.38×105 7.3×104 2.5×103 1.6×103 0.466 1.79 0.336 

 

All models and results are found in the supplementary files S2 and S3_Table3-5. 

 

3.3  Stochastic Approach 

In the stochastic simulations, a protein complex with four binding sites was considered (detailed 

equations are available in supplementary file S1-B). The Tau-leaping algorithm was used for 

the simulation process. Similar to the deterministic approach, we performed simulations for 3 

different cases; negative cooperativity (K1 > K2 > K3 > K4), non-cooperativity (K1 = K2 = K3 

= K4), and positive cooperativity (K1 < K2 < K3 < K4), where Ki is statistically corrected rate 
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constant. First, we adjusted the rate constants values, similar to the deterministic simulation, 

and explored the behavior of the system on just one trajectory (Figure 3). 

 

Figure 3. Changes in molecules of a stochastic simulation in different types of cooperativity in one 
trajectory. (L0=200, M0 = 100, M is total number of free proteins, L is total number of free ligands, ML, 
ML2, ML3, and ML4 are total number of proteins with 1, 2, 3, and 4 ligands attached to, respectively.) 
 

As it is shown in Table 6, the results do seem to be inaccurate at first, since, for instance, the 

value of Hill coefficient should be equal to 1 in a non-cooperativity situation. Although the 

results are not accurate enough, the system still shows a similar transition from negative to 

positive cooperativity (Mave and std. dev. values demonstrate increasing behavior from negative 

to positive cooperativity). 
 

Table 6. Results of different types of cooperativity using stochastic approach (tau-leaping algorithm) 
for just one trajectory. NH is Hill coefficient, Mave is average ligand binding number of proteins, and std. 
dev. is standard deviation value. Parameters for the simulations are: initial protein numbers (M0) = 100, 
initial ligand numbers (L0) = 125 to 375, number of points=21. 
 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Negative 0.1104 0.0584 0.002 0.00128 1.239 1.8538 0.40064 

Non-cooperativity 0.036 0.036 0.036 0.036 1.78 2.1314 0.56639 

Positive 0.01888 0.052 0.616 1.136 2.567 2.421 0.74746 

 
The reason why there is a difference between stochastic and deterministic simulations (where 

all rate constants values have been chosen the same based on converting concentration into 

number unit), is probably due to stochastic behavior of the system, since the results were 

calculated for a single trajectory. Unlike a deterministic simulation of a system, one would 

expect some differences between the results for every run of a stochastic simulation. To see 
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similar results, number of replicates (here number of trajectories) should increase. Therefore, 

the stochastic simulations were repeated for 10 trajectories. The results are shown in Table 7 

and one could see closer similarity to the deterministic results, because increasing the number 

of trajectories would reduce stochastic behavior of the system. 
 

Table 7. Results of different types of cooperativity using stochastic approach (tau-leaping algorithm) 
for 10 trajectories. NH is Hill coefficient, Mave is average ligand binding number of proteins, and std. dev. 
is standard deviation value. Parameters for the simulations are: initial protein number (M0) = 100, ligand 
numbers (L0) = 125 to 375, number of points=21. 
 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Negative 0.1104 0.0584 0.002 0.00128 0.5678 1.8678 0.3987 

Non-cooperativity 0.036 0.036 0.036 0.036 0.9657 2.1261 0.57 

Positive 0.01888 0.052 0.616 1.136 3.36 2.3736 0.7499 

 

Similar to the deterministic approach, we explored the effect of the rate constant values on Mave 

and std. dev. values while a protein retains its cooperativity type. Here, results for 10 

trajectories, to compare them the deterministic results, are shown. Results of just one trajectory 

can be found in the supplementary file S1-C. 

For a protein with non-cooperativity behavior, results are shown in Table 8, which show an 

incremental behavior in Mave and std. dev. while increasing the rate constant values. 

 

Table 8. Results of effect of rate constant values on a protein with non-cooperativity using stochastic 
approach for 10 trajectories. NH is Hill coefficient, Mave is average ligand binding number of proteins, 
and std. dev. is standard deviation value. Other parameters for the simulations are the same as Table 7. 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Non-cooperative 3.6×10-4 3.6×10-4 3.6×10-4 3.6×10-4 1.1 0.29 0.0926 

Non-cooperative 3.6×10-3 3.6×10-3 3.6×10-3 3.6×10-3 0.9949 1.2221 0.3161 

Non-cooperative 3.6×10-2 3.6×10-2 3.6×10-2 3.6×10-2 0.9657 2.1261 0.57 

 

For a protein in a positive cooperativity behavior, we added a constant value (ε) to the rate 

constants. Results are shown in Table 9, which show an incremental behavior in Mave and std. 

dev. while increasing the rate constant values. 
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Table 9. Results of effect of rate constant values on a protein with positive cooperativity using stochastic 
approach for 10 trajectories. The ε value was 0.008 which means ki values in lower rows are 0.008 more 
that the above ones. NH is Hill coefficient, Mave is average ligand binding number of proteins, and std. 
dev. is standard deviation value. Other parameters for the simulations are the same as Table 7. 
 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Positive    2.88×10-3 3.6×10-2 6×10-1 1.12 3.36 2.3736 0.7499 

Positive  1.088×10-2 4.4×10-2 6.08×10-1 1.128 2.842 2.4118 0.7539 

Positive  1.888×10-2 5.2×10-2 6.16×10-1 1.136 3.064 2.4193 0.755 

 

 

Finally, for a protein with negative cooperativity, we subtracted a constant value (ε) from the 

rate constants. Results are shown in Table 10 which showed Mave and std. dev. would be 

decreased while there is a reduction in the rate constant values. 

It is possible to compare the results of Tables 8, 9, and 10 to Tables 3, 4, and 5, respectively, to 

see similar behaviors between stochastic and deterministic approaches. 

The complete results of all the stochastic simulations are available in the supplementary file 

S1-C. 

 

Table 10.  Results of effect of rate constant values on a protein with negative cooperativity using 
stochastic approach for 10 trajectories. The ε value was 0.0008 which means ki values in lower rows are 
0.0008 less than the upper ones. NH is Hill coefficient, Mave is average ligand binding number of proteins, 
and std. dev. is standard deviation value. Other parameters for the simulations are the same as Table 7. 

 

Type of Cooperativity 

k1 

(ml/mmol) 

k2 

(ml/mmol) 

k3 

(ml/mmol) 

k4 

(ml/mmol) 

nH Mave std. dev. 

Negative      1.12×10-1 6×10-2 3.6×10-3 2.88×10-3 0.5678 1.8678 0.3978 

Negative     1.112×10-1 5.92×10-2 2.8×10-3 2.08×10-3 0.5336 1.8228 0.3714 

Negative     1.104×10-1 5.84×10-2 2×10-3 1.28×10-3 0.4626 1.7808 0.3364 

 

4  Discussion 

One of the properties of proteins is their ability to regulate their activities, in order to function 

appropriately in the face of varied physiological environment that might arise during the life of 

a cell [35]. Among different kinds of proteins, multimer proteins have the interesting property 

of cooperativity. More than 50% of proteins are in complex forms and lots of them have more 
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than just one binding site for ligands [27,28, 36]. It has been demonstrated that various binding 

behaviors exist in multimer proteins; a) non-cooperativity in which binding of ligands is 

completely independent, that is, the binding of the first ligand does not affect the affinity of the 

next ligand, b) positive cooperativity in which binding of each ligand increases the affinity for 

the next binding, and c) negative cooperativity in which binding of each ligand decreases the 

affinity for the next binding. In this study, we attempted to answer why multimer proteins are 

needed and why a specific cooperativity type is seen? 

First, we explored the different kinds of cooperativity. Our study indicated that there is not any 

significant preference for a specific type (Figure 1). In the next step, we considered stability 

advantage as a key criterion for cooperativity selection. Thus, we investigated cooperativity 

from a thermodynamic point of view [22]. 

A few studies illustrated that ∆G would be decrease in a positive cooperativity situation, which 

makes the system more stable [37]. However, it not clearly obvious that such decrement is due 

to the decrease in enthalpy term or the increase in entropy term or both [38,39]. If a protein 

choose its type of cooperativity solely based on stability, it would always be suitable to select 

positive cooperativity. But based the literature on this subject, positive cooperativity is not 

dominant in nature (Figure 1). Also, few studies demonstrated that low ligand concentrations 

would result in negative cooperativity[37]. Again, based the literature, there is not any 

preference based on ligand concentrations (Figure 1). 

We believe that cooperativity, introduced by changing in rate constant, should result in some 

advantages beyond stability, ligand concentrations, and likes. Consequently, we performed 

deterministic simulations to explore the effect of rate constant fora specific kind of 

cooperativity. When the system reached steady-state, we calculated the average number and the 

standard deviation (std. dev.) of bound protein molecules (Mave), Here, we considered std. dev. 

values as a measure of noise in the cooperative system. One could see three reasonable 

conclusions based on the simulation results; 1) Mave and std. dev. values increase from negative 

to positive cooperativity, 2) in a positive and non-cooperativity behaviors, Mave and std. dev. 

would increase while increasing the rate constant values, and 3) in negative cooperativity, Mave 

and std. dev. values decrease when there is a reduction in the rate constant values. 

However, when molecules are few (which is the norm in cells), deterministic approaches can 

not capture all the characteristics of the system and stochasticity plays an important role [37]. 

Therefore, simulations were repeated using a stochastic approach. Interestingly, we have seen 

the same behavior; increasing in Mave and std. dev. values from negative to positive 

cooperativity, increasing in Mave and std. dev. values when increasing the rate constant values 
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for positive and non-cooperativity conditions, and decreasing in Mave and std. dev. values when 

reducing the rate constant values for negative cooperativity condition. 

Based on the simulation results, it could be inferred that for cooperative proteins, the rate 

constants might be the regulators. Rate constant values can be changed to obtain a desired 

cooperativity behavior, not only because of stability or ligand concentrations, but also 

influencing the std. dev. values. It seems rate constant values are a way to tune the noise 

(represented as std. dev. in our study) of a system. In a more stable environment, a system needs 

to be less flexibility, so it prefers negative cooperativity, which leads to reduction in noise (i.e. 

std. dev. value). In a fluctuating environment, positive cooperativity and increasing the noise 

would be preferred. In biology, noise is not necessarily a destructive force; instead, it could be 

advantageous in the hands of natural selection. A wider range of std. dev. value would guarantee 

robustness and stability of a system in different situations [41]. Our study reveals that for model 

of cooperativity, the biochemical rate constant values act as a source of intrinsic noise. So, 

changing intrinsic noises (std. dev. values) would affect the cell function and provide the 

necessary variation in a population of cells. 

Finally, we came back to our previous questions: why multimer proteins are needed and why a 

specific cooperativity type is chosen? Our answer to this question is that, although multimer 

proteins require more energy to assemble and increase the possibility of flaws (such as 

aggregations), but they enable the system to tune the noise in fluctuating environments, which 

can be a valuable trait during evolution. So, it would be beneficial for a protein to be capable 

of changing cooperativity behavior under different conditions, e.g., positive cooperativity might 

lead to an increase in stability and a protein could bind more ligands simultaneously, whereas 

negative cooperativity would be useful where ligand concentration is low. This study suggests 

that the rate constants can be viewed as tools for adjusting the noise in a cooperative protein. 

An adjustment that affect the flexibility of the protein in each type of cooperativity. However, 

our results raises more questions, which would benefit from further studies. 
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