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Abstract 
The eccentricity of vertex v is ( ) max ( , )u Vv d u vε ∈= , where d(u,v) is the distance 
between vertices u and v. In this paper, we study the entropy measures of some classes 
of fullerene graphs based on eccentricity of vertices.  

 
 

1 Introduction 

Entropies to characterize and quantify the structure networks have been investigated 

extensively [9-13]. In [10], several types of graph entropies have been discussed and 

mathematically explored. Therefore, we omit an extensive review on graph entropies here. 

The main contribution of the paper is to study the entropy of so-called fullerene graphs, e.g., 

[16,17] by using special eccentricity-based information functionals; a graph class with a long 

standing history in chemistry and related disciplines.  

As graph entropies, we use a special definition thereof due to Dehmer [6-13], see Section 2 

for technical details.  All graphs considered in this paper are simple, connected and finite. Let 

x and y be two arbitrary vertices of graph G, the distance between them is the length of the 
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shortest path connecting them denoted by d(x,y). The eccentricity of vertex v is defined as 

V( ) max ( , )uv d u v∈=ε , where ( , )d u v  is the distance between vertices u and v. The minimum 

and the maximum eccentricity among all vertices of G is called the radius and the diameter of 

G, respectively denoted by r(G) and d(G). A connected graph G with d(G) = r(G) is called 

self-centered graph. The eccentric complexity of a graph G, denoted by Cec(G), is defined as 

the number of different eccentricities of its vertices. It is not difficult to see that a graph G is 

self-centered if and only if Cec(G) = 1. The total eccentricity of a graph G, denoted by ζ(G), is 

defined as the sum of eccentricities of its vertices. In other words, ( ) ( ).
v V

G vζ ε
∈

= ∑  The 

eccentric connectivity index is also defined as ( ) ( ) ( ),
v V

G d v vξ ε
∈

= ∑  where d(v) denotes the 

degree of vertex v. In the next section, we state necessary definitions and some preliminary 

results and in Section 3, we determine the entropy of fullerene graphs. 

 

2 Preliminaries 

Let Γ be a group acting on the set Ω, namely there is a function φ: Γ × Ω → Ω where (g,x) 

↦φ(g,x) that satisfies in the following two properties (we denote φ(g,x) as xg): αe = α for all α 

in Ω and (αg)h = αgh for all g, h in Γ. The orbit of an element α ∈Ω  is denoted by αG and it is 

defined by the set of all αg, g G∈ . 

A permutation f on the vertices of graph X is called an automorphism of X where e=uv 

is an edge if and only if ( ) ( ) ( )f e f u f v=  is an edge of E. Denoted by Aut( )X  is the set of all 

automorphisms of X forming a group under the composition of permutations. This group acts 

transitively on the set of vertices, if for a pair of vertices such as u and v in V(X), there is an 

automorphism Aut( )g X∈  such that ( ) .g u v=  In this case, we say that X is vertex-transitive. 

An edge-transitive graph can be defined similarly.  

 The symbol “log” denotes the logarithm based on the basis 2 in the whole of this paper. 

The entropy measures based on Shannon’s entropy [23] can be defined as follows. Consider a 

probability vector 1 2( , ,..., )np p p p=  which satisfies in two conditions 0 1ip≤ ≤  and 

1
1

n

ii
p

=
=∑ . The Shannon’s entropy of p is defined as 

1

( ) log
n

i i
i

I p p p
=

= −∑ .  

 Dehmer [6-13] introduced the entropy of a graph by using special information functional. 

In fact, he assigned a probability value to each individual vertex of a graph. This definition of 

entropy differs from the one based on vertex-orbits, see [10]. Let ( , )G V E=  be a undirected 

connected graph. Let 
1

( )
V

j
j

F f v
=

= ∑ , for a vertex iv V∈ , we define 
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1
( ) : ( ),i ip v f v

F
=  

where f represents an arbitrary information functional. Observe that 
| |

1
( ) 1

V

jj
p v

=
=∑ . Hence, 

we can interpret the quantities ( )ip v  as vertex probabilities. Let f be arbitrary information 

functional. The entropy of G is defined by [6-13]: 

( )
1 1

( )1 1
( ) ( ) log log ( ) log ( ).

V V
i

f i i i
i i

f v
I G f v F f v f v

F F F= =

 = − = − 
 

∑ ∑  

 We here use an information functional based on eccentricity. Let ( , )G V E= , for a vertex 

iv V∈ , we define f as ( ) ( ),i i if v c vε=  where 0ic > for 1 i n≤ ≤ . The entropy based on f 

denoted by ( )If Gε  is defined as follows: 

1 1

1

( )
( ) log ( ) log( ( )).

( )

n n
i i

i i i in
i i

j j
j

c v
If G c v c v

c v
ε

εε ε
ε= =

=

 = − 
 
∑ ∑

∑
                           (1) 

In addition, if ci’s are equal, then  

1 1

1

( )
( ) log ( ) log( ( )).

( )

n n
i

i in
i i

j
j

v
If G v v

v
ε

εε ε
ε= =

=

 = − 
 
∑ ∑

∑
                              (2) 

3 Main results 

In [2] it has been proven that if G is a vertex-transitive graph, then the eccentricities of any 

pair of distinct vertices are equal. Hence, it is important to determine the entropy of non-

vertex transitive graphs. 

Theorem 1 [7]. Let G be a vertex-transitive graph on n vertices, for all sequences 

1 2 ... nc c c≥ ≥ ≥  we have 

1 1

1

( ) log( ) log( ).
n n

i
i in

i i
j

j

c
If G c c

c
ε

= =

=

= −∑ ∑
∑

                                       (3) 

As a special case, if i jc c=  for all i j≠  then ( ) log( ).If G nε =  

Similar to the proof of Theorem 1, one can see that if G is a self-centered graph, then 

( )If Gε  satisfies in Eq. (3). For a given graph G, its line graph, denoted by L(G), is a graph 

whose vertex set is the edge set of G and two vertices are adjacent if and only if their 

corresponding edges share a common end-vertex in G. 

Theorem 2. Let G be a connected edge-transitive graph on n vertices and m edges. Then for 

all sequences 1 2 ... nc c c≥ ≥ ≥ , we have 
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1 1

1

( ( )) log( ) log( ).
m m

i
i im

i i
j

j

c
If L G c c

c= =

=

= −∑ ∑
∑

ε  

As a special case, if i jc c=  for all i j≠  then ( ( )) log( ).If L G mε =  

Proof. An undirected graph is edge-transitive if and only if its line graph is vertex-transitive. 

Applying Theorem 1 concludes the proof. 

Theorem 3. Suppose G is a graph and 1 2, ,..., kV V V  are all orbits of Aut( )G  under its natural 

action on V( )G . Then  

( )
1 1 1 1

1 1

( ) log ( ) ( ) log ( ) .

( )

i i

i

V Vk k
j

i j i j jVk
i j i j

t l
t l

c
If G x c x c x

x c
ε ε ε ε

ε= = = =

= =

 
= −  

 
∑ ∑ ∑ ∑

∑ ∑
                    (4) 

In addition, if c1 = c2 = … = cn, then 

( )( ) ( ) 1

1
log ( ) log( ( ))

k

i i i
i

G
G

V x x
=

− ∑ εζ ε
ζ

.                                     (5) 

Proof. For all ,i j ix x V∈ , we have ( ) ( )i jx xε ε= . By using Theorem 1, This completes the 

proof of the first claim. In order to continue by utilizing Eq. (4), we infer 

( )

( )( ) ( )

1 1 1 1

1 1

1

( ) log ( ) ( ) log ( )

( )

1
log ( ) log( ( )).

i i

i

V Vk k
j

i j i j iVk
i j i j

t l
t l

k

i i i
i

c
If G x c x c x

x c

V x xG
G

= = = =

= =

=

 
= −  

 

= −

∑ ∑ ∑ ∑
∑ ∑

∑

ε ε ε ε
ε

εζ
ζ

ε

 

Corollary 4. Suppose 1 ( )( ) { ( ), , ( )}
ecC GG x x= …ε ε ε  is the set of all distinct eccentricities of 

graph G, where the multiplicity of ( )ixε  is ni, 1 ≤ i ≤ Cec(G) and c1 = c2 = … = cn. Then 

( ) ( ) 1

1
( ) log ( ) ( ) ( ) log( ( )).

k

ec i i i
iG

If G nC G d G V x x
=

≤ − ∑ε ε
ζ

ε  

Proof. Let 1 ( )( ) { ( ), , ( )}
ecC GG x x= …ε ε ε  be the set of all distinct eccentricities of graph G, then  

( )
( ) ( ) ( )

1 1 1

| | ( ) | | ( ) ( ) ( ).
ec ec ecC G C G C G

i i i i ec
i i i

V x V x nC G d GG ε εζ
= = =

= ≤ ≤∑ ∑ ∑                         (6) 

By substituting, Eq. (6) in Eq. (5), we obtain the proof.  

Theorem 5. Let G be a connected non-partite edge-transitive graph, then  

1 1

1

( ) log( ) log( ).
n n

i
i in

i i
j

j

c
If G c c

c
ε

= =

=

= −∑ ∑
∑
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Proof. First, we claim that the eccentric complexity of a connected edge-transitive graph is at 

most 2. To do this, suppose that uv is and edge of E(G). Since G is edge-transitive, for every 

edge xy in E(G), there is an automorphism ( )Aut G∈π  such that ( )u x=π  and ( )v y=π . We 

can conclude that  

V V V( ) max ( , ) max ( ( ), ( )) max ( , ) ( ).w w zx d x w d x w d u z u∈ ∈ ∈= = = =ε π π ε  

This means that for every vertex w of G, ( ) { ( ), ( )}w u v∈ε ε ε  and thus 

( )

( )

| | | |

| |
1 | | 1 1

1 | | 1

|

| |
| | 1

1 | | 1

( )
( ) log ( ) ( ) log ( )

( ) ( )

( )
log ( ) ,

( ) ( )

X Xn
i

i i iX n
i i X i

i i
i i X

n
i

iX n
i X

i i
i i X

c u
If G u c v c c u

u c v c

c v
c v

u c v c

= = + =

= = +

= +

= = +

 
= + − 

  +

−
+

∑ ∑ ∑
∑ ∑

∑
∑ ∑

ε
εε ε ε

ε ε

ε ε
ε ε

 

where { : ( ) ( )}X x V x u= ∈ =ε ε  and { : ( ) ( )}Y y V y v= ∈ =ε ε . It is not difficult to see that 

V( )G X Y= ∪  and X Y∩ = Φ . Since, G is not bipartite for every pair of vertices 

,a b X∈  or Y, ( ) ( )a b=ε ε  and the eccentric complexity of G is one. This completes the 

proof. 

Theorem 6. Let G be a graph and  

1 1

1

1
log log( )

n n

i i in
i i

j
t

l c c c
c= =

=

 = − 
 
∑ ∑

∑
. 

Then | ( ) | 1.If G l− ≤ε  In addition, if c1 = c2 = … = cn, then | ( ) log( ) | 1.If G n− ≤ε  

Proof. For every connected graph G, it is not difficult to see that r(G) ≤ d(G) ≤ 2r(G). This 

yields that for every vertex v, we have ( ) ( ) ( )r G v d G≤ ≤ε  and thus  

( )
1 1

1

( )
( ) log ( ) log ( )

( )

n n
i

i in
i i

j
j

c r G
If G c d G c r G

c r G
ε

= =

=

 ≤ − 
 
∑ ∑

∑
 

( )

( )

1 1

1

1 1

1

1
log( ( )) log log ( ) log( )

1
log( ( )) log log( ) log ( )

( )
log .

( )

n n

i i in
i i

j
j

n n

i i in
i i

j
j

d G c c r G c
c

d G c c c r G
c

d G
l

r G

= =

=

= =

=

 = + − +    
 

 = + − − 
 

 
= + 

 

∑ ∑
∑

∑ ∑
∑

 

On the other hand, by a similar argument we can deduce that  
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( )
( ) log .

( )
d G

If G l
r G

 
≥ − + 

 
ε  

Hence,  

( )
| ( ) | log .

( )
d G

If G l
r G

 
− ≤  

 
ε  

Since, d(G) ≤ 2r(G) we have | ( ) | log(2) 1.If G l− ≤ =ε  If c1 = c2 = … = cn, then log( )l n=  

and the proof is complete. 

Lemma 7 [20]. Let G be a nontrivial connected graph of order n. For each vertex v in G, it 

holds  

( ) ( )v n d vε ≤ − . 

Theorem 8. Let G be a nontrivial connected graph of order n and ci = d(vi). Then 

1

( ) log( ( )) log ( )( ( )) .
n

i i
i

If G G d v n d vε ξ
=

 ≥ − − 
 
∏  

Proof. By substituting ci = d(vi) in Eq. (1) we have  

1 1

1

1

1 1

( ) ( )
( ) log ( ) ( ) log( ( ) ( ))

( ) ( )

1
log( ( )) ( ) ( ) log( ( ) ( ))

( )

1
log( ( )) ( ) ( ) log( ( ) ( ))

( )

log( ( )) log( ( ) ( ))

n n
i i

i i i in
i i

j j
j

n

i i i i
i

n n

i i i i
i i

i i

d v v
If G d v v d v v

d v v

G d v v d v v
G

G d v v d v v
G

G d v v

ε
εε ε

ε

ξ ε ε
ξ

ξ ε ε
ξ

ξ ε

= =

=

=

= =

 = − 
 

= −

≥ −

= −

∑ ∑
∑

∑

∑ ∑

1

.
n

i =
∑

 

By using Lemma 7, the proof is complete. 

In general, if 
1

( ) ( )
n

i i
i

G c vβ ε
=

=∑ , by using Lemma 7 and Eq. (2), we have  

( )
1

( ) log( ( )) log( ( ) .
n

i i
i

If G G c n d vε β
=

≥ − −∏  

4 Entropy of fullerene graphs 

A fullerene graph is a planar, 3-regular and 3-connected graph whose faces are pentagons and 

hexagons. In other words, a fullerene on n vertices has exactly 12 pentagons and n/2-10 

hexagons, see [16,22]. For more details about the eccentricity of fullerene graphs, see [1-3, 

14,15,17-19,21,24]. Here, we introduce three infinite classes of fullerenes with 12n+4, 

18n+10 and 10n vertices, respectively. We denote them by C12n+4, C18n+10 and C10n. In the 
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course of this paper, we compute the entropy of these classes of fullerenes. We refer to [4,5] 

for more details on entropy of graphs. 

Theorem 9. If ci’s are equal in Eq. (1), then the entropy of fullerene 12 4nC + , 8n ≥  (Figure 1) 

is 

( )2
12 4

1

2
1

( ) 1 log 9 19 8

2
(2 1) log(2 1) 3 ( ) log( )

9 19 8

n

n

i

If C n n

n n n i n i
n n

ε +

+

=

= + + +

 − + + + + + + +  
∑

 

Proof. From Figure 1, one can see that there are three types of vertices of fullerene graph 

12 4nC + . By using the eccentricity of these vertices as given in Table 1 and using Eq. (2), we 

have 
1

12 4
1

1

1
1

1

( ) log 4(2 1) 12 ( )

1
4(2 1) log(2 1) 12 ( ) log( )

4(2 1) 12 ( )

n

n
i

n

n
i

i

If C n n i

n n n i n i
n n i

+

+
=

+

+
=

=

 = + + + 
 

 − + + + + + 
 + + +

∑

∑
∑

ε

 

( )2

1

2
1

1 log 9 19 8

2
(2 1) log(2 1) 3 ( ) log( ) .

9 19 8

n

i

n n

n n n i n i
n n

+

=

= + + +

 − + + + + + + +  
∑

 

Table 1. The eccentricity of vertices of 12 4nC + , 8n ≥ . 

Vertices ( )xε  No. 

The Type 1 Vertices 2n+1 4 

Other Vertices n+i (1≤ i ≤n+1) 12 

 

 

Figure 1. The Molecular Graph of the Fullerene 12 4nC + . 
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The exceptional cases are given in Table 2. 

Table 2. Some Exceptional Cases of 12 4nC +  Fullerenes.  

Fullerene(F) ( )If Fε  

28C  4.801607 

40C  5.320686 

52C  5.696082 

64C  5.992826 

76C  6.373541 

88C  6.438383 

 

Theorem 10. If ci’s are equal in Eq. (1), then the entropy of fullerene 18 10nC + , 14n ≥  (Figure 

2) is 

( )12 4

2

1

2

( ) log( ) log 9 101

1
(7(2 3) log(2 3) 9(2 2) log(2 2)

9 101

15(2 1) log(2 1) 30 log(2 ) 18 ( ) log( )).

n

n

i

If C n n

n n n n
n n

n n n n n i n i

ε +

−

=

= + +

− + + + + + +
+

+ + + + + +∑

 

Proof. From Figure 2, one can see that there exist three types of vertices of fullerene graph 

18 10.nC + By using the eccentricity of these vertices as given in Table 3 and using Eq. (2), we 

obtain 

( )

1

12 4
2

1

2

1

2

2

( ) log 7(2 3) 9(2 2) 15(2 1) 15(2 ) 18 ( )

1
(7(2 3) log(2 3) 9(2 2) log(2 2)

4(2 1) 18 ( )

15(2 1) log(2 1) 30 log(2 ) 18 ( ) log( ))

1
log( ) log 9 101

9

n

n
i

n

i

n

i

If C n n n n n i

n n n n
n n i

n n n n n i n i

n n
n

−

+
=

−

=

−

=

 = + + + + + + + + 
 

− + + + + +
+ + +

+ + + + + + +

= + + −

∑

∑

∑

ε

(7(2 3) log(2 3) 9(2 2) log(2 2)
101

n n n n
n

+ + + + +
+

1

2

15(2 1) log(2 1) 30 log(2 ) 18 ( ) log( )).
n

i

n n n n n i n i
−

=

+ + + + + + +∑  

The exceptional cases are given in Table 4. 
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Table 3. The eccentricity of vertices of 18 10nC + , 14n ≥ . 

Vertices ( )xε  No. 

The Type 1 Vertices 2n+3 7 

The Type 2 Vertices 2n+2 9 

The Type 3 Vertices 2n,2n+1 15 

Other Vertices n+i (2≤ i ≤n-1) 18 

 

Table 4. Some Exceptional Cases of 18 10nC +  Fullerenes.  

Fullerene(F) ( )If Fε  Fullerene(F) ( )If Fε  

82C  6.356532937 172C  7.381144182 

100C  6.639656114 190C  7.548407362 

118C  6.875628442 208C  7.676794255 

136C  7.075830676 226C  7.960277124 

154C  7.251688191 244C  7.905535260 

 

 

Figure 2. The Molecular Graph of the Fullerene 18 10nC + . 
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Theorem 11. If ci’s are equal in Eq. (1), then the entropy of fullerene 10nC , 8n ≥  (Figure 3) 

is 

( )10

1

2
2

( ) log5 log( ) log 3 1

2
(2 1) log(2 1) (2 ) log(2 ) .

3

n

n

i

If C n n

n n n i n i
n n

ε
−

=

= + + −

 − − − + − − −  
∑

 

Proof. From Figure 3, one can see that there exist three types of vertices of fullerene graph 

10nC . By using the eccentricity of these vertices as given in Table 5 and using Eq. (2), we 

have 

( )

1

10
2

1

1
2

2

1

2
2

( ) log 10(2 1) 10 (2 )

1
10(2 1) log(2 1) 10 (2 ) log(2 )

10(2 1) 10 (2 )

log5 log( ) log 3 1

2
(2 1) log(2 1) (2 ) log(2 ) .

3

n

n
i

n

n
i

i

n

i

If C n n i

n n n i n i
n n i

n n

n n n i n i
n n

ε

−

=

−

−
=

=

−

=

 = − + − 
 

 − − − + − − 
 − + −

= + + −

 − − − + − − −  

∑

∑
∑

∑

 

Table 5. The eccentricity of vertices of 10nC , 8n ≥ . 

Vertices ε(x) No. 

The Type 1 Vertices 2n-1 10 

Other Vertices 2n-i (2≤ i ≤n) 10 

 

 

Figure 3. The Molecular Graph of the Fullerene 10nC . 
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The exceptional cases are listed in Table 6. 

Table 6. Some Exceptional Cases of 10nC  Fullerenes.  

Fullerene(F) Ifε(F) 

20C  6.643856190 

30C  7.491853096 

40C  5.314542162 

50C  5.637271494 

60C  5.994935534 

70C  6.106497467 

 

Acknowledgment: Matthias Dehmer thanks the Austrian Science Funds for supporting this 
work (project P 30031). 
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