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Abstract
The eccentricity of vertex is &(v) = max,y d (u,v), whered(u,V) is the distance
between vertices andv. In this paper, we study the entropy measuresmoksclasses
of fullerene graphs based on eccentricity of vesic

1 Introduction

Entropies to characterize and quantify the structure netwheke been investigated
extensively [9-13]. In [10], several types of graph entrogiase been discussed and
mathematically explored. Therefore, we omit an extensiviewieon graph entropies here.
The main contribution of the paper is to study the entropy -ei#ied fullerene graphs, e.g.,
[16,17] by using special eccentricity-based information funatgra graph class with a long
standing history in chemistry and related disciplines.

As graph entropies, we use a special definition thereof @@Ehmer [6-13], see Section 2
for technical details. All graphs considered in this papesanple, connected and finite. Let
x andy be two arbitrary vertices of gragh, the distance between them is the length of the
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shortest path connecting them denoteddpyy). The eccentricity of vertex is defined as
£(v) = max,,, d(u,v), whered(u, V) is the distance between vertiaeandv. The minimum
and the maximum eccentricity among all vertice§a$ called the radius and the diameter of
G, respectively denoted hyG) andd(G). A connected grapls with d(G) = r(G) is called
self-centered graph. The eccentric complexity gfaphG, denoted byCedG), is defined as
the number of different eccentricities of its vees. It is not difficult to see that a gra@his
self-centered if and only €e{G) = 1. The total eccentricity of a grafh denoted by(G), is

defined as the sum of eccentricities of its vestida other words{ (G) = vaf(v). The

eccentric connectivity index is also definedd&) = szV d(V&(V), whered(v) denotes the

degree of vertex. In the next section, we state necessary defirstend some preliminary
results and in Section 3, we determine the entabiiyllerene graphs.

2 Preliminaries

Let " be a group acting on the <@t namely there is a functigm I” x Q — Q where §,%)
~¢(g,X that satisfies in the following two propertiese(enotey(g,X) asx9): a® = o for all a
in Q and @9)" = o9" for all g, hin I. The orbit of an elemenr 0Q is denoted by® and it is
defined by the set of ai¥, g G.
A permutatiorf on the vertices of grapXis called an automorphism Bfwheree=uv

is an edge if and only if (e) = f(u) f(\) is an edge of. Denoted byAut(X) is the set of all
automorphisms oX forming a group under the composition of permutetior his group acts
transitively on the set of vertices, if for a pafrvertices such as andv in V(X), there is an
automorphisng [ Aut(X) such thatg(u) = v In this case, we say thAtis vertex-transitive.
An edge-transitive graph can be defined similarly.

The symbol “log” denotes the logarithm based an lthsis 2 in the whole of this paper.
The entropy measures based on Shannon’s entropgd@3e defined as follows. Consider a
probability vector p = (p, p.,..., B ) Which satisfies in two condition® < p <1 and

Zl"zl p. = 1. The Shannon’s entropy pfis defined ad (p) = —Zn: plogp.
i=1

Dehmer [6-13] introduced the entropy of a graphubing special information functional.
In fact, he assigned a probability value to eadividual vertex of a graph. This definition of
entropy differs from the one based on vertex-orlsiée [10]. LetG = (V, E) be a undirected

M
connected graph. Let = z f(v,), foravertexy, OV, we define

=1
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P = = 1Y),
wheref represents an arbitrary information functional s@e thatZ'?’zl1 p(v;) =1. Hence,
we can interpret the quantitigg(v) as vertex probabilities. Létbe arbitrary information
functional. The entropy d& is defined by [6-13]:
| (G)———Zf(v)log(f( )) log(F Elif(vi)logf(\{).
=

We here use an information functional based oermdcity. Let G = (V, E), for a vertex
v, OV, we definef as f(v) = ge(y), wherec > 0for 1<i <n. The entropy based dn
denoted byif, (G) is defined as follows:

If,(G) = Iog[iqs(w)) 3G jogge(y)). (1)
i=1 i=1 Zc £(V)

In addition, ifci’s are equal, then

If,(G) = Iog(ie(v.)] >0 jogeew)). @)
i=1 i=1 Z‘E(V )

3 Main results

In [2] it has been proven that@ is a vertex-transitive graph, then the ecceniggiof any
pair of distinct vertices are equal. Hence, itngortant to determine the entropy of non-
vertex transitive graphs.

Theorem 1 [7]. Let G be a vertex-transitive graph om vertices, for all sequences
C 2G,2...2 G we have

It,G) =log(}. )~ ~5— log(g) @
i=1 i=1 ch

As a special case, § =¢ foralli#j thenlf (G)=log(n).

Similar to the proof of Theorem 1, one can seeifh@tis a self-centered graph, then
If,(G) satisfies in Eq. (3)For a given grapl@, its line graph, denoted HyG), is a graph
whose vertex set is the edge set@fand two vertices are adjacent if and only if their
corresponding edges share a common end-veri@x in
Theorem 2. Let G bea connected edge-transitive graphnovertices andn edgesThenfor

all sequences, 2¢,=...2 ¢, we have
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If,(L(G)) =log(}¢)- Y - log(q ).

i=1 i=1
CJ

Ma

I
N

i

As a special case, § =¢ foralli#j thenlf (L (G)) =log(m).

Proof. An undirected graph is edge-transitive if and dhiys line graph is vertex-transitive.
Applying Theorem 1 concludes the proof.
Theorem 3. SupposeG is a graph and,,V,,...,\, are all orbits ofAut(G) under its natural

action onV(G) . Then

k M|
If.(G)= Iog[Zs(x)ch Delx )Zk ——log( e (%)) )
e gs(m;q
In addition, ifc1 =c2 = ... =c,, then
log(z(e))—%g\vﬁ\e(x)log(‘s(x)). )

Proof. For all x,x OV, we havee(x)=&(x). By using Theorem 1, This completes the

proof of the first claimIn order to continue by utilizing Eq. (4), we infer

K Ml
If.(G) :Iog[Ze(x )Zc] Zsmz log( G (x))
i=1 j=1 i=1 j l‘Z:é_(Xt)zc‘

=log(¢(G))- ﬁg\v\f(x)log(m»-

Corollary 4. Supposes(G) ={&( X), .., &(%_)} is the set of all distinct eccentricities of

graphG, where the multiplicity ofe(x) isni, 1<i < CedG) andc1 =cz2 = ... =cn. Then
If. ()< log(nC,.(G)d(3) - HE )Z\ \e(9logte ().

Proof. Let £(G) ={&( ), .., &(%,_))} be the set of all distinct eccentricities of gr&pithen
Ce.(G) Cee(G) Ced G

)
{(G)= Z YAECSED WY 12, £ )< nG. (G)d() (6)

i=1
By substituting, Eq. (6) in Eq. (5), we obtain threof.
Theorem 5. Let G bea connected non-partite edge-transitive graph, then

If,(G) = Iog(Zq) Z g
=1 IZCJ

log(g )
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Proof. First, we claim that the eccentric complexfya connected edge-transitive graph is at
most 2. To do this, suppose thatis and edge dE(G). SinceG is edge-transitive, for every
edgexy in E(G), there is an automorphism( Aut(G) such thatrz(u) = x and 77(v) = y. We
can conclude that

£(X) = max,q, d (x, W)= max,, d@ ()77 (W)= max, dUzFe (U
This means that for every vertexof G, e(w) O{& U, (Y} and thus

IX] n X |
|f£(c;)=|og(e(u)zq+g(v)_z qj—z G (e (u)
TR TS erem Y

i=X 1
In
-2 T F S0 log(cew).
T g re(V) X ¢
i=1 =X 1

where X ={xOV:g 3y =& 9} andY ={yO V:& ¥y = & ¥} . Itis not difficult to see that
V(G) = XOY and X nY =®. Since, G is not bipartite for every pair of vertices

a,b0 X orY, &(a) = g(b) and theeccentric complexity of5 is one. "his completes the

proof.
Theorem 6. Let G be a graph and

I=Iog[zn1:ci]— nl anlq log(G ).
Then|If,(G)-I |<1. In addition, ifc; =c2 = ... =cy, then]|If,(G)—log(n) < 1.

Proof. For every connected gra@ it is not difficult to see that(G) < d(G) < 2r(G). This
yields that for every vertex we haver (G) < £(v) < d(G and thus

IfE(G)slog[icid(G)]—if‘r&Iog(q r(G))

=137c,r(G)
= log(d (G))+Iog[ Vg ]—%iq [log( r(@)) + log(¢ ]
i=1 ZCJ i=1
- log(@d (G))+Iog(” q]— L3¢ log(¢ )- log( r(G)
i=1 zcj i=1
j=1
. (d©)
—Iog[r(G)jH.

On the other hand, by a similar argument we canckethat
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If.G)= - Iog( (G)j ..

rG)
Hence,
d(G)
If,G)-Il|gl
[1f.G)-lls 09[ (G)j
Since,d(G) < 2r(G) we have|If,(G) -1 |< log(2)= 1 If c1=c2 = ... =cy, thenl =log(n)

and the proof is complete.
Lemma 7 [20]. Let G be a nontrivial connected graph of ordef~or each vertex in G, it
holds

g(v) £ n-d(y).

Theorem 8. Let G be a nontrivial connected graph of ordeandc; =d(v). Then
If,(G) 2 IOQ(f(G))—Iog[” d(y)(n- d(v))J-
Proof. By substitutingsi = d(vi) in Eq. (1) we have

I.(G) = |og(id(w>s(v>] 39 jogayge(y))
T3 a0ew)

j=

=1log(¢(G)) - @z d(v)e(y)log(d(y)e (V)

2 log(¢(©)) - %Z d(V)f(V)Z log(d(v)e (V)

=log(¢(G)) - Z log(d (v )e ()}
i=1
By using Lemma 7, the proof is complete.

In general, if 5(G) = qu(\(), by using Lemma 7 and Eq. (2), we have
i=1

1,(6) 2 log(A(@) ~ loa([] & (= (y)).
4 Entropy of fullerene graphs

A fullerene graph is a planar, 3-regular and 3-eated graph whose faces are pentagons and
hexagons. In other words, a fullerene wvertices has exactly 12 pentagons a¥i2t10
hexagons, see [16,22]. For more details about ¢hergricity of fullerene graphs, see [1-3,
14,15,17-19,21,24]. Here, we introduce three itgintlasses of fullerenes with i,
18n+10 and 16 vertices, respectively. We denote them@yn+s, Cign+10 @nd Cion. In the
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course of this paper, we compute the entropy afettedasses of fullerenes. We refer to [4,5]
for more details on entropy of graphs.
Theorem 9. If ¢'s are equal irfEq. (1), then the entropy of fulleren,, , ,, n = 8 (Figure 1)
is
If,(Cipneq) =1+ log(M* + 1+ §

-5 +7i9n+ 8[(2n +Dlog(n + 1+ Qj 1+ i)logh + iﬁ

Proof. From Figure 1, one can see that there are thress tgp vertices of fullerene graph
C..n. 4+ BY using the eccentricity of these vertices agwiin Table 1 and using Eq. (2), we

have
1. = log[ 4+ 1+ 137 6+1)
1

- 1 (4(2n + Dlog(n + 1)+ 15 6+ i)logh+ i)
4(2n+ 1)+ 122 h+i) =

=1+log(” + 13+ 9§

2 n+l X X
-——————| (2n + J)log(2n + 1)+ +i)logh+ i
S ragrrd @ Dloa(an+ 1+ 3 6+ 1)iogh+ i)
Table 1. The eccentricity of vertices @,,,,,, N = 8.
Vertices £(x) No.
The Type 1 Vertices 1 4

Other Vertices nti (I<i<n+l) 12

Other Vertices

Figure 1. The Molecular Graph of the Fullere®s,,, , .
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The exceptional cases are given in Table 2.

Table 2. Some Exceptional Cases ©f,,,, Fullerenes.

FullereneF) If . (F)
(o 4.801607
Cuo 5.320686
Cs, 5.696082
(o) 5.992826
Cye 6.373541
(o 6.438383

Theorem 10. If ¢’s are equal irEq. (1), then the entropy of fullerel®,, . ,,, N = 14 (Figure
2)is
If, (Cyp..) = log(n) + log(9n + 109

_ 1
9n? + 101n

15(2n + 1)log(r + 1)+ 30 log(d ¥ 1§ i+ i )logf+ i )

(7(2n + 3)log(h + 3)+ 9(h+ 2)log(d+ 2%

Proof. From Figure 2, one can see that there exist ttymestof vertices of fullerene graph
C

10 BY USING the eccentricity of these vertices as mive Table 3 and using Eq. (2), we

obtain

n-

I, Cuane) =Iog[7<2n+ 9+ o@+ 2 15@+ I 158 1B e+ ij)
- ! (7(2n + 3)log(h + 3+ 9@+ 2)log(@+ 2)

n-1

42+ 1)+ 18 a+i)

+15(n + Dlog(h + 1+ 30 log(d ¥ 1% i+ i )logt+ i)

1
=log(n) + log(9n + 103 - S+ 10m

+15(2n + 1)log(h + 1)+ 30 log(d ¥ 1% i+ i )logf+ i )

(7(2n + 3)log(h + 3)+ 9(h+ 2)log(Rd+ =

The exceptional cases are given in Table 4.
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Table 3. The eccentricity of vertices @,,,,,, N = 14.
Vertices £(x) No.
The Type 1 Vertices 3
The Type 2 Vertices -2
The Type 3 Vertices rg2n+1 15
Other Vertices N+ (2<i<n-1) 18

Table 4. Some Exceptional Cases©f,,, ,, Fullerenes.

FullereneF) If.(F) FullereneF) If.(F)
Ce 6.356532937 Cis 7.381144182
Cioo 6.639656114 Ciso 7.548407362
Ciis 6.875628442 Coos 7.676794255
Cias 7.075830676 Cooe 7.960277124
Ciss 7.251688191 Coua 7.905535260

Figure 2. The Molecular Graph of the Fullere@g,, ,,.
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Theorem 11. If ¢’s are equal irEq. (1), then the entropy of fullereg,,, n = 8 (Figure 3)
is
If.(Cyn) = l0g5+ logn)+ log( 3 - 3

-5 @n-oa(n- 1+ 5 n- 1yiog(a- 1)

Proof. From Figure 3, one can see that there exist ttymestof vertices of fullerene graph
C,o, - By using the eccentricity of these vertices agwiin Table 5 and using Eq. (2), we
have

If,(Cyop) = Iog(10(2n - 1)+ 1(21 (r-i j
- : =] [10(20— Dlog(n - 1+ 1& (B-1i)log(B- i)
10 -+ 1) (h-i) iz

=log5+ logh)+ log( - 3

-2 ((Zn-l)log(zn—1)+"z_1(zq-i)|og(21—ij.

3n®-n =
Table 5. The eccentricity of vertices @, , n = 8.
Vertices &(x) No.
The Type 1 Vertices 1 10

Other Vertices gi(<i<n) 10

Figure 3. The Molecular Graph of the Fullereg,, .
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The exceptional cases are listed in Table 6.

Table 6. Some Exceptional Cases®f,, Fullerenes.

FullereneF) If.(F)
Cy 6.643856190
Cy 7.491853096
Co 5.314542162
Cep 5.637271494
Ce 5.994935534
Cu, 6.106497467
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