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Abstract

Motivated by the computation formula of Wiener index in terms of canonical iso-
metric embedding, we deduce computation formulas for the revised (edge-) Szeged
index. The revised (edge-)Szeged index for a vertex-edge-weighted graph are thus
introduced. We also obtain some properties of the equivalent relation #* and the
revised (edge-)Szeged index. Finally, we calculate the revised (edge-) Szeged indices
for some specific graphs, as examples.

1 Introduction

All graphs in this paper are assumed to be finite, simple and undirected, unless pointed
out specifically. We refer the reader to [2] for terminology and notation unexplained here.
Let G be a connected graph with vertex set V(G) and edge set E(G). For u,v € V(G),
the distance dg(u,v) counts the minimum number of edges of the path connecting u and
vin G. For u € V(G) and f € E(G), the distance dg(u, f) counts the minimum number
of edges of the path connecting v and f in G. It is naturally to consider partitions of
E(G) with respect to an edge e = uv € F(G) involved with several sets defined below:
Nu(e|G) ={w € V 1 dg(u,w) < da(v,w)},
No(e|G) = {w € V : dg(u,w) = dg(v,w)},
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My(elG) = {f € E: dg(u, ) < da(v, f)},

Mo(e|G) ={f € E : da(u, f) = da(v, f)}.
Let n,(e|G), no(e|G), m,(e|G) and my(e|G) denote the cardinality of N,(e|G),
No(e|G), M,(e]G) and My(e|G), respectively. Note that u € N,(e|G) and e € M,(e|G).

Omit the constraint |G if not necessary.

For two graphs G and G’, a map ¢ from V(G) to V(G’) is isometric if for all u,v €
V(Q), dg(u,v) = de(d(u), d(v)). Attempting to characterize the isometric subgraphs
of hypercubes, Djokovié¢ [5] introduced an equivalent relation 6 on partial cubes, saying
that for e = wv, ¢ = u'v' € E(G), efe’ if and only if dg(u,u’) + dg(v,v') # dg(u,v') +
dg(v,u'). Before long, Graham and Winkler [6] generalized the equivalent relation 6

into its transitive closure #*, which is suitable for all graphs. Moreover, they define
the canonical isometric embedding through it, which maps G to the product of a series
quotient graphs of G isometrically.

First, recall the definition of the Cartesian product of graphs. In a graph G =
Gi0O---0OGk, u,v € V(G) are adjacent if and only if for some 4, u; is adjacent to v;
in G; and for any j # i, u; = v;. Also note that dg(u,v) = Zf:] dg; (uj,v;)-

Denote the equivalent classes of 6% by € = {E4, - - , E}} throughout this paper. Let G;
be the graphs formed from G by deleting E; and C%, - - - | C!.. be the connected components
of G;. Construct the graphs G} with vertex set V(Gy) = {Ci,--- ,C% } and the vertices
C} and C;, are adjacent if and only if some edge in E; joins a vertex in C]l: to a vertex
in C},. Define maps a; : V(G) — V(G}), where v € a;(v). Then the canonical isometric
representation a : V(G) — V(G*) = V(OFE,G7), where a(v) = (a1 (v),- -+, ag(v)), is well
defined and isometric. For more results on § and 6*, see [13].

The Wiener index of a graph G is defined as W(G) = > ¢, ycv(e) de(u,v). In [11],
through the equivalent relation 6, an expansion form of the Wiener index for partial cubes
has been deduced: W(G) =37, c ) Mu(€)no(e). A computation formula of the Wiener
index for all graphs also appeared in [10], utilizing the equivalent relation 6*. We refer
the reader to [9,13] for similar results of other indices and [14,15,18] for more information
about the Wiener index and the edge-Wiener index.

Motivated by the symmetry expansion form of Wiener index, Gutman [7] introduced
graph invariants Szeged indez defined by Sz(G) = 3-._,.cuq) nu(€)nu(e). and [8] the
edge-Szeged index Szo(G) = 3. pen(q) Mu(e)mo(e). Shortly afterwards, Randi¢ [16]



-151-

raised a modified version of the Szeged index, i.e., the revised Szeged index. The revised
Szeged index of a connected graph G is defined as
1 1
SG) = 3 ule) + gmole))(mule) + 5no(e))
e=uweE(G)
There is an edge version of the revised Szeged index, the revised edge-Szeged index, which

is defined as

S = X (mafe) + gmole))mufe) + gmole).

e=uweE(G)
There are lots of results about the (edge-)Szeged index and the revised (edge-)Szeged
index; see [1,3,4,8]. This paper will give expansion formulas of the revised (edge-) Szeged
indices.
We list the necessary notions and lemmas in next section, prove our main results in

section 3, and end with two examples in the final section.

2 Preliminaries

Let Gur = (G,w,0) be a vertex-edge-weighted graph, which is the graph G with
weights w : V(G) — R and o : E(G) — R*. Moreover, with respect to e = uwv €
E(G) = E(Gy,), define

Nu(e|Gyp) = Nu(elG),

No(€e|Gy,s) = No(e|G),

M, (e|Gy ) = M,(e|G),

Afo(e‘Gu_ﬁ) = ]Wo(e|G)

m(elGuo) = Y w(x),
€Ny (e|G)

no(e|Guo) = z w(z)
2€Ny (e G)

my(elGue) = Z a(f)+ Z w(z),
FEMu(e|G) 2EN,(e|G)

mo(e|Gup) = Z o(f)+ Z w(x).
feMo(e|G) z€No(e|G)

For our main results, we introduce the definition of the revised weighted (edge-) Szeged
index Sz*(G,o) (S25(G,.)) of a vertex-edge-weighted graph G, ,, which was similarly

mentioned in [1,4].
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Definition 2.1. Let G,,, be a connected vertes-edge-weighted graph (G,w, o). Then we
define the revised weighted (edge-)Szeged index of G, as follows:

52 (Gar) = 3. o) nalelGur) + go(elGu))0(elGurs) + ro(elGi)

e=uveE(G)

S2(Gur) = 32 ol melGiun) + g0(elGur)) (101(€lGurs) + 3ma(elGor)).

2
e=uwveE(G)
Note that if w(V) = o(E) = 1, we have Sz*(Gy,) = Sz*(G), and if w(V) = 0 and
o(E) =1 we have Sz}(G,,) = Sz5(G).
Definition 2.2. [1/] Let G be a connected graph. A partition § = {Fy, Fs,--- ,EF} of

E(Q) is coarser than € if each edge set F; is one or more union of sets in €.

Under the statement of Definition 2.2, let C;, C’]i:, be connected components in G; =
G — F;, denote by E (C’]’ Cj’i,) the set of edges in F; which join a vertex from C; to C’;}
and by |E(C’;,C},)| its cardinality. We similarly define the graphs G} with vertex set
V(Gy) ={Cj,--- ,Ci,.} and the vertices C} and Ci, are adjacent if and only if some edge
in F; joins a vertex in C]l: to a vertex in CJ’:,. Construct weighted graphs Gim with the
underlying simple graph Gy, w(C}) = [V(C})| and o(Ci,Cl) = |E(C}, Ci,)|, graphs G, ,
with the underlying simple graph G}, /(C%) = |E(C})| and o(C3, CL) = |E(C, C3))|.

We also need the following lemmas.
Lemma 2.3. [17] Let G be a connected graph. Then G has an isometric embedding in
a power of K3 if and only if the relation 0 is transitive on E(G).
Lemma 2.4. [6]

(1) The canonical embedding a : G — OF_G¥ is irredundant, has reducible factors
and has the largest possible factors among all irredundant isometric embeddings of G.

(2) The only irredundant isometric embedding of G into a product of dim;(G) factors
is the canonical embedding, where dim;(G) is the number of factors G¥ in the canonical
embedding of G.

Combining Lemma 2.4 with the proof of Lemma 2.3 in [17], we can obtain the following

well-known result, which was also mentioned as a fact in [12].

Proposition 2.5. Let G be a connected graph. If the 0 relation is transitive and
(Ey,- -, Ey) are the equivalent classes, then each subgraph G — E;, i = 1,--- |k, contains

at most three connected components.
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3 Main Results

We shall prove several theorems and corollaries in the following.

Theorem 3.1. Let G be a connected graph and Ey,--- | Ey, be the 0* classes of E(G).

Then we have

k
(1) 825(G) = Z Sz (GL,).

(2) §2(G) = 3_82(Glr),

Proof.

(1) For each edge e = wv € E(G), there is an ¢ such that e € E;. Note that
dex (i), ci(u)) — de (i(x), ais(v)) represents the difference of distances in graph Gj.
Consider the relationship between dg(v,u) — de(v,v) and de:(ou(x), ai(u))
— da: (ou(), ai(v)).

Consequently, from the canonical isometric embedding, «(u) and «a(v) differ exactly
on one coordinate, say the ith coordinate. So for each z and every j # ¢, we have

dex (o (@), j(u)) = d=(a;(), a;(v)). Thus we can obtain that the differences are exactly

equal, i.e.,
de(z,u) — da(x,v) = de(a(z), a(u)) — de(a(z), a(v)) (3.1)
k
= Z dex (e (@), j(u)) — da:(o;(2), o (v)) (3:2)
= de: (i), i(u)) — de: (i(w), ai(v)). (3.3)

Hence for each edge e = uv € E(G), n,(e) counts the number >~ oy lan) \V(C]’)|
LEN(e|G

and ny(e) counts the number 3 cicny e [V(C)|. Thus we conclude
J 14

(rute) + 3000 (nv(e)+;no(6))—( > w3 |V<c;i>)

CIENL(elC)) CieNy(elG?)

( INUCITET DY V<c;i>|).

CiEN,(|G]) CieNy(e|GY)

Therefore Y, .5 (nu(e) + 310(e)) (no(€) + sno(e)) = S2*(GL,), ie.,

524(G) = Z Sz*(GE ).
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(2) Similarly, for an edge e = uv € E(G), assume e € E;. Consider each edge
f =wz € E(G) other than e. Denote the unique coordinate distinguishing w and z by .
Case 1: [ =i.
It is obvious that [ = 7 if and only if f is an edge in G7.
Suppose dg(f, u)—de(f,v) = de(x,u)—da(y,v), where z,y € {w, z}. Thus dg(z,u) <
da(y,w) and da: (ou (), ai(u)) < dax(ai(y), ai(u)), therefore we have
da: (ai(w)ai(2), ai(u)) = da: (ou(), ai(u)).

And similarly,
das (ei(w)ai(2), ai(v)) = da: (i(y), ai(v)).

Moreover,
de(f,u) = da(f.v) = dala,u) - da(y,v) (3.4)
= dg- (a(2), a(w)) — da-(a(y), o(v)) (3.5)
:i%ﬁ%ﬁ%@—@mmmm» (3.6)
_ s (o) 4(00) — s (). () (3.7)

= do: (ai(w)ai(2), ai(u)) — dax (ai(w) oy (), (v)). (3.8)

Hence we know for edges in the same equivalent class as e = uwv, the difference of its
distance from u and v equals the distance from its image between o;(u) and a;(v) in Gj.

Case 2: | # 1.

Similarly, [ # ¢ if and only if f is a vertex in Gj, i.e., a;(w) = a;(2).

Since e and f are not in the same equivalent class, we have dg(u,w) + dg(v, 2) =
de(u, z) + dg(v,w). Thus if dg(u, w) < de(v,w), then dg(v, 2) > dg(u, z) holds. Suppose
da(f,u) — da(f,v) = dg(x,u) — dg(x,v). Then we have

de(f.0) — d(f.v) = da(a,u) — da(z,v) (3.9)
=de+(a(z), a(u)) — de-(a(z), a(v)) (3.10)
= Z e (0 (@), 0y () — dos (y(2),05(0)  (3.11)
= d (as(w), as(w)) = do (a(w), (o). (3.12)

Hence we know for edges in the different equivalent class with e = wwv, the difference
of its distance from u and v equals the distance between its image (as a point) with «;(u)

and o;(v) in G7.
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Above all, we conclude that my(e) = 3= e eiar) () + e ear w(@): mole) =
Y remsielen) O + Laenp(elan @), and 3o cp (mule) + smo(e))(mule) + 3mo(e)) =
Sz5(G,»), which completes the proof. | |
From the proof of Theorem 3.1, the following corollary follows naturally, which reveals

several properties of 0*.

Corollary 3.2. Let G be a connected graph and Ey,--- , Ey, be the 6* classes of E(G).

Then for each edge e = wv € E;, u € C¢ and v € C!, we have

v’

(1) for all vertices x in one connected component Ci in G;, the values of da(z,u) —

de(w,v) are the same. In particular, for each x in C¢

u’

dg(z,u) < dg(z,v), and for each
yin C, da(y,v) < da(y,u).

(2) if e =u'v' € E; joinsu' in C tov' in CF, then dg(u,u') +dg(v,v') # dg(u,v') +
de(v,u').

Utilizing Proposition 2.5, we can deduce Theorem 3.3, which is also a special case of

Theorem 3.1(1).

Theorem 3.3. Let G be a connected graph, 6 be transitive, and E,--- , E be the 6
classes of E(G). Then we have

k
S G =) > |BCLCHIIVC)HI+ %(n = V(@I = V(C5N) (IV(C5)1+

=1 C10L,ev (@)

1 i i
300 =V - IVEnD ).

Proof. At first we show the following claim.
Claim: In each G — E; with exactly three connected components, for each e = uv € E;,
there exists a connected component in which each vertex has the same distance to u as to
v.
It is clear that as long as we can prove the claim, we shall get Theorem 3.3 directly.
It suffices to prove that for each G — E; with exactly three connected components, the
corresponding graph G} is K. If it is not the case, then G has to be a P; and let the path
be CiCiCL. For each e = uwv € E; with u € C! and v € C, each z € C§, due to Corollary
3.2, we have dg(z,v) < dg(x,u). In particular, for each ¢/ = v'v' € E; with v/ € C§ and

v € Ci, we have dg(u',v) < dg(u/,u). Since G} is a Py, then dg(v', u) = dg(u',u) +1 and
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de(v',v) = de(u',v)+1. Thus dg(v',u) +dg(v',v) = dg(v', v) +d(v', u), a contradiction.

| |

Note: Similar to Theorem 3.3, we also have an expansion formula of the revised edge-

Szeged index for the graphs mentioned above, but its has a far more complex form, so we
omit it here.

In fact, for convenience when computing, we show a stronger result than Theorem 3.1.

Theorem 3.4. Let G be a connected graph and § = {Fy,--- , F;} be a partition of E(G)

coarser than €. Then we have

1
(1) Sz(@) = Zsz*(G;ﬂ).

!
(2) Sz(G) = S=(GL,).
i=1
Before proving Theorem 3.4, we show a useful lemma.

Lemma 3.5. Let G be a connected graph and § = {F,--- , F;} be a partition of E(G)
coarser than €. Define a map B : V(G) — V(G*) = V(O._,G}) to be B(v) = (f1(v),...,
Bi(v)), where B; : V(G) = V(G?) and v € Bi(v). Then 8 is isometric.

Proof.

To avoid confusion, denote the G} corresponding with E; by H; in this proof.

Tt suffices to prove, without loss of generality, that when § = {E1, Ea, -+, Fj_1 =
Ey_1 U Ei}, the corresponding f is isometric, ie., dg(u,v) = Z;:ll da:(Bi(u), Bi(v))
for all u,v € V(G). Moreover, dg(u,v) = S5 drrs (i(u), a;(v)). Thus all we need to
prove is that for all u,v € V(G), da;_ (Br-1(w), Be-1(v)) = duz_ (op-1(u), ap-1(v)) +
dr (o (u), o (v)).

Considering the graphs G;_, and H;_,0H}, each vertex fj_1(u) (a representative
element) in Gj_; corresponds to a unique vertex (oy_1(u),ax(u)) (a representative el-
ement) in H;_ 0OH; and the map is injective. Moreover, if vertices (ay_1(u), o(u))
and (oy_1(v), ag(v)) are adjacent in H;_OH;, then vertices fy_1(u) and fi_1(v) are
adjacent in Gj_,. Thus Gj_, is an induced subgraph of H;_ ,0H}, and u,v € V(G),
da;_, (Be-1(u), Br-1(v)) = dpy_ (a1 (u), ak-1(v)) + di (ak(w), o (v)).

On the other hand, for u,v € V(G) and each shortest (u,v)-path P in G, |[PNEj_| =
deil(ak,l(u),ak,l(v)) and |P N Ey| = dH;(ak(u),ak(v))A Moreover, P N E;_1,P N
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Ey C E(H;_,). Since Hf_,[(P N Ey_1) U (P N Ej)] induces a path between fj_;(u) and
Br-1(v), we have for all u,v € V(G), dg:_, (Br-1(w), Br-1(v)) < du;_ (a—1(u), ar_1(v)) +

d (e (u), o (v)), which completes the proof. |

Proof of Theorem 3.4.

w,o

Note that G, and GZ, , have been defined in Section 2 with respect to §. Since
0 is an isometric embedding by Lemma 3.5, the proof is almost the same as the one in

Theorem 3.1 and we omit it here. | |

4 Examples

In this section, we will give two examples to show how to use our formula to calculate
the revised (edge-)Szeged indices. Denote by Sz*(e) the number (n,(e) + ino(e))(n,(e) +
%no(e)) and by Sz¥(f) the number (m,(f) + %mg(f))(mv(f) + %ﬂlg(f)).

4.1 Example 1

As Example 1 we calculate the revised Szeged index of the molecular graph of porphin

Cy0Hy4 N, (omitting trivial branches). The molecular graph is shown in Figure 1.

Figure 1. G and its edge labels. Figure 2. G and its six equivalent
classes.

Since the subtle symmetry of G, the calculation of Sz*(G) can be reduced to Sz*(G) =
45z*(e1) + 85z*(e2) + 852*(e3) + 8S2*(es).

We show the distance relationship in Figures 3, 4, 5, 6 where the vertex labelling u, v
or w is nearer to u,v or the same close to w and v, respectively. Thus

S (@) =4x (1144 x2)(11+1 x2) +8x 2+ 1 x 9)(13+ 1 x9) +8x (10+ 1 x
2)(124 1 x 2) + 8 x 12 x 12 = 3782.
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Figure 3. the distance relation- Figure 4. the distance relation-
ships according to edge ships according to edge
e1. €2.

Figure 5. the distance relation- Figure 6. the distance relation-
ships according to edge ships according to edge
€3. €4.

On the other hand, we calculate the value by Theorem 3.1 through the graphs G?

w,o

;oo ,6. We only show G — Fy,G — E;;,G’}JWU,G3 in Figures 7, 8 and omit the

w,o

i =1

isomorphic ones. Utilizing Theorem 3.1, we reduce the calculation to

6
Sz1(G)=>_S(GL,) (4.1)
i=1
1 1 1 1
:2><(4><(13+§><9)(2+§><9)+2><(11+§><2)(11+§><2)+
4><(12+%><2)(10+%><2))+4><(2><12><12) (4.2)

— 3782, (4.3)
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o
G- E G — By

Figure 7. G —E1 =2 G — FEyand G — E3 = G — E;,i = 4,5,6.

12

12

11 3
P

Tw,o T wW,o

Figure 8. GLTU = GUZM, and GS’J’” = Gfu’a.,i =4,5,6.

4.2 Example 2

Figure 9. G and its edge labels. Figure 10. G and its six equivalent
classes.

Now we look at another example, the graph G (part of the Carbon 60) shown in
Figure 9. We can reduce the calculation of Sz} (G) to Sz(G) = 5Sz7(e1) + 5527 (ea) +
10Sz%(e3) + 5525 (eq).

The distance relationship is shown in Figures 11, 12, 13, 14. Consequently we have

S2(G)=5x(10+3)x (10+3)+5x (10+3) x (10+3) +10x (4+3) x (18+3) +
5x (4+3)(18+ 3) = 2586.25.
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Figure 11. the distance relation- Figure 12. the distance relation-
ships according to edge
€e1.

ships according to edge
€9.

Figure 13. the distance relation- Figure 14. the distance relation-
ships according to edge ships according to edge
€3. €4.
Next, we calculate the value by Theorem 3.1 through the graphs Gi},ﬁ,i =1--,6.
We only show G — Ey,G — E», G, ., Gi,,g in Figures 15, 16 as representatives.
6
521(G) =) 8:(Gly,) (44)
i=1
1 1
=5x2x ((2+2+3+3)+5(2+3))((2+2+3+3)+§(2+3))+
3 3
5 X 3 x (18+§)(4+ 5) (4.5)

= 2586.25. (4.6)
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G —E; G—-FEy

Figure 15. G — E; =G — E;,i = 3,4,5,6.

N

2
G, G,

Figure 16. G2, = G!, i=3,4,5,6.
w’,o w',o
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