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Abstract

Motivated by the computation formula of Wiener index in terms of canonical iso-
metric embedding, we deduce computation formulas for the revised (edge-) Szeged
index. The revised (edge-)Szeged index for a vertex-edge-weighted graph are thus
introduced. We also obtain some properties of the equivalent relation θ∗ and the
revised (edge-)Szeged index. Finally, we calculate the revised (edge-) Szeged indices
for some specific graphs, as examples.

1 Introduction

All graphs in this paper are assumed to be finite, simple and undirected, unless pointed

out specifically. We refer the reader to [2] for terminology and notation unexplained here.

Let G be a connected graph with vertex set V (G) and edge set E(G). For u, v ∈ V (G),

the distance dG(u, v) counts the minimum number of edges of the path connecting u and

v in G. For u ∈ V (G) and f ∈ E(G), the distance dG(u, f) counts the minimum number

of edges of the path connecting u and f in G. It is naturally to consider partitions of

E(G) with respect to an edge e = uv ∈ E(G) involved with several sets defined below:

Nu(e|G) = {w ∈ V : dG(u,w) < dG(v, w)},

N0(e|G) = {w ∈ V : dG(u,w) = dG(v, w)},
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Mu(e|G) = {f ∈ E : dG(u, f) < dG(v, f)},

M0(e|G) = {f ∈ E : dG(u, f) = dG(v, f)}.

Let nu(e|G), n0(e|G), mu(e|G) and m0(e|G) denote the cardinality of Nu(e|G),

N0(e|G), Mu(e|G) and M0(e|G), respectively. Note that u ∈ Nu(e|G) and e ∈ Mo(e|G).

Omit the constraint |G if not necessary.
For two graphs G and G′, a map φ from V (G) to V (G′) is isometric if for all u, v ∈

V (G), dG(u, v) = dG′(φ(u), φ(v)). Attempting to characterize the isometric subgraphs

of hypercubes, Djoković [5] introduced an equivalent relation θ on partial cubes, saying

that for e = uv, e′ = u′v′ ∈ E(G), eθe′ if and only if dG(u, u′) + dG(v, v
′) 6= dG(u, v

′) +

dG(v, u
′). Before long, Graham and Winkler [6] generalized the equivalent relation θ

into its transitive closure θ∗, which is suitable for all graphs. Moreover, they define
the canonical isometric embedding through it, which maps G to the product of a series

quotient graphs of G isometrically.

First, recall the definition of the Cartesian product of graphs. In a graph G =

G1� · · ·�Gk, u, v ∈ V (G) are adjacent if and only if for some i, ui is adjacent to vi

in Gi and for any j 6= i, uj = vj. Also note that dG(u, v) =
∑k

j=1 dGj
(uj, vj).

Denote the equivalent classes of θ∗ by E = {E1, · · · , Ek} throughout this paper. Let Gi

be the graphs formed from G by deleting Ei and Ci
1, · · · , C i

mi
be the connected components

of Gi. Construct the graphs G∗
i with vertex set V (G∗

i ) = {Ci
1, · · · , C i

mi
} and the vertices

Ci
j and Ci

j′ are adjacent if and only if some edge in Ei joins a vertex in Ci
j to a vertex

in Ci
j′ . Define maps αi : V (G) → V (G∗

i ), where v ∈ αi(v). Then the canonical isometric

representation α : V (G) → V (G∗) = V (�k
i=1G

∗
i ), where α(v) = (α1(v), · · · , αk(v)), is well

defined and isometric. For more results on θ and θ∗, see [13].

The Wiener index of a graph G is defined as W (G) =
∑

{u,v}⊆V (G) dG(u, v). In [11],

through the equivalent relation θ, an expansion form of the Wiener index for partial cubes

has been deduced: W (G) =
∑

e=uv∈E(G) nu(e)nv(e). A computation formula of the Wiener

index for all graphs also appeared in [10], utilizing the equivalent relation θ∗. We refer

the reader to [9,13] for similar results of other indices and [14,15,18] for more information

about the Wiener index and the edge-Wiener index.

Motivated by the symmetry expansion form of Wiener index, Gutman [7] introduced

graph invariants Szeged index defined by Sz(G) =
∑

e=uv∈E(G) nu(e)nv(e). and [8] the

edge-Szeged index Sze(G) =
∑

e=uv∈E(G) mu(e)mv(e). Shortly afterwards, Randić [16]
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raised a modified version of the Szeged index, i.e., the revised Szeged index. The revised

Szeged index of a connected graph G is defined as

Sz∗(G) =
∑

e=uv∈E(G)

(nu(e) +
1

2
n0(e))(nv(e) +

1

2
n0(e)).

There is an edge version of the revised Szeged index, the revised edge-Szeged index, which

is defined as

Sz∗e(G) =
∑

e=uv∈E(G)

(mu(e) +
1

2
m0(e))(mv(e) +

1

2
m0(e)).

There are lots of results about the (edge-)Szeged index and the revised (edge-)Szeged

index; see [1,3,4,8]. This paper will give expansion formulas of the revised (edge-) Szeged

indices.

We list the necessary notions and lemmas in next section, prove our main results in

section 3, and end with two examples in the final section.

2 Preliminaries
Let Gω,σ = (G,ω, σ) be a vertex-edge-weighted graph, which is the graph G with

weights ω : V (G) → R+ and σ : E(G) → R+. Moreover, with respect to e = uv ∈

E(G) = E(Gω,σ), define

Nu(e|Gω,σ) = Nu(e|G),

N0(e|Gω,σ) = N0(e|G),

Mu(e|Gω,σ) = Mu(e|G),

M0(e|Gω,σ) = M0(e|G),

nu(e|Gω,σ) =
∑

x∈Nu(e|G)

ω(x),

n0(e|Gω,σ) =
∑

x∈N0(e|G)

ω(x),

mu(e|Gω,σ) =
∑

f∈Mu(e|G)

σ(f) +
∑

x∈Nu(e|G)

ω(x),

m0(e|Gω,σ) =
∑

f∈M0(e|G)

σ(f) +
∑

x∈N0(e|G)

ω(x).

For our main results, we introduce the definition of the revised weighted (edge-) Szeged

index Sz∗(Gω,σ) (Sz∗e(Gω,σ)) of a vertex-edge-weighted graph Gω,σ, which was similarly

mentioned in [1, 4].
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Definition 2.1. Let Gω,σ be a connected vertex-edge-weighted graph (G,ω, σ). Then we

define the revised weighted (edge-)Szeged index of Gω,σ as follows:

Sz∗(Gω,σ) =
∑

e=uv∈E(G)

σ(e)(nu(e|Gω,σ) +
1

2
n0(e|Gω,σ))(nv(e|Gω,σ) +

1

2
n0(e|Gω,σ)).

Sz∗e(Gω,σ) =
∑

e=uv∈E(G)

σ(e)(mu(e|Gω,σ) +
1

2
m0(e|Gω,σ))(mv(e|Gω,σ) +

1

2
m0(e|Gω,σ)).

Note that if ω(V ) = σ(E) = 1, we have Sz∗(Gω,σ) = Sz∗(G), and if ω(V ) = 0 and

σ(E) = 1 we have Sz∗e(Gω,σ) = Sz∗e(G).

Definition 2.2. [14] Let G be a connected graph. A partition F = {F1, F2, · · · , Fl} of

E(G) is coarser than E if each edge set Fi is one or more union of sets in E.

Under the statement of Definition 2.2, let Ci
j, Ci

j′ be connected components in Gi =

G − Fi, denote by E(Ci
j, C

i
j′) the set of edges in Fi which join a vertex from Ci

j to Ci
j′

and by |E(Ci
j, C

i
j′)| its cardinality. We similarly define the graphs G∗

i with vertex set

V (G∗
i ) = {Ci

1, · · · , C i
mi
} and the vertices Ci

j and Ci
j′ are adjacent if and only if some edge

in Fi joins a vertex in Ci
j to a vertex in Ci

j′ . Construct weighted graphs Gi
ω,σ with the

underlying simple graph G∗
i , ω(Ci

j) = |V (Ci
j)| and σ(Ci

j, C
i
j′) = |E(Ci

j, C
i
j′)|, graphs Gi

ω′,σ

with the underlying simple graph G∗
i , ω′(Ci

j) = |E(Ci
j)| and σ(Ci

j, C
i
j′) = |E(Ci

j, C
i
j′)|.

We also need the following lemmas.

Lemma 2.3. [17] Let G be a connected graph. Then G has an isometric embedding in

a power of K3 if and only if the relation θ is transitive on E(G).

Lemma 2.4. [6]

(1) The canonical embedding α : G → �k
i=1G

∗
i is irredundant, has reducible factors

and has the largest possible factors among all irredundant isometric embeddings of G.

(2) The only irredundant isometric embedding of G into a product of dimI(G) factors

is the canonical embedding, where dimI(G) is the number of factors G∗
i in the canonical

embedding of G.

Combining Lemma 2.4 with the proof of Lemma 2.3 in [17], we can obtain the following

well-known result, which was also mentioned as a fact in [12].

Proposition 2.5. Let G be a connected graph. If the θ relation is transitive and

(E1, · · · , Ek) are the equivalent classes, then each subgraph G−Ei, i = 1, · · · , k, contains

at most three connected components.
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3 Main Results
We shall prove several theorems and corollaries in the following.

Theorem 3.1. Let G be a connected graph and E1, · · · , Ek be the θ∗ classes of E(G).

Then we have

(1) Sz∗(G) =
k∑

i=1

Sz∗(Gi
ω,σ).

(2) Sz∗e(G) =
k∑

i=1

Sz∗e(G
i
ω′,σ).

Proof.

(1) For each edge e = uv ∈ E(G), there is an i such that e ∈ Ei. Note that

dG∗
i
(αi(x), αi(u)) − dG∗

i
(αi(x), αi(v)) represents the difference of distances in graph G∗

i .

Consider the relationship between dG(x, u) − dG(x, v) and dG∗
i
(αi(x), αi(u))

− dG∗
i
(αi(x), αi(v)).

Consequently, from the canonical isometric embedding, α(u) and α(v) differ exactly

on one coordinate, say the ith coordinate. So for each x and every j 6= i, we have

dG∗
j
(αj(x), αj(u)) = dG∗

j
(αj(x), αj(v)). Thus we can obtain that the differences are exactly

equal, i.e.,

dG(x, u)− dG(x, v) = dG∗(α(x), α(u))− dG∗(α(x), α(v)) (3.1)

=
k∑

j=1

dG∗
j
(αj(x), αj(u))− dG∗

j
(αj(x), αj(v)) (3.2)

= dG∗
i
(αi(x), αi(u))− dG∗

i
(αi(x), αi(v)). (3.3)

Hence for each edge e = uv ∈ E(G), nu(e) counts the number
∑

Ci
j∈Nu(e|G∗

i )
|V (Ci

j)|

and n0(e) counts the number
∑

Ci
j∈N0(e|G∗

i )
|V (Ci

j)|. Thus we conclude(
nu(e) +

1

2
n0(e)

)(
nv(e) +

1

2
n0(e)

)
=

 ∑
Ci

j∈Nu(e|G∗
i )

|V (Ci
j)|+

1

2

∑
Ci

j∈N0(e|G∗
i )

|V (Ci
j)|


 ∑

Ci
j∈Nv(e|G∗

i )

|V (Ci
j)|+

1

2

∑
Ci

j∈N0(e|G∗
i )

|V (Ci
j)|

 .

Therefore
∑

e∈Ei
(nu(e) +

1
2
n0(e))(nv(e) +

1
2
n0(e)) = Sz∗(Gi

ω,σ), i.e.,

Sz∗(G) =
k∑

i=1

Sz∗(Gi
ω,σ).
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(2) Similarly, for an edge e = uv ∈ E(G), assume e ∈ Ei. Consider each edge
f = wz ∈ E(G) other than e. Denote the unique coordinate distinguishing w and z by l.

Case 1: l = i.
It is obvious that l = i if and only if f is an edge in G∗

i .

Suppose dG(f, u)−dG(f, v) = dG(x, u)−dG(y, v), where x, y ∈ {w, z}. Thus dG(x, u) ≤

dG(y, u) and dG∗
i
(αi(x), αi(u)) ≤ dG∗

i
(αi(y), αi(u)), therefore we have

dG∗
i
(αi(w)αi(z), αi(u)) = dG∗

i
(αi(x), αi(u)).

And similarly,

dG∗
i
(αi(w)αi(z), αi(v)) = dG∗

i
(αi(y), αi(v)).

Moreover,

dG(f, u)− dG(f, v) = dG(x, u)− dG(y, v) (3.4)

= dG∗(α(x), α(u))− dG∗(α(y), α(v)) (3.5)

=
k∑

j=1

dG∗
j
(αj(x), αj(u))− dG∗

j
(αj(y), αj(v)) (3.6)

= dG∗
i
(αi(x), αi(u))− dG∗

i
(αi(y), αi(v)) (3.7)

= dG∗
i
(αi(w)αi(z), αi(u))− dG∗

i
(αi(w)αi(z), αi(v)). (3.8)

Hence we know for edges in the same equivalent class as e = uv, the difference of its

distance from u and v equals the distance from its image between αi(u) and αi(v) in G∗
i .

Case 2: l 6= i.

Similarly, l 6= i if and only if f is a vertex in G∗
i , i.e., αi(w) = αi(z).

Since e and f are not in the same equivalent class, we have dG(u,w) + dG(v, z) =

dG(u, z)+ dG(v, w). Thus if dG(u,w) ≤ dG(v, w), then dG(v, z) ≥ dG(u, z) holds. Suppose

dG(f, u)− dG(f, v) = dG(x, u)− dG(x, v). Then we have

dG(f, u)− dG(f, v) = dG(x, u)− dG(x, v) (3.9)

= dG∗(α(x), α(u))− dG∗(α(x), α(v)) (3.10)

=
k∑

j=1

dG∗
j
(αj(x), αj(u))− dG∗

j
(αj(x), αj(v)) (3.11)

= dG∗
i
(αi(x), αi(u))− dG∗

i
(αi(x), αi(v)). (3.12)

Hence we know for edges in the different equivalent class with e = uv, the difference

of its distance from u and v equals the distance between its image (as a point) with αi(u)

and αi(v) in G∗
i .
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Above all, we conclude that mu(e) =
∑

f∈Mu(e|G∗
i )
σ(f) +

∑
x∈Nu(e|G∗

i )
ω(x), m0(e) =∑

f∈M0(e|G∗
i )
σ(f) +

∑
x∈N0(e|G∗

i )
ω(x), and

∑
e∈Ei

(mu(e) +
1
2
m0(e))(mu(e) +

1
2
m0(e)) =

Sz∗e(Gω,σ), which completes the proof. �

From the proof of Theorem 3.1, the following corollary follows naturally, which reveals

several properties of θ∗.

Corollary 3.2. Let G be a connected graph and E1, · · · , Ek be the θ∗ classes of E(G).

Then for each edge e = uv ∈ Ei, u ∈ Ci
u and v ∈ Ci

v, we have

(1) for all vertices x in one connected component Ci
j in Gi, the values of dG(x, u) −

dG(x, v) are the same. In particular, for each x in Ci
u, dG(x, u) < dG(x, v), and for each

y in Ci
v, dG(y, v) < dG(y, u).

(2) if e′ = u′v′ ∈ Ei joins u′ in Ci
u to v′ in Ci

v, then dG(u, u
′)+ dG(v, v

′) 6= dG(u, v
′)+

dG(v, u
′).

Utilizing Proposition 2.5, we can deduce Theorem 3.3, which is also a special case of

Theorem 3.1(1).

Theorem 3.3. Let G be a connected graph, θ be transitive, and E1, · · · , Ek be the θ

classes of E(G). Then we have

Sz∗(G) =
k∑

i=1

∑
Ci

j ,C
i
j′∈V (G∗

i )

|E(Ci
j, C

i
j′)|(|V (Ci

j)|+
1

2
(n− |V (Ci

j)| − |V (Ci
j′)|))

(
|V (Ci

j′)|+

1

2
(n− |V (Ci

j)| − |V (Ci
j′)|)

)
.

Proof. At first we show the following claim.

Claim: In each G − Ei with exactly three connected components, for each e = uv ∈ Ei,

there exists a connected component in which each vertex has the same distance to u as to

v.

It is clear that as long as we can prove the claim, we shall get Theorem 3.3 directly.

It suffices to prove that for each G−Ei with exactly three connected components, the

corresponding graph G∗
i is K3. If it is not the case, then G∗

i has to be a P3 and let the path

be Ci
1C

i
2C

i
3. For each e = uv ∈ Ei with u ∈ Ci

1 and v ∈ Ci
2, each x ∈ Ci

2, due to Corollary

3.2, we have dG(x, v) < dG(x, u). In particular, for each e′ = u′v′ ∈ Ei with u′ ∈ Ci
2 and

v′ ∈ Ci
3, we have dG(u

′, v) < dG(u
′, u). Since G∗

i is a P3, then dG(v
′, u) = dG(u

′, u)+1 and
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dG(v
′, v) = dG(u

′, v)+1. Thus dG(u′, u)+dG(v
′, v) = dG(u

′, v)+dG(v
′, u), a contradiction.

�

Note: Similar to Theorem 3.3, we also have an expansion formula of the revised edge-

Szeged index for the graphs mentioned above, but its has a far more complex form, so we

omit it here.

In fact, for convenience when computing, we show a stronger result than Theorem 3.1.

Theorem 3.4. Let G be a connected graph and F = {F1, · · · , Fl} be a partition of E(G)

coarser than E. Then we have

(1) Sz∗(G) =
l∑

i=1

Sz∗(Gi
ω,σ).

(2) Sz∗e(G) =
l∑

i=1

Sz∗e(G
i
ω′,σ).

Before proving Theorem 3.4, we show a useful lemma.

Lemma 3.5. Let G be a connected graph and F = {F1, · · · , Fl} be a partition of E(G)

coarser than E. Define a map β : V (G) → V (G∗) = V (�l
i=1G

∗
i ) to be β(v) = (β1(v), . . . ,

βl(v)), where βi : V (G) → V (G∗
i ) and v ∈ βi(v). Then β is isometric.

Proof.

To avoid confusion, denote the G∗
i corresponding with Ei by H∗

i in this proof.

It suffices to prove, without loss of generality, that when F = {E1, E2, · · · , Fk−1 =

Ek−1 ∪ Ek}, the corresponding β is isometric, i.e., dG(u, v) =
∑k−1

i=1 dG∗
i
(βi(u), βi(v))

for all u, v ∈ V (G). Moreover, dG(u, v) =
∑k

i=1 dH∗
i
(αi(u), αi(v)). Thus all we need to

prove is that for all u, v ∈ V (G), dG∗
k−1

(βk−1(u), βk−1(v)) = dH∗
k−1

(αk−1(u), αk−1(v)) +

dH∗
k
(αk(u), αk(v)).

Considering the graphs G∗
k−1 and H∗

k−1�H∗
k , each vertex βk−1(u) (a representative

element) in G∗
k−1 corresponds to a unique vertex (αk−1(u), αk(u)) (a representative el-

ement) in H∗
k−1�H∗

k and the map is injective. Moreover, if vertices (αk−1(u), αk(u))

and (αk−1(v), αk(v)) are adjacent in H∗
k−1�H∗

k , then vertices βk−1(u) and βk−1(v) are

adjacent in G∗
k−1. Thus G∗

k−1 is an induced subgraph of H∗
k−1�H∗

k , and u, v ∈ V (G),

dG∗
k−1

(βk−1(u), βk−1(v)) ≥ dH∗
k−1

(αk−1(u), αk−1(v)) + dH∗
k
(αk(u), αk(v)).

On the other hand, for u, v ∈ V (G) and each shortest (u, v)-path P in G, |P ∩Ek−1| =

dH∗
k−1

(αk−1(u), αk−1(v)) and |P ∩ Ek| = dH∗
k
(αk(u), αk(v)). Moreover, P ∩ Ek−1, P ∩
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Ek ⊆ E(H∗
k−1). Since H∗

k−1[(P ∩ Ek−1) ∪ (P ∩ Ek)] induces a path between βk−1(u) and

βk−1(v), we have for all u, v ∈ V (G), dG∗
k−1

(βk−1(u), βk−1(v)) ≤ dH∗
k−1

(αk−1(u), αk−1(v)) +

dH∗
k
(αk(u), αk(v)), which completes the proof. �

Proof of Theorem 3.4.

Note that Gi
ω,σ and Gi

ω′,σ have been defined in Section 2 with respect to F. Since

β is an isometric embedding by Lemma 3.5, the proof is almost the same as the one in

Theorem 3.1 and we omit it here. �

4 Examples

In this section, we will give two examples to show how to use our formula to calculate

the revised (edge-)Szeged indices. Denote by Sz∗(e) the number (nu(e)+
1
2
n0(e))(nv(e)+

1
2
n0(e)) and by Sz∗e(f) the number (mu(f) +

1
2
m0(f))(mv(f) +

1
2
m0(f)).

4.1 Example 1

As Example 1 we calculate the revised Szeged index of the molecular graph of porphin

C20H14N4 (omitting trivial branches). The molecular graph is shown in Figure 1.

Figure 1. G and its edge labels. Figure 2. G and its six equivalent
classes.

Since the subtle symmetry of G, the calculation of Sz∗(G) can be reduced to Sz∗(G) =

4Sz∗(e1) + 8Sz∗(e2) + 8Sz∗(e3) + 8Sz∗(e4).

We show the distance relationship in Figures 3, 4, 5, 6 where the vertex labelling u, v

or w is nearer to u, v or the same close to u and v, respectively. Thus

Sz∗(G) = 4× (11 + 1
2
× 2)(11 + 1

2
× 2) + 8× (2 + 1

2
× 9)(13 + 1

2
× 9) + 8× (10 + 1

2
×

2)(12 + 1
2
× 2) + 8× 12× 12 = 3782.
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Figure 3. the distance relation-
ships according to edge
e1.

Figure 4. the distance relation-
ships according to edge
e2.

Figure 5. the distance relation-
ships according to edge
e3.

Figure 6. the distance relation-
ships according to edge
e4.

On the other hand, we calculate the value by Theorem 3.1 through the graphs Gi
ω,σ,

i = 1, · · · , 6. We only show G − E1, G − E3, G
1
ω,σ, G

3
ω,σ in Figures 7, 8 and omit the

isomorphic ones. Utilizing Theorem 3.1, we reduce the calculation to

Sz∗(G) =
6∑

i=1

Sz∗(Gi
ω,σ) (4.1)

= 2× (4× (13 +
1

2
× 9)(2 +

1

2
× 9) + 2× (11 +

1

2
× 2)(11 +

1

2
× 2)+

4× (12 +
1

2
× 2)(10 +

1

2
× 2)) + 4× (2× 12× 12) (4.2)

= 3782. (4.3)
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Figure 7. G− E1
∼= G− E2 and G− E3

∼= G− Ei, i = 4, 5, 6.

Figure 8. G1
ω,σ

∼= G2
ω,σ and G3

ω,σ
∼= Gi

ω,σ, i = 4, 5, 6.

4.2 Example 2

Figure 9. G and its edge labels. Figure 10. G and its six equivalent
classes.

Now we look at another example, the graph G (part of the Carbon 60) shown in

Figure 9. We can reduce the calculation of Sz∗e(G) to Sz∗e(G) = 5Sz∗e(e1) + 5Sz∗e(e2) +

10Sz∗e(e3) + 5Sz∗e(e4).

The distance relationship is shown in Figures 11, 12, 13, 14. Consequently we have

Sz∗e(G) = 5× (10+ 5
2
)× (10+ 5

2
) + 5× (10+ 5

2
)× (10+ 5

2
) + 10× (4 + 3

2
)× (18+ 3

2
) +

5× (4 + 3
2
)(18 + 3

2
) = 2586.25.

-159-



Figure 11. the distance relation-
ships according to edge
e1.

Figure 12. the distance relation-
ships according to edge
e2.

Figure 13. the distance relation-
ships according to edge
e3.

Figure 14. the distance relation-
ships according to edge
e4.

Next, we calculate the value by Theorem 3.1 through the graphs Gi
ω′,σ, i = 1, · · · , 6.

We only show G− E1, G− E2, G
1
ω′,σ, G

2
ω′,σ in Figures 15, 16 as representatives.

Sz∗e(G) =
6∑

i=1

Sz∗e(G
i
ω′,σ) (4.4)

= 5× 2× ((2 + 2 + 3 + 3) +
1

2
(2 + 3))((2 + 2 + 3 + 3) +

1

2
(2 + 3))+

5× 3× (18 +
3

2
)(4 +

3

2
) (4.5)

= 2586.25. (4.6)
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Figure 15. G− E2
∼= G− Ei, i = 3, 4, 5, 6.

Figure 16. G2
ω′,σ

∼= Gi
ω′,σ, i = 3, 4, 5, 6.
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