A Note on the Computation of Revised (Edge-)Szeged Index in Terms of Canonical Isometric Embedding*
 Xueliang Li, Meiqiao Zhang
 Center for Combinatorics and LPMC,
 Nankai University, Tianjin 300071, China
 lxl@nankai.edu.cn ; MeiqiaoZhang@foxmail.com

(Received May 28, 2018)

Abstract

Motivated by the computation formula of Wiener index in terms of canonical isometric embedding, we deduce computation formulas for the revised (edge-) Szeged index. The revised (edge-)Szeged index for a vertex-edge-weighted graph are thus introduced. We also obtain some properties of the equivalent relation θ^{*} and the revised (edge-)Szeged index. Finally, we calculate the revised (edge-) Szeged indices for some specific graphs, as examples.

1 Introduction

All graphs in this paper are assumed to be finite, simple and undirected, unless pointed out specifically. We refer the reader to [2] for terminology and notation unexplained here.

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G)$, the distance $d_{G}(u, v)$ counts the minimum number of edges of the path connecting u and v in G. For $u \in V(G)$ and $f \in E(G)$, the distance $d_{G}(u, f)$ counts the minimum number of edges of the path connecting u and f in G. It is naturally to consider partitions of $E(G)$ with respect to an edge $e=u v \in E(G)$ involved with several sets defined below:

$$
\begin{aligned}
& N_{u}(e \mid G)=\left\{w \in V: d_{G}(u, w)<d_{G}(v, w)\right\}, \\
& N_{0}(e \mid G)=\left\{w \in V: d_{G}(u, w)=d_{G}(v, w)\right\},
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& M_{u}(e \mid G)=\left\{f \in E: d_{G}(u, f)<d_{G}(v, f)\right\}, \\
& M_{0}(e \mid G)=\left\{f \in E: d_{G}(u, f)=d_{G}(v, f)\right\} .
\end{aligned}
$$
\]

Let $n_{u}(e \mid G), n_{0}(e \mid G), m_{u}(e \mid G)$ and $m_{0}(e \mid G)$ denote the cardinality of $N_{u}(e \mid G)$, $N_{0}(e \mid G), M_{u}(e \mid G)$ and $M_{0}(e \mid G)$, respectively. Note that $u \in N_{u}(e \mid G)$ and $e \in M_{o}(e \mid G)$. Omit the constraint $\mid G$ if not necessary.

For two graphs G and G^{\prime}, a map ϕ from $V(G)$ to $V\left(G^{\prime}\right)$ is isometric if for all $u, v \in$ $V(G), d_{G}(u, v)=d_{G^{\prime}}(\phi(u), \phi(v))$. Attempting to characterize the isometric subgraphs of hypercubes, Djoković [5] introduced an equivalent relation θ on partial cubes, saying that for $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E(G), e \theta e^{\prime}$ if and only if $d_{G}\left(u, u^{\prime}\right)+d_{G}\left(v, v^{\prime}\right) \neq d_{G}\left(u, v^{\prime}\right)+$ $d_{G}\left(v, u^{\prime}\right)$. Before long, Graham and Winkler [6] generalized the equivalent relation θ into its transitive closure θ^{*}, which is suitable for all graphs. Moreover, they define the canonical isometric embedding through it, which maps G to the product of a series quotient graphs of G isometrically.

First, recall the definition of the Cartesian product of graphs. In a graph $G=$ $G_{1} \square \cdots \square G_{k}, u, v \in V(G)$ are adjacent if and only if for some i, u_{i} is adjacent to v_{i} in G_{i} and for any $j \neq i, u_{j}=v_{j}$. Also note that $d_{G}(u, v)=\sum_{j=1}^{k} d_{G_{j}}\left(u_{j}, v_{j}\right)$.

Denote the equivalent classes of θ^{*} by $\mathfrak{E}=\left\{E_{1}, \cdots, E_{k}\right\}$ throughout this paper. Let G_{i} be the graphs formed from G by deleting E_{i} and $C_{1}^{i}, \cdots, C_{m_{i}}^{i}$ be the connected components of G_{i}. Construct the graphs G_{i}^{*} with vertex set $V\left(G_{i}^{*}\right)=\left\{C_{1}^{i}, \cdots, C_{m_{i}}^{i}\right\}$ and the vertices C_{j}^{i} and $C_{j^{\prime}}^{i}$ are adjacent if and only if some edge in E_{i} joins a vertex in C_{j}^{i} to a vertex in $C_{j^{\prime}}^{i}$. Define maps $\alpha_{i}: V(G) \rightarrow V\left(G_{i}^{*}\right)$, where $v \in \alpha_{i}(v)$. Then the canonical isometric representation $\alpha: V(G) \rightarrow V\left(G^{*}\right)=V\left(\square_{i=1}^{k} G_{i}^{*}\right)$, where $\alpha(v)=\left(\alpha_{1}(v), \cdots, \alpha_{k}(v)\right)$, is well defined and isometric. For more results on θ and θ^{*}, see [13].

The Wiener index of a graph G is defined as $W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)$. In [11], through the equivalent relation θ, an expansion form of the Wiener index for partial cubes has been deduced: $W(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e)$. A computation formula of the Wiener index for all graphs also appeared in [10], utilizing the equivalent relation θ^{*}. We refer the reader to $[9,13]$ for similar results of other indices and $[14,15,18]$ for more information about the Wiener index and the edge-Wiener index.

Motivated by the symmetry expansion form of Wiener index, Gutman [7] introduced graph invariants Szeged index defined by $S z(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e)$. and [8] the edge-Szeged index $S z_{e}(G)=\sum_{e=u v \in E(G)} m_{u}(e) m_{v}(e)$. Shortly afterwards, Randić [16]
raised a modified version of the Szeged index, i.e., the revised Szeged index. The revised Szeged index of a connected graph G is defined as

$$
S z^{*}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e)+\frac{1}{2} n_{0}(e)\right)\left(n_{v}(e)+\frac{1}{2} n_{0}(e)\right) .
$$

There is an edge version of the revised Szeged index, the revised edge-Szeged index, which is defined as

$$
S z_{e}^{*}(G)=\sum_{e=u v \in E(G)}\left(m_{u}(e)+\frac{1}{2} m_{0}(e)\right)\left(m_{v}(e)+\frac{1}{2} m_{0}(e)\right)
$$

There are lots of results about the (edge-)Szeged index and the revised (edge-)Szeged index; see $[1,3,4,8]$. This paper will give expansion formulas of the revised (edge-) Szeged indices.

We list the necessary notions and lemmas in next section, prove our main results in section 3, and end with two examples in the final section.

2 Preliminaries

Let $G_{\omega, \sigma}=(G, \omega, \sigma)$ be a vertex-edge-weighted graph, which is the graph G with weights $\omega: V(G) \rightarrow \mathbb{R}^{+}$and $\sigma: E(G) \rightarrow \mathbb{R}^{+}$. Moreover, with respect to $e=u v \in$ $E(G)=E\left(G_{\omega, \sigma}\right)$, define

$$
\begin{aligned}
N_{u}\left(e \mid G_{\omega, \sigma}\right) & =N_{u}(e \mid G), \\
N_{0}\left(e \mid G_{\omega, \sigma}\right) & =N_{0}(e \mid G), \\
M_{u}\left(e \mid G_{\omega, \sigma}\right) & =M_{u}(e \mid G), \\
M_{0}\left(e \mid G_{\omega, \sigma}\right) & =M_{0}(e \mid G), \\
n_{u}\left(e \mid G_{\omega, \sigma}\right) & =\sum_{x \in N_{u}(e \mid G)} \omega(x), \\
n_{0}\left(e \mid G_{\omega, \sigma}\right) & =\sum_{x \in N_{0}(e \mid G)} \omega(x), \\
m_{u}\left(e \mid G_{\omega, \sigma}\right) & =\sum_{f \in M_{u}(e \mid G)} \sigma(f)+\sum_{x \in N_{u}(e \mid G)} \omega(x), \\
m_{0}\left(e \mid G_{\omega, \sigma}\right) & =\sum_{f \in M_{0}(e \mid G)} \sigma(f)+\sum_{x \in N_{0}(e \mid G)} \omega(x) .
\end{aligned}
$$

For our main results, we introduce the definition of the revised weighted (edge-) Szeged index $S z^{*}\left(G_{\omega, \sigma}\right)\left(S z_{e}^{*}\left(G_{\omega, \sigma}\right)\right)$ of a vertex-edge-weighted graph $G_{\omega, \sigma}$, which was similarly mentioned in $[1,4]$.

Definition 2.1. Let $G_{\omega, \sigma}$ be a connected vertex-edge-weighted graph (G, ω, σ). Then we define the revised weighted (edge-)Szeged index of $G_{\omega, \sigma}$ as follows:

$$
\begin{aligned}
S z^{*}\left(G_{\omega, \sigma}\right) & =\sum_{e=u v \in E(G)} \sigma(e)\left(n_{u}\left(e \mid G_{\omega, \sigma}\right)+\frac{1}{2} n_{0}\left(e \mid G_{\omega, \sigma}\right)\right)\left(n_{v}\left(e \mid G_{\omega, \sigma}\right)+\frac{1}{2} n_{0}\left(e \mid G_{\omega, \sigma}\right)\right) . \\
S z_{e}^{*}\left(G_{\omega, \sigma}\right) & =\sum_{e=u v \in E(G)} \sigma(e)\left(m_{u}\left(e \mid G_{\omega, \sigma}\right)+\frac{1}{2} m_{0}\left(e \mid G_{\omega, \sigma}\right)\right)\left(m_{v}\left(e \mid G_{\omega, \sigma}\right)+\frac{1}{2} m_{0}\left(e \mid G_{\omega, \sigma}\right)\right) .
\end{aligned}
$$

Note that if $\omega(V)=\sigma(E)=1$, we have $S z^{*}\left(G_{\omega, \sigma}\right)=S z^{*}(G)$, and if $\omega(V)=0$ and $\sigma(E)=1$ we have $S z_{e}^{*}\left(G_{\omega, \sigma}\right)=S z_{e}^{*}(G)$.

Definition 2.2. [14] Let G be a connected graph. A partition $\mathfrak{F}=\left\{F_{1}, F_{2}, \cdots, F_{l}\right\}$ of $E(G)$ is coarser than \mathfrak{E} if each edge set F_{i} is one or more union of sets in \mathfrak{E}.

Under the statement of Definition 2.2, let $C_{j}^{i}, C_{j^{\prime}}^{i}$ be connected components in $G_{i}=$ $G-F_{i}$, denote by $E\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)$ the set of edges in F_{i} which join a vertex from C_{j}^{i} to $C_{j^{\prime}}^{i}$ and by $\left|E\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)\right|$ its cardinality. We similarly define the graphs G_{i}^{*} with vertex set $V\left(G_{i}^{*}\right)=\left\{C_{1}^{i}, \cdots, C_{m_{i}}^{i}\right\}$ and the vertices C_{j}^{i} and $C_{j^{\prime}}^{i}$ are adjacent if and only if some edge in F_{i} joins a vertex in C_{j}^{i} to a vertex in $C_{j^{\prime}}^{i}$. Construct weighted graphs $G_{\omega, \sigma}^{i}$ with the underlying simple graph $G_{i}^{*}, \omega\left(C_{j}^{i}\right)=\left|V\left(C_{j}^{i}\right)\right|$ and $\sigma\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)=\left|E\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)\right|$, graphs $G_{\omega^{\prime}, \sigma}^{i}$ with the underlying simple graph $G_{i}^{*}, \omega^{\prime}\left(C_{j}^{i}\right)=\left|E\left(C_{j}^{i}\right)\right|$ and $\sigma\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)=\left|E\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)\right|$.

We also need the following lemmas.
Lemma 2.3. [17] Let G be a connected graph. Then G has an isometric embedding in a power of K_{3} if and only if the relation θ is transitive on $E(G)$.

Lemma 2.4. [6]
(1) The canonical embedding $\alpha: G \rightarrow \square_{i=1}^{k} G_{i}^{*}$ is irredundant, has reducible factors and has the largest possible factors among all irredundant isometric embeddings of G.
(2) The only irredundant isometric embedding of G into a product of $\operatorname{dim}_{I}(G)$ factors is the canonical embedding, where $\operatorname{dim}_{I}(G)$ is the number of factors G_{i}^{*} in the canonical embedding of G.

Combining Lemma 2.4 with the proof of Lemma 2.3 in [17], we can obtain the following well-known result, which was also mentioned as a fact in [12].

Proposition 2.5. Let G be a connected graph. If the θ relation is transitive and $\left(E_{1}, \cdots, E_{k}\right)$ are the equivalent classes, then each subgraph $G-E_{i}, i=1, \cdots, k$, contains at most three connected components.

3 Main Results

We shall prove several theorems and corollaries in the following.
Theorem 3.1. Let G be a connected graph and E_{1}, \cdots, E_{k} be the θ^{*} classes of $E(G)$.
Then we have

$$
\begin{aligned}
& \text { (1) } S z^{*}(G)=\sum_{i=1}^{k} S z^{*}\left(G_{\omega, \sigma}^{i}\right) \\
& \text { (2) } S z_{e}^{*}(G)=\sum_{i=1}^{k} S z_{e}^{*}\left(G_{\omega^{\prime}, \sigma}^{i}\right)
\end{aligned}
$$

Proof.

(1) For each edge $e=u v \in E(G)$, there is an i such that $e \in E_{i}$. Note that $d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right)-d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(v)\right)$ represents the difference of distances in graph G_{i}^{*}. Consider the relationship between $d_{G}(x, u)-d_{G}(x, v)$ and $d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right)$ $-d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(v)\right)$.

Consequently, from the canonical isometric embedding, $\alpha(u)$ and $\alpha(v)$ differ exactly on one coordinate, say the i th coordinate. So for each x and every $j \neq i$, we have $d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(u)\right)=d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(v)\right)$. Thus we can obtain that the differences are exactly equal, i.e.,

$$
\begin{align*}
d_{G}(x, u)-d_{G}(x, v) & =d_{G^{*}}(\alpha(x), \alpha(u))-d_{G^{*}}(\alpha(x), \alpha(v)) \tag{3.1}\\
& =\sum_{j=1}^{k} d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(u)\right)-d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(v)\right) \tag{3.2}\\
& =d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right)-d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(v)\right) . \tag{3.3}
\end{align*}
$$

Hence for each edge $e=u v \in E(G), n_{u}(e)$ counts the number $\sum_{C_{j}^{i} \in N_{u}\left(e \mid G_{i}^{*}\right)}\left|V\left(C_{j}^{i}\right)\right|$ and $n_{0}(e)$ counts the number $\sum_{C_{j}^{i} \in N_{0}\left(e \mid G_{i}^{*}\right)}\left|V\left(C_{j}^{i}\right)\right|$. Thus we conclude

$$
\begin{aligned}
\left(n_{u}(e)+\frac{1}{2} n_{0}(e)\right)\left(n_{v}(e)+\frac{1}{2} n_{0}(e)\right)= & \left(\sum_{C_{j}^{i} \in N_{u}\left(e \mid G_{i}^{*}\right)}\left|V\left(C_{j}^{i}\right)\right|+\frac{1}{2} \sum_{C_{j}^{i} \in N_{0}\left(e \mid G_{i}^{*}\right)}\left|V\left(C_{j}^{i}\right)\right|\right) \\
& \left(\sum_{C_{j}^{i} \in N_{v}\left(e \mid G_{i}^{*}\right)}\left|V\left(C_{j}^{i}\right)\right|+\frac{1}{2} \sum_{C_{j}^{i} \in N_{0}\left(e \mid G_{i}^{*}\right)}\left|V\left(C_{j}^{i}\right)\right|\right)
\end{aligned}
$$

Therefore $\sum_{e \in E_{i}}\left(n_{u}(e)+\frac{1}{2} n_{0}(e)\right)\left(n_{v}(e)+\frac{1}{2} n_{0}(e)\right)=S z^{*}\left(G_{\omega, \sigma}^{i}\right)$, i.e.,

$$
S z^{*}(G)=\sum_{i=1}^{k} S z^{*}\left(G_{\omega, \sigma}^{i}\right)
$$

(2) Similarly, for an edge $e=u v \in E(G)$, assume $e \in E_{i}$. Consider each edge $f=w z \in E(G)$ other than e. Denote the unique coordinate distinguishing w and z by l.

Case 1: $l=i$.
It is obvious that $l=i$ if and only if f is an edge in G_{i}^{*}.
Suppose $d_{G}(f, u)-d_{G}(f, v)=d_{G}(x, u)-d_{G}(y, v)$, where $x, y \in\{w, z\}$. Thus $d_{G}(x, u) \leq$ $d_{G}(y, u)$ and $d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right) \leq d_{G_{i}^{*}}\left(\alpha_{i}(y), \alpha_{i}(u)\right)$, therefore we have

$$
d_{G_{i}^{*}}\left(\alpha_{i}(w) \alpha_{i}(z), \alpha_{i}(u)\right)=d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right) .
$$

And similarly,

$$
d_{G_{i}^{*}}\left(\alpha_{i}(w) \alpha_{i}(z), \alpha_{i}(v)\right)=d_{G_{i}^{*}}\left(\alpha_{i}(y), \alpha_{i}(v)\right) .
$$

Moreover,

$$
\begin{align*}
d_{G}(f, u)-d_{G}(f, v) & =d_{G}(x, u)-d_{G}(y, v) \tag{3.4}\\
& =d_{G^{*}}(\alpha(x), \alpha(u))-d_{G^{*}}(\alpha(y), \alpha(v)) \tag{3.5}\\
& =\sum_{j=1}^{k} d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(u)\right)-d_{G_{j}^{*}}\left(\alpha_{j}(y), \alpha_{j}(v)\right) \tag{3.6}\\
& =d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right)-d_{G_{i}^{*}}\left(\alpha_{i}(y), \alpha_{i}(v)\right) \tag{3.7}\\
& =d_{G_{i}^{*}}\left(\alpha_{i}(w) \alpha_{i}(z), \alpha_{i}(u)\right)-d_{G_{i}^{*}}\left(\alpha_{i}(w) \alpha_{i}(z), \alpha_{i}(v)\right) . \tag{3.8}
\end{align*}
$$

Hence we know for edges in the same equivalent class as $e=u v$, the difference of its distance from u and v equals the distance from its image between $\alpha_{i}(u)$ and $\alpha_{i}(v)$ in G_{i}^{*}.

Case 2: $l \neq i$.
Similarly, $l \neq i$ if and only if f is a vertex in G_{i}^{*}, i.e., $\alpha_{i}(w)=\alpha_{i}(z)$.
Since e and f are not in the same equivalent class, we have $d_{G}(u, w)+d_{G}(v, z)=$ $d_{G}(u, z)+d_{G}(v, w)$. Thus if $d_{G}(u, w) \leq d_{G}(v, w)$, then $d_{G}(v, z) \geq d_{G}(u, z)$ holds. Suppose $d_{G}(f, u)-d_{G}(f, v)=d_{G}(x, u)-d_{G}(x, v)$. Then we have

$$
\begin{align*}
d_{G}(f, u)-d_{G}(f, v) & =d_{G}(x, u)-d_{G}(x, v) \tag{3.9}\\
& =d_{G^{*}}(\alpha(x), \alpha(u))-d_{G^{*}}(\alpha(x), \alpha(v)) \tag{3.10}\\
& =\sum_{j=1}^{k} d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(u)\right)-d_{G_{j}^{*}}\left(\alpha_{j}(x), \alpha_{j}(v)\right) \tag{3.11}\\
& =d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(u)\right)-d_{G_{i}^{*}}\left(\alpha_{i}(x), \alpha_{i}(v)\right) . \tag{3.12}
\end{align*}
$$

Hence we know for edges in the different equivalent class with $e=u v$, the difference of its distance from u and v equals the distance between its image (as a point) with $\alpha_{i}(u)$ and $\alpha_{i}(v)$ in G_{i}^{*}.

Above all, we conclude that $m_{u}(e)=\sum_{f \in M_{u}\left(e \mid G_{i}^{*}\right)} \sigma(f)+\sum_{x \in N_{u}\left(e \mid G_{i}^{*}\right)} \omega(x), m_{0}(e)=$ $\sum_{f \in M_{0}\left(e \mid G_{i}^{*}\right)} \sigma(f)+\sum_{x \in N_{0}\left(e \mid G_{i}^{*}\right)} \omega(x)$, and $\sum_{e \in E_{i}}\left(m_{u}(e)+\frac{1}{2} m_{0}(e)\right)\left(m_{u}(e)+\frac{1}{2} m_{0}(e)\right)=$ $S z_{e}^{*}\left(G_{\omega, \sigma}\right)$, which completes the proof.

From the proof of Theorem 3.1, the following corollary follows naturally, which reveals several properties of θ^{*}.

Corollary 3.2. Let G be a connected graph and E_{1}, \cdots, E_{k} be the θ^{*} classes of $E(G)$. Then for each edge $e=u v \in E_{i}, u \in C_{u}^{i}$ and $v \in C_{v}^{i}$, we have
(1) for all vertices x in one connected component C_{j}^{i} in G_{i}, the values of $d_{G}(x, u)-$ $d_{G}(x, v)$ are the same. In particular, for each x in $C_{u}^{i}, d_{G}(x, u)<d_{G}(x, v)$, and for each y in $C_{v}^{i}, d_{G}(y, v)<d_{G}(y, u)$.
(2) if $e^{\prime}=u^{\prime} v^{\prime} \in E_{i}$ joins u^{\prime} in C_{u}^{i} to v^{\prime} in C_{v}^{i}, then $d_{G}\left(u, u^{\prime}\right)+d_{G}\left(v, v^{\prime}\right) \neq d_{G}\left(u, v^{\prime}\right)+$ $d_{G}\left(v, u^{\prime}\right)$.

Utilizing Proposition 2.5, we can deduce Theorem 3.3, which is also a special case of Theorem 3.1(1).

Theorem 3.3. Let G be a connected graph, θ be transitive, and E_{1}, \cdots, E_{k} be the θ classes of $E(G)$. Then we have

$$
\begin{aligned}
S z^{*}(G)= & \sum_{i=1}^{k} \sum_{C_{j}^{i}, C_{j^{\prime}}^{i} \in V\left(G_{i}^{*}\right)}\left|E\left(C_{j}^{i}, C_{j^{\prime}}^{i}\right)\right|\left(\left|V\left(C_{j}^{i}\right)\right|+\frac{1}{2}\left(n-\left|V\left(C_{j}^{i}\right)\right|-\left|V\left(C_{j^{\prime}}^{i}\right)\right|\right)\right)\left(\left|V\left(C_{j^{\prime}}^{i}\right)\right|+\right. \\
& \left.\frac{1}{2}\left(n-\left|V\left(C_{j}^{i}\right)\right|-\left|V\left(C_{j^{\prime}}^{i}\right)\right|\right)\right)
\end{aligned}
$$

Proof. At first we show the following claim.
Claim: In each $G-E_{i}$ with exactly three connected components, for each $e=u v \in E_{i}$, there exists a connected component in which each vertex has the same distance to u as to v.

It is clear that as long as we can prove the claim, we shall get Theorem 3.3 directly.
It suffices to prove that for each $G-E_{i}$ with exactly three connected components, the corresponding graph G_{i}^{*} is K_{3}. If it is not the case, then G_{i}^{*} has to be a P_{3} and let the path be $C_{1}^{i} C_{2}^{i} C_{3}^{i}$. For each $e=u v \in E_{i}$ with $u \in C_{1}^{i}$ and $v \in C_{2}^{i}$, each $x \in C_{2}^{i}$, due to Corollary 3.2, we have $d_{G}(x, v)<d_{G}(x, u)$. In particular, for each $e^{\prime}=u^{\prime} v^{\prime} \in E_{i}$ with $u^{\prime} \in C_{2}^{i}$ and $v^{\prime} \in C_{3}^{i}$, we have $d_{G}\left(u^{\prime}, v\right)<d_{G}\left(u^{\prime}, u\right)$. Since G_{i}^{*} is a P_{3}, then $d_{G}\left(v^{\prime}, u\right)=d_{G}\left(u^{\prime}, u\right)+1$ and
$d_{G}\left(v^{\prime}, v\right)=d_{G}\left(u^{\prime}, v\right)+1$. Thus $d_{G}\left(u^{\prime}, u\right)+d_{G}\left(v^{\prime}, v\right)=d_{G}\left(u^{\prime}, v\right)+d_{G}\left(v^{\prime}, u\right)$, a contradiction.

Note: Similar to Theorem 3.3, we also have an expansion formula of the revised edgeSzeged index for the graphs mentioned above, but its has a far more complex form, so we omit it here.

In fact, for convenience when computing, we show a stronger result than Theorem 3.1.
Theorem 3.4. Let G be a connected graph and $\mathfrak{F}=\left\{F_{1}, \cdots, F_{l}\right\}$ be a partition of $E(G)$ coarser than \mathfrak{E}. Then we have

$$
\begin{aligned}
& \text { (1) } S z^{*}(G)=\sum_{i=1}^{l} S z^{*}\left(G_{\omega, \sigma}^{i}\right) . \\
& \text { (2) } S z_{e}^{*}(G)=\sum_{i=1}^{l} S z_{e}^{*}\left(G_{\omega^{\prime}, \sigma}^{i}\right) .
\end{aligned}
$$

Before proving Theorem 3.4, we show a useful lemma.
Lemma 3.5. Let G be a connected graph and $\mathfrak{F}=\left\{F_{1}, \cdots, F_{l}\right\}$ be a partition of $E(G)$ coarser than \mathfrak{E}. Define a map $\beta: V(G) \rightarrow V\left(G^{*}\right)=V\left(\square_{i=1}^{l} G_{i}^{*}\right)$ to be $\beta(v)=\left(\beta_{1}(v), \ldots\right.$, $\left.\beta_{l}(v)\right)$, where $\beta_{i}: V(G) \rightarrow V\left(G_{i}^{*}\right)$ and $v \in \beta_{i}(v)$. Then β is isometric.

Proof.

To avoid confusion, denote the G_{i}^{*} corresponding with E_{i} by H_{i}^{*} in this proof.
It suffices to prove, without loss of generality, that when $\mathfrak{F}=\left\{E_{1}, E_{2}, \cdots, F_{k-1}=\right.$ $\left.E_{k-1} \cup E_{k}\right\}$, the corresponding β is isometric, i.e., $d_{G}(u, v)=\sum_{i=1}^{k-1} d_{G_{i}^{*}}\left(\beta_{i}(u), \beta_{i}(v)\right)$ for all $u, v \in V(G)$. Moreover, $d_{G}(u, v)=\sum_{i=1}^{k} d_{H_{i}^{*}}\left(\alpha_{i}(u), \alpha_{i}(v)\right)$. Thus all we need to prove is that for all $u, v \in V(G), d_{G_{k-1}^{*}}\left(\beta_{k-1}(u), \beta_{k-1}(v)\right)=d_{H_{k-1}^{*}}\left(\alpha_{k-1}(u), \alpha_{k-1}(v)\right)+$ $d_{H_{k}^{*}}\left(\alpha_{k}(u), \alpha_{k}(v)\right)$.

Considering the graphs G_{k-1}^{*} and $H_{k-1}^{*} \square H_{k}^{*}$, each vertex $\beta_{k-1}(u)$ (a representative element) in G_{k-1}^{*} corresponds to a unique vertex $\left(\alpha_{k-1}(u), \alpha_{k}(u)\right)$ (a representative element) in $H_{k-1}^{*} \square H_{k}^{*}$ and the map is injective. Moreover, if vertices $\left(\alpha_{k-1}(u), \alpha_{k}(u)\right)$ and $\left(\alpha_{k-1}(v), \alpha_{k}(v)\right)$ are adjacent in $H_{k-1}^{*} \square H_{k}^{*}$, then vertices $\beta_{k-1}(u)$ and $\beta_{k-1}(v)$ are adjacent in G_{k-1}^{*}. Thus G_{k-1}^{*} is an induced subgraph of $H_{k-1}^{*} \square H_{k}^{*}$, and $u, v \in V(G)$, $d_{G_{k-1}^{*}}\left(\beta_{k-1}(u), \beta_{k-1}(v)\right) \geq d_{H_{k-1}^{*}}\left(\alpha_{k-1}(u), \alpha_{k-1}(v)\right)+d_{H_{k}^{*}}\left(\alpha_{k}(u), \alpha_{k}(v)\right)$.

On the other hand, for $u, v \in V(G)$ and each shortest (u, v)-path P in $\mathrm{G},\left|P \cap E_{k-1}\right|=$ $d_{H_{k-1}^{*}}\left(\alpha_{k-1}(u), \alpha_{k-1}(v)\right)$ and $\left|P \cap E_{k}\right|=d_{H_{k}^{*}}\left(\alpha_{k}(u), \alpha_{k}(v)\right)$. Moreover, $P \cap E_{k-1}, P \cap$
$E_{k} \subseteq E\left(H_{k-1}^{*}\right)$. Since $H_{k-1}^{*}\left[\left(P \cap E_{k-1}\right) \cup\left(P \cap E_{k}\right)\right]$ induces a path between $\beta_{k-1}(u)$ and $\beta_{k-1}(v)$, we have for all $u, v \in V(G), d_{G_{k-1}^{*}}\left(\beta_{k-1}(u), \beta_{k-1}(v)\right) \leq d_{H_{k-1}^{*}}\left(\alpha_{k-1}(u), \alpha_{k-1}(v)\right)+$ $d_{H_{k}^{*}}\left(\alpha_{k}(u), \alpha_{k}(v)\right)$, which completes the proof.

Proof of Theorem 3.4.

Note that $G_{\omega, \sigma}^{i}$ and $G_{\omega^{\prime}, \sigma}^{i}$ have been defined in Section 2 with respect to \mathfrak{F}. Since β is an isometric embedding by Lemma 3.5, the proof is almost the same as the one in Theorem 3.1 and we omit it here.

4 Examples

In this section, we will give two examples to show how to use our formula to calculate the revised (edge-)Szeged indices. Denote by $S z^{*}(e)$ the number $\left(n_{u}(e)+\frac{1}{2} n_{0}(e)\right)\left(n_{v}(e)+\right.$ $\left.\frac{1}{2} n_{0}(e)\right)$ and by $S z_{e}^{*}(f)$ the number $\left(m_{u}(f)+\frac{1}{2} m_{0}(f)\right)\left(m_{v}(f)+\frac{1}{2} m_{0}(f)\right)$.

4.1 Example 1

As Example 1 we calculate the revised Szeged index of the molecular graph of porphin $C_{20} H_{14} N_{4}$ (omitting trivial branches). The molecular graph is shown in Figure 1.

Figure 1. G and its edge labels.

Figure 2. G and its six equivalent classes.

Since the subtle symmetry of G, the calculation of $S z^{*}(G)$ can be reduced to $S z^{*}(G)=$ $4 S z^{*}\left(e_{1}\right)+8 S z^{*}\left(e_{2}\right)+8 S z^{*}\left(e_{3}\right)+8 S z^{*}\left(e_{4}\right)$.

We show the distance relationship in Figures 3, 4, 5, 6 where the vertex labelling u, v or w is nearer to u, v or the same close to u and v, respectively. Thus
$S z^{*}(G)=4 \times\left(11+\frac{1}{2} \times 2\right)\left(11+\frac{1}{2} \times 2\right)+8 \times\left(2+\frac{1}{2} \times 9\right)\left(13+\frac{1}{2} \times 9\right)+8 \times\left(10+\frac{1}{2} \times\right.$ 2) $\left(12+\frac{1}{2} \times 2\right)+8 \times 12 \times 12=3782$.

Figure 3. the distance relationships according to edge e_{1}.

Figure 5. the distance relationships according to edge e_{3}.

Figure 4. the distance relationships according to edge e_{2}.

Figure 6. the distance relationships according to edge e_{4}.

On the other hand, we calculate the value by Theorem 3.1 through the graphs $G_{\omega, \sigma}^{i}$, $i=1, \cdots, 6$. We only show $G-E_{1}, G-E_{3}, G_{\omega, \sigma}^{1}, G_{\omega, \sigma}^{3}$ in Figures 7, 8 and omit the isomorphic ones. Utilizing Theorem 3.1, we reduce the calculation to

$$
\begin{align*}
S z^{*}(G) & =\sum_{i=1}^{6} S z^{*}\left(G_{\omega, \sigma}^{i}\right) \tag{4.1}\\
& =2 \times\left(4 \times\left(13+\frac{1}{2} \times 9\right)\left(2+\frac{1}{2} \times 9\right)+2 \times\left(11+\frac{1}{2} \times 2\right)\left(11+\frac{1}{2} \times 2\right)+\right. \\
& \left.4 \times\left(12+\frac{1}{2} \times 2\right)\left(10+\frac{1}{2} \times 2\right)\right)+4 \times(2 \times 12 \times 12) \tag{4.2}\\
& =3782 . \tag{4.3}
\end{align*}
$$

$G-E_{1}$

$G-E_{3}$

Figure 7. $G-E_{1} \cong G-E_{2}$ and $G-E_{3} \cong G-E_{i}, i=4,5,6$.

Figure 8. $G_{\omega, \sigma}^{1} \cong G_{\omega, \sigma}^{2}$ and $G_{\omega, \sigma}^{3} \cong G_{\omega, \sigma}^{i}, i=4,5,6$.

4.2 Example 2

Figure 9. G and its edge labels.

Figure 10. G and its six equivalent classes.

Now we look at another example, the graph G (part of the Carbon 60) shown in Figure 9. We can reduce the calculation of $S z_{e}^{*}(G)$ to $S z_{e}^{*}(G)=5 S z_{e}^{*}\left(e_{1}\right)+5 S z_{e}^{*}\left(e_{2}\right)+$ $10 S z_{e}^{*}\left(e_{3}\right)+5 S z_{e}^{*}\left(e_{4}\right)$.

The distance relationship is shown in Figures 11, 12, 13, 14. Consequently we have

$$
S z_{e}^{*}(G)=5 \times\left(10+\frac{5}{2}\right) \times\left(10+\frac{5}{2}\right)+5 \times\left(10+\frac{5}{2}\right) \times\left(10+\frac{5}{2}\right)+10 \times\left(4+\frac{3}{2}\right) \times\left(18+\frac{3}{2}\right)+
$$ $5 \times\left(4+\frac{3}{2}\right)\left(18+\frac{3}{2}\right)=2586.25$.

Figure 11. the distance relationships according to edge e_{1}.

Figure 13. the distance relationships according to edge e_{3}.

Figure 12. the distance relationships according to edge e_{2}.

Figure 14. the distance relationships according to edge e_{4}.

Next, we calculate the value by Theorem 3.1 through the graphs $G_{\omega^{\prime}, \sigma}^{i}, i=1, \cdots, 6$. We only show $G-E_{1}, G-E_{2}, G_{\omega^{\prime}, \sigma}^{1}, G_{\omega^{\prime}, \sigma}^{2}$ in Figures 15,16 as representatives.

$$
\begin{align*}
S z_{e}^{*}(G) & =\sum_{i=1}^{6} S z_{e}^{*}\left(G_{\omega^{\prime}, \sigma}^{i}\right) \tag{4.4}\\
& =5 \times 2 \times\left((2+2+3+3)+\frac{1}{2}(2+3)\right)\left((2+2+3+3)+\frac{1}{2}(2+3)\right)+ \\
& 5 \times 3 \times\left(18+\frac{3}{2}\right)\left(4+\frac{3}{2}\right) \tag{4.5}\\
& =2586.25 . \tag{4.6}
\end{align*}
$$

Figure 15. $G-E_{2} \cong G-E_{i}, i=3,4,5,6$.

Figure 16. $G_{\omega^{\prime}, \sigma}^{2} \cong G_{\omega^{\prime}, \sigma}^{i}, i=3,4,5,6$.

Acknowledgments: We would like to thank the two anonymous referees for their useful comments and suggestions, which helped to improve this paper.

References

[1] M. Arockiaraj, J. Clement, K. Balasubramanian, Topological indices and their applications to circumcised donut benzenoid systems, Kekulenes and drugs, Polycyc. Arom. Comp. 5 (2018) 1-24.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[3] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, Eur. J. Comb. 36 (2014) 237-246.
[4] M. Črepnjak, N. Tratnik, The Szeged index and the Wiener index of partial cubes with applications to chemical graphs, Appl. Math. Comput. 309 (2017) 324-333.
[5] D. Djoković, Distance preserving subgraphs of hypercubes, J. Comb. Theory Ser. B 14 (1973) 263-267.
[6] R. L. Graham, P. M. Winkler, On isometric embeddings of graphs, Trans. Amer. Math. Soc. 288 (1985) 527-536.
[7] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes New York 27 (1994) 9-15.
[8] I. Gutman, A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81 (2008) 263-266.
[9] A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index, Graph Comb. 29 (2013) 1403-1416.
[10] S. Klavžar, On the canonical metric representation, average distance, and partial Hamming graphs, Eur. J. Comb. 27 (2006) 68-73.
[11] S. Klavžar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects the vertex-distance relations, J. Chem. Inf. Comput. Sci. 35 (1995) 590-593.
[12] S. Klavžar, M. J. Nadjafi-Arani, Computing distance moments on graphs with transitive Djoković-Winkler's relation, Discr. Appl. Math. 166 (2014) 269-272.
[13] S. Klavžar, M. J. Nadjafi-Arani, Cut method: update on recent developments and equivalence of independent approaches, Curr. Org. Chem. 19 (2015) 348-358.
[14] S. Klavžar, M. J. Nadjafi-Arani, Wiener index in weighted graphs via unification of θ^{*}-classes, Eur. J. Comb. 36 (2014) 71-76.
[15] M. Knor, R.V. Skrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp. 11 (2016) 327-352.
[16] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49 (2002) 483-496.
[17] P. Winkler, Isometric embeddings in products of complete graphs, Discr. Appl. Math. 7 (1984) 221-225.
[18] H. Yousefi-Azari, M. H. Khalifeh, A. R. Ashrafi, Calculating the edge-Wiener and Szeged indices of graphs, J. Comput. Appl. Math. 235 (2011) 4866-4870.

[^0]: *Supported by NSFC No. 11531011 and the Fundamental Research Funds for the Central Universities.

