МАТСН

Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

A Note on the Computation of Revised (Edge–)Szeged Index in Terms of Canonical Isometric Embedding^{*}

Xueliang Li, Meiqiao Zhang

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

lxl@nankai.edu.cn ; MeiqiaoZhang@foxmail.com

(Received May 28, 2018)

Abstract

Motivated by the computation formula of Wiener index in terms of canonical isometric embedding, we deduce computation formulas for the revised (edge-) Szeged index. The revised (edge-)Szeged index for a vertex-edge-weighted graph are thus introduced. We also obtain some properties of the equivalent relation θ^* and the revised (edge-)Szeged index. Finally, we calculate the revised (edge-) Szeged indices for some specific graphs, as examples.

1 Introduction

All graphs in this paper are assumed to be finite, simple and undirected, unless pointed out specifically. We refer the reader to [2] for terminology and notation unexplained here.

Let G be a connected graph with vertex set V(G) and edge set E(G). For $u, v \in V(G)$, the distance $d_G(u, v)$ counts the minimum number of edges of the path connecting u and v in G. For $u \in V(G)$ and $f \in E(G)$, the distance $d_G(u, f)$ counts the minimum number of edges of the path connecting u and f in G. It is naturally to consider partitions of E(G) with respect to an edge $e = uv \in E(G)$ involved with several sets defined below:

$$N_u(e|G) = \{ w \in V : d_G(u, w) < d_G(v, w) \},\$$

$$N_0(e|G) = \{ w \in V : d_G(u, w) = d_G(v, w) \},\$$

^{*}Supported by NSFC No.11531011 and the Fundamental Research Funds for the Central Universities.

$$M_u(e|G) = \{ f \in E : d_G(u, f) < d_G(v, f) \},\$$

$$M_0(e|G) = \{ f \in E : d_G(u, f) = d_G(v, f) \}.$$

Let $n_u(e|G)$, $n_0(e|G)$, $m_u(e|G)$ and $m_0(e|G)$ denote the cardinality of $N_u(e|G)$, $N_0(e|G)$, $M_u(e|G)$ and $M_0(e|G)$, respectively. Note that $u \in N_u(e|G)$ and $e \in M_o(e|G)$. Omit the constraint |G| if not necessary.

For two graphs G and G', a map ϕ from V(G) to V(G') is isometric if for all $u, v \in V(G)$, $d_G(u, v) = d_{G'}(\phi(u), \phi(v))$. Attempting to characterize the isometric subgraphs of hypercubes, Djoković [5] introduced an equivalent relation θ on partial cubes, saying that for e = uv, $e' = u'v' \in E(G)$, $e\theta e'$ if and only if $d_G(u, u') + d_G(v, v') \neq d_G(u, v') + d_G(v, u')$. Before long, Graham and Winkler [6] generalized the equivalent relation θ into its transitive closure θ^* , which is suitable for all graphs. Moreover, they define the canonical isometric embedding through it, which maps G to the product of a series quotient graphs of G isometrically.

First, recall the definition of the Cartesian product of graphs. In a graph $G = G_1 \Box \cdots \Box G_k$, $u, v \in V(G)$ are adjacent if and only if for some i, u_i is adjacent to v_i in G_i and for any $j \neq i$, $u_j = v_j$. Also note that $d_G(u, v) = \sum_{j=1}^k d_{G_j}(u_j, v_j)$.

Denote the equivalent classes of θ^* by $\mathfrak{E} = \{E_1, \cdots, E_k\}$ throughout this paper. Let G_i be the graphs formed from G by deleting E_i and $C_1^i, \cdots, C_{m_i}^i$ be the connected components of G_i . Construct the graphs G_i^* with vertex set $V(G_i^*) = \{C_1^i, \cdots, C_{m_i}^i\}$ and the vertices C_j^i and $C_{j'}^i$ are adjacent if and only if some edge in E_i joins a vertex in C_j^i to a vertex in $C_{j'}^i$. Define maps $\alpha_i : V(G) \to V(G_i^*)$, where $v \in \alpha_i(v)$. Then the canonical isometric representation $\alpha : V(G) \to V(G^*) = V(\Box_{i=1}^k G_i^*)$, where $\alpha(v) = (\alpha_1(v), \cdots, \alpha_k(v))$, is well defined and isometric. For more results on θ and θ^* , see [13].

The Wiener index of a graph G is defined as $W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v)$. In [11], through the equivalent relation θ , an expansion form of the Wiener index for partial cubes has been deduced: $W(G) = \sum_{e=uv \in E(G)} n_u(e)n_v(e)$. A computation formula of the Wiener index for all graphs also appeared in [10], utilizing the equivalent relation θ^* . We refer the reader to [9,13] for similar results of other indices and [14,15,18] for more information about the Wiener index and the edge-Wiener index.

Motivated by the symmetry expansion form of Wiener index, Gutman [7] introduced graph invariants *Szeged index* defined by $Sz(G) = \sum_{e=uv \in E(G)} n_u(e)n_v(e)$. and [8] the *edge-Szeged index* $Sz_e(G) = \sum_{e=uv \in E(G)} m_u(e)m_v(e)$. Shortly afterwards, Randić [16] raised a modified version of the Szeged index, i.e., the revised Szeged index. The revised Szeged index of a connected graph G is defined as

$$Sz^*(G) = \sum_{e=uv \in E(G)} (n_u(e) + \frac{1}{2}n_0(e))(n_v(e) + \frac{1}{2}n_0(e))$$

There is an edge version of the revised Szeged index, the *revised edge-Szeged index*, which is defined as

$$Sz_e^*(G) = \sum_{e=uv \in E(G)} (m_u(e) + \frac{1}{2}m_0(e))(m_v(e) + \frac{1}{2}m_0(e)).$$

There are lots of results about the (edge-)Szeged index and the revised (edge-)Szeged index; see [1,3,4,8]. This paper will give expansion formulas of the revised (edge-) Szeged indices.

We list the necessary notions and lemmas in next section, prove our main results in section 3, and end with two examples in the final section.

2 Preliminaries

Let $G_{\omega,\sigma} = (G, \omega, \sigma)$ be a vertex-edge-weighted graph, which is the graph G with weights $\omega : V(G) \to \mathbb{R}^+$ and $\sigma : E(G) \to \mathbb{R}^+$. Moreover, with respect to $e = uv \in E(G) = E(G_{\omega,\sigma})$, define

$$N_u(e|G_{\omega,\sigma}) = N_u(e|G),$$

$$N_0(e|G_{\omega,\sigma}) = N_0(e|G),$$

$$M_u(e|G_{\omega,\sigma}) = M_u(e|G),$$

$$M_0(e|G_{\omega,\sigma}) = M_0(e|G),$$

$$n_u(e|G_{\omega,\sigma}) = \sum_{x \in N_u(e|G)} \omega(x),$$

$$m_0(e|G_{\omega,\sigma}) = \sum_{f \in M_u(e|G)} \sigma(f) + \sum_{x \in N_u(e|G)} \omega(x),$$

$$m_0(e|G_{\omega,\sigma}) = \sum_{f \in M_0(e|G)} \sigma(f) + \sum_{x \in N_0(e|G)} \omega(x).$$

For our main results, we introduce the definition of the revised weighted (edge-) Szeged index $Sz^*(G_{\omega,\sigma})$ ($Sz^*_e(G_{\omega,\sigma})$) of a vertex-edge-weighted graph $G_{\omega,\sigma}$, which was similarly mentioned in [1,4]. **Definition 2.1.** Let $G_{\omega,\sigma}$ be a connected vertex-edge-weighted graph (G, ω, σ) . Then we define the revised weighted (edge-)Szeged index of $G_{\omega,\sigma}$ as follows:

$$Sz^*(G_{\omega,\sigma}) = \sum_{e=uv \in E(G)} \sigma(e)(n_u(e|G_{\omega,\sigma}) + \frac{1}{2}n_0(e|G_{\omega,\sigma}))(n_v(e|G_{\omega,\sigma}) + \frac{1}{2}n_0(e|G_{\omega,\sigma})).$$

$$Sz_{e}^{*}(G_{\omega,\sigma}) = \sum_{e=uv \in E(G)} \sigma(e)(m_{u}(e|G_{\omega,\sigma}) + \frac{1}{2}m_{0}(e|G_{\omega,\sigma}))(m_{v}(e|G_{\omega,\sigma}) + \frac{1}{2}m_{0}(e|G_{\omega,\sigma})).$$

Note that if $\omega(V) = \sigma(E) = 1$, we have $Sz^*(G_{\omega,\sigma}) = Sz^*(G)$, and if $\omega(V) = 0$ and $\sigma(E) = 1$ we have $Sz^*_e(G_{\omega,\sigma}) = Sz^*_e(G)$.

Definition 2.2. [14] Let G be a connected graph. A partition $\mathfrak{F} = \{F_1, F_2, \dots, F_l\}$ of E(G) is coarser than \mathfrak{E} if each edge set F_i is one or more union of sets in \mathfrak{E} .

Under the statement of Definition 2.2, let C_j^i , $C_{j'}^i$ be connected components in $G_i = G - F_i$, denote by $E(C_j^i, C_{j'}^i)$ the set of edges in F_i which join a vertex from C_j^i to $C_{j'}^i$ and by $|E(C_j^i, C_{j'}^i)|$ its cardinality. We similarly define the graphs G_i^* with vertex set $V(G_i^*) = \{C_1^i, \cdots, C_{m_i}^i\}$ and the vertices C_j^i and $C_{j'}^i$ are adjacent if and only if some edge in F_i joins a vertex in C_j^i to a vertex in $C_{j'}^i$. Construct weighted graphs $G_{\omega,\sigma}^i$ with the underlying simple graph G_i^* , $\omega(C_j^i) = |V(C_j^i)|$ and $\sigma(C_j^i, C_{j'}^i) = |E(C_j^i, C_{j'}^i)|$, graphs $G_{\omega',\sigma}^i$ with the underlying simple graph G_i^* , $\omega'(C_j^i) = |E(C_j^i)|$ and $\sigma(C_j^i, C_{j'}^i) = |E(C_j^i, C_{j'}^i)|$.

We also need the following lemmas.

Lemma 2.3. [17] Let G be a connected graph. Then G has an isometric embedding in a power of K_3 if and only if the relation θ is transitive on E(G).

Lemma 2.4. [6]

(1) The canonical embedding $\alpha : G \to \Box_{i=1}^k G_i^*$ is irredundant, has reducible factors and has the largest possible factors among all irredundant isometric embeddings of G.

(2) The only irredundant isometric embedding of G into a product of $\dim_I(G)$ factors is the canonical embedding, where $\dim_I(G)$ is the number of factors G_i^* in the canonical embedding of G.

Combining Lemma 2.4 with the proof of Lemma 2.3 in [17], we can obtain the following well-known result, which was also mentioned as a fact in [12].

Proposition 2.5. Let G be a connected graph. If the θ relation is transitive and (E_1, \dots, E_k) are the equivalent classes, then each subgraph $G - E_i$, $i = 1, \dots, k$, contains at most three connected components.

3 Main Results

We shall prove several theorems and corollaries in the following.

Theorem 3.1. Let G be a connected graph and E_1, \dots, E_k be the θ^* classes of E(G). Then we have

(1)
$$Sz^*(G) = \sum_{i=1}^k Sz^*(G^i_{\omega,\sigma}).$$

(2) $Sz^*_e(G) = \sum_{i=1}^k Sz^*_e(G^i_{\omega',\sigma}).$

Proof.

(1) For each edge $e = uv \in E(G)$, there is an *i* such that $e \in E_i$. Note that $d_{G_i^*}(\alpha_i(x), \alpha_i(u)) - d_{G_i^*}(\alpha_i(x), \alpha_i(v))$ represents the difference of distances in graph G_i^* . Consider the relationship between $d_G(x, u) - d_G(x, v)$ and $d_{G_i^*}(\alpha_i(x), \alpha_i(u)) - d_{G_i^*}(\alpha_i(x), \alpha_i(v))$.

Consequently, from the canonical isometric embedding, $\alpha(u)$ and $\alpha(v)$ differ exactly on one coordinate, say the *i*th coordinate. So for each x and every $j \neq i$, we have $d_{G_j^*}(\alpha_j(x), \alpha_j(u)) = d_{G_j^*}(\alpha_j(x), \alpha_j(v))$. Thus we can obtain that the differences are exactly equal, i.e.,

$$d_G(x, u) - d_G(x, v) = d_{G^*}(\alpha(x), \alpha(u)) - d_{G^*}(\alpha(x), \alpha(v))$$
(3.1)

$$=\sum_{j=1}^{n} d_{G_{j}^{*}}(\alpha_{j}(x), \alpha_{j}(u)) - d_{G_{j}^{*}}(\alpha_{j}(x), \alpha_{j}(v))$$
(3.2)

$$= d_{G_i^*}(\alpha_i(x), \alpha_i(u)) - d_{G_i^*}(\alpha_i(x), \alpha_i(v)).$$
(3.3)

Hence for each edge $e = uv \in E(G)$, $n_u(e)$ counts the number $\sum_{C_j^i \in N_u(e|G_i^*)} |V(C_j^i)|$ and $n_0(e)$ counts the number $\sum_{C_j^i \in N_0(e|G_i^*)} |V(C_j^i)|$. Thus we conclude

$$\begin{pmatrix} n_u(e) + \frac{1}{2}n_0(e) \end{pmatrix} \left(n_v(e) + \frac{1}{2}n_0(e) \right) = \left(\sum_{C_j^i \in N_u(e|G_i^*)} |V(C_j^i)| + \frac{1}{2} \sum_{C_j^i \in N_0(e|G_i^*)} |V(C_j^i)| \right) \\ \left(\sum_{C_j^i \in N_v(e|G_i^*)} |V(C_j^i)| + \frac{1}{2} \sum_{C_j^i \in N_0(e|G_i^*)} |V(C_j^i)| \right).$$

Therefore $\sum_{e \in E_i} (n_u(e) + \frac{1}{2}n_0(e))(n_v(e) + \frac{1}{2}n_0(e)) = Sz^*(G^i_{\omega,\sigma})$, i.e.,

$$Sz^*(G) = \sum_{i=1}^k Sz^*(G^i_{\omega,\sigma}).$$

(2) Similarly, for an edge $e = uv \in E(G)$, assume $e \in E_i$. Consider each edge $f = wz \in E(G)$ other than e. Denote the unique coordinate distinguishing w and z by l. **Case 1:** l = i.

It is obvious that l = i if and only if f is an edge in G_i^* .

$$\begin{split} & \text{Suppose } d_G(f,u) - d_G(f,v) = d_G(x,u) - d_G(y,v), \, \text{where } x, y \in \{w,z\}. \text{ Thus } d_G(x,u) \leq \\ & d_G(y,u) \text{ and } d_{G_i^*}(\alpha_i(x),\alpha_i(u)) \leq d_{G_i^*}(\alpha_i(y),\alpha_i(u)), \, \text{therefore we have} \\ & d_{G_i^*}(\alpha_i(w)\alpha_i(z),\alpha_i(u)) = d_{G_i^*}(\alpha_i(x),\alpha_i(u)). \end{split}$$

And similarly,

$$d_{G_i^*}(\alpha_i(w)\alpha_i(z),\alpha_i(v)) = d_{G_i^*}(\alpha_i(y),\alpha_i(v)).$$

Moreover,

$$d_G(f, u) - d_G(f, v) = d_G(x, u) - d_G(y, v)$$
(3.4)

$$= d_{G^*}(\alpha(x), \alpha(u)) - d_{G^*}(\alpha(y), \alpha(v))$$
(3.5)

$$=\sum_{j=1}^{\kappa} d_{G_{j}^{*}}(\alpha_{j}(x), \alpha_{j}(u)) - d_{G_{j}^{*}}(\alpha_{j}(y), \alpha_{j}(v))$$
(3.6)

$$= d_{G_i^*}(\alpha_i(x), \alpha_i(u)) - d_{G_i^*}(\alpha_i(y), \alpha_i(v))$$
(3.7)

$$= d_{G_i^*}(\alpha_i(w)\alpha_i(z), \alpha_i(u)) - d_{G_i^*}(\alpha_i(w)\alpha_i(z), \alpha_i(v)).$$
(3.8)

Hence we know for edges in the same equivalent class as e = uv, the difference of its distance from u and v equals the distance from its image between $\alpha_i(u)$ and $\alpha_i(v)$ in G_i^* .

Case 2: $l \neq i$.

Similarly, $l \neq i$ if and only if f is a vertex in G_i^* , i.e., $\alpha_i(w) = \alpha_i(z)$.

Since e and f are not in the same equivalent class, we have $d_G(u, w) + d_G(v, z) = d_G(u, z) + d_G(v, w)$. Thus if $d_G(u, w) \le d_G(v, w)$, then $d_G(v, z) \ge d_G(u, z)$ holds. Suppose $d_G(f, u) - d_G(f, v) = d_G(x, u) - d_G(x, v)$. Then we have

$$d_G(f, u) - d_G(f, v) = d_G(x, u) - d_G(x, v)$$
(3.9)

$$= d_{G^*}(\alpha(x), \alpha(u)) - d_{G^*}(\alpha(x), \alpha(v))$$
(3.10)

$$=\sum_{j=1}^{n} d_{G_{j}^{*}}(\alpha_{j}(x), \alpha_{j}(u)) - d_{G_{j}^{*}}(\alpha_{j}(x), \alpha_{j}(v))$$
(3.11)

$$= d_{G_i^*}(\alpha_i(x), \alpha_i(u)) - d_{G_i^*}(\alpha_i(x), \alpha_i(v)).$$
(3.12)

Hence we know for edges in the different equivalent class with e = uv, the difference of its distance from u and v equals the distance between its image (as a point) with $\alpha_i(u)$ and $\alpha_i(v)$ in G_i^* . Above all, we conclude that $m_u(e) = \sum_{f \in M_u(e|G_i^*)} \sigma(f) + \sum_{x \in N_u(e|G_i^*)} \omega(x), \ m_0(e) = \sum_{f \in M_0(e|G_i^*)} \sigma(f) + \sum_{x \in N_0(e|G_i^*)} \omega(x), \ \text{and} \ \sum_{e \in E_i} (m_u(e) + \frac{1}{2}m_0(e))(m_u(e) + \frac{1}{2}m_0(e)) = Sz_e^*(G_{\omega,\sigma}), \ \text{which completes the proof.}$

From the proof of Theorem 3.1, the following corollary follows naturally, which reveals several properties of θ^* .

Corollary 3.2. Let G be a connected graph and E_1, \dots, E_k be the θ^* classes of E(G). Then for each edge $e = uv \in E_i$, $u \in C_u^i$ and $v \in C_v^i$, we have

(1) for all vertices x in one connected component C_j^i in G_i , the values of $d_G(x, u) - d_G(x, v)$ are the same. In particular, for each x in C_u^i , $d_G(x, u) < d_G(x, v)$, and for each y in C_v^i , $d_G(y, v) < d_G(y, u)$.

(2) if $e' = u'v' \in E_i$ joins u' in C_u^i to v' in C_v^i , then $d_G(u, u') + d_G(v, v') \neq d_G(u, v') + d_G(v, u')$.

Utilizing Proposition 2.5, we can deduce Theorem 3.3, which is also a special case of Theorem 3.1(1).

Theorem 3.3. Let G be a connected graph, θ be transitive, and E_1, \dots, E_k be the θ classes of E(G). Then we have

$$\begin{split} Sz^*(G) &= \sum_{i=1}^k \sum_{\substack{C_j^i, C_{j'}^i \in V(G_i^*) \\ \frac{1}{2}(n - |V(C_j^i)| - |V(C_j^i)| - |V(C_{j'}^i)|)} |E(C_j^i, C_{j'}^i)| + \frac{1}{2}(n - |V(C_j^i)| - |V(C_{j'}^i)|) \left(|V(C_{j'}^i)| + \frac{1}{2}(n - |V(C_j^i)| - |V(C_{j'}^i)| \right) \right). \end{split}$$

Proof. At first we show the following claim.

Claim: In each $G - E_i$ with exactly three connected components, for each $e = uv \in E_i$, there exists a connected component in which each vertex has the same distance to u as to v.

It is clear that as long as we can prove the claim, we shall get Theorem 3.3 directly.

It suffices to prove that for each $G - E_i$ with exactly three connected components, the corresponding graph G_i^* is K_3 . If it is not the case, then G_i^* has to be a P_3 and let the path be $C_1^i C_2^i C_3^i$. For each $e = uv \in E_i$ with $u \in C_1^i$ and $v \in C_2^i$, each $x \in C_2^i$, due to Corollary 3.2, we have $d_G(x, v) < d_G(x, u)$. In particular, for each $e' = u'v' \in E_i$ with $u' \in C_2^i$ and $v' \in C_3^i$, we have $d_G(u', v) < d_G(u', u)$. Since G_i^* is a P_3 , then $d_G(v', u) = d_G(u', u) + 1$ and

 $d_G(v',v) = d_G(u',v) + 1$. Thus $d_G(u',u) + d_G(v',v) = d_G(u',v) + d_G(v',u)$, a contradiction.

Note: Similar to Theorem 3.3, we also have an expansion formula of the revised edge-Szeged index for the graphs mentioned above, but its has a far more complex form, so we omit it here.

In fact, for convenience when computing, we show a stronger result than Theorem 3.1. **Theorem 3.4.** Let G be a connected graph and $\mathfrak{F} = \{F_1, \dots, F_l\}$ be a partition of E(G)coarser than \mathfrak{E} . Then we have

(1)
$$Sz^*(G) = \sum_{i=1}^{l} Sz^*(G^i_{\omega,\sigma}).$$

(2) $Sz^*_e(G) = \sum_{i=1}^{l} Sz^*_e(G^i_{\omega',\sigma}).$

Before proving Theorem 3.4, we show a useful lemma.

Lemma 3.5. Let G be a connected graph and $\mathfrak{F} = \{F_1, \dots, F_l\}$ be a partition of E(G)coarser than \mathfrak{E} . Define a map $\beta : V(G) \to V(G^*) = V(\Box_{i=1}^l G_i^*)$ to be $\beta(v) = (\beta_1(v), \dots, \beta_l(v))$, where $\beta_i : V(G) \to V(G_i^*)$ and $v \in \beta_i(v)$. Then β is isometric.

Proof.

To avoid confusion, denote the G_i^* corresponding with E_i by H_i^* in this proof.

It suffices to prove, without loss of generality, that when $\mathfrak{F} = \{E_1, E_2, \cdots, F_{k-1} = E_{k-1} \cup E_k\}$, the corresponding β is isometric, i.e., $d_G(u, v) = \sum_{i=1}^{k-1} d_{G_i^*}(\beta_i(u), \beta_i(v))$ for all $u, v \in V(G)$. Moreover, $d_G(u, v) = \sum_{i=1}^k d_{H_i^*}(\alpha_i(u), \alpha_i(v))$. Thus all we need to prove is that for all $u, v \in V(G)$, $d_{G_{k-1}^*}(\beta_{k-1}(u), \beta_{k-1}(v)) = d_{H_{k-1}^*}(\alpha_{k-1}(u), \alpha_{k-1}(v)) + d_{H_k^*}(\alpha_k(u), \alpha_k(v))$.

Considering the graphs G_{k-1}^* and $H_{k-1}^* \Box H_k^*$, each vertex $\beta_{k-1}(u)$ (a representative element) in G_{k-1}^* corresponds to a unique vertex $(\alpha_{k-1}(u), \alpha_k(u))$ (a representative element) in $H_{k-1}^* \Box H_k^*$ and the map is injective. Moreover, if vertices $(\alpha_{k-1}(u), \alpha_k(u))$ and $(\alpha_{k-1}(v), \alpha_k(v))$ are adjacent in $H_{k-1}^* \Box H_k^*$, then vertices $\beta_{k-1}(u)$ and $\beta_{k-1}(v)$ are adjacent in G_{k-1}^* . Thus G_{k-1}^* is an induced subgraph of $H_{k-1}^* \Box H_k^*$, and $u, v \in V(G)$, $d_{G_{k-1}^*}(\beta_{k-1}(u), \beta_{k-1}(v)) \ge d_{H_{k-1}^*}(\alpha_{k-1}(u), \alpha_{k-1}(v)) + d_{H_k^*}(\alpha_k(u), \alpha_k(v))$.

On the other hand, for $u, v \in V(G)$ and each shortest (u, v)-path P in G, $|P \cap E_{k-1}| = d_{H_{k-1}^*}(\alpha_{k-1}(u), \alpha_{k-1}(v))$ and $|P \cap E_k| = d_{H_k^*}(\alpha_k(u), \alpha_k(v))$. Moreover, $P \cap E_{k-1}, P \cap E_{k-1}$

 $E_k \subseteq E(H_{k-1}^*). \text{ Since } H_{k-1}^*[(P \cap E_{k-1}) \cup (P \cap E_k)] \text{ induces a path between } \beta_{k-1}(u) \text{ and } \beta_{k-1}(v), \text{ we have for all } u, v \in V(G), d_{G_{k-1}^*}(\beta_{k-1}(u), \beta_{k-1}(v)) \leq d_{H_{k-1}^*}(\alpha_{k-1}(u), \alpha_{k-1}(v)) + d_{H_k^*}(\alpha_k(u), \alpha_k(v)), \text{ which completes the proof.}$

Proof of Theorem 3.4.

Note that $G^i_{\omega,\sigma}$ and $G^i_{\omega',\sigma}$ have been defined in Section 2 with respect to \mathfrak{F} . Since β is an isometric embedding by Lemma 3.5, the proof is almost the same as the one in Theorem 3.1 and we omit it here.

4 Examples

In this section, we will give two examples to show how to use our formula to calculate the revised (edge-)Szeged indices. Denote by $Sz^*(e)$ the number $(n_u(e) + \frac{1}{2}n_0(e))(n_v(e) + \frac{1}{2}n_0(e))$ and by $Sz^*_e(f)$ the number $(m_u(f) + \frac{1}{2}m_0(f))(m_v(f) + \frac{1}{2}m_0(f))$.

4.1 Example 1

As Example 1 we calculate the revised Szeged index of the molecular graph of porphin $C_{20}H_{14}N_4$ (omitting trivial branches). The molecular graph is shown in Figure 1.

Figure 1. G and its edge labels.

Figure 2. G and its six equivalent classes.

Since the subtle symmetry of G, the calculation of $Sz^*(G)$ can be reduced to $Sz^*(G) = 4Sz^*(e_1) + 8Sz^*(e_2) + 8Sz^*(e_3) + 8Sz^*(e_4)$.

We show the distance relationship in Figures 3, 4, 5, 6 where the vertex labelling u, vor w is nearer to u, v or the same close to u and v, respectively. Thus

 $Sz^*(G) = 4 \times (11 + \frac{1}{2} \times 2)(11 + \frac{1}{2} \times 2) + 8 \times (2 + \frac{1}{2} \times 9)(13 + \frac{1}{2} \times 9) + 8 \times (10 + \frac{1}{2} \times 2)(12 + \frac{1}{2} \times 2) + 8 \times 12 \times 12 = 3782.$

Figure 3. the distance relationships according to edge e_1 .

Figure 5. the distance relationships according to edge e_3 .

Figure 4. the distance relationships according to edge e_2 .

Figure 6. the distance relationships according to edge e_4 .

On the other hand, we calculate the value by Theorem 3.1 through the graphs $G_{\omega,\sigma}^i$, $i = 1, \dots, 6$. We only show $G - E_1, G - E_3, G_{\omega,\sigma}^1, G_{\omega,\sigma}^3$ in Figures 7, 8 and omit the isomorphic ones. Utilizing Theorem 3.1, we reduce the calculation to

$$Sz^{*}(G) = \sum_{i=1}^{6} Sz^{*}(G_{\omega,\sigma}^{i})$$
(4.1)

$$= 2 \times (4 \times (13 + \frac{1}{2} \times 9)(2 + \frac{1}{2} \times 9) + 2 \times (11 + \frac{1}{2} \times 2)(11 + \frac{1}{2} \times 2) + 4 \times (12 + \frac{1}{2} \times 2)(10 + \frac{1}{2} \times 2)) + 4 \times (2 \times 12 \times 12)$$
(4.2)

$$= 3782.$$
 (4.3)

Figure 7. $G - E_1 \cong G - E_2$ and $G - E_3 \cong G - E_i, i = 4, 5, 6.$

Figure 8. $G^1_{\omega,\sigma} \cong G^2_{\omega,\sigma}$ and $G^3_{\omega,\sigma} \cong G^i_{\omega,\sigma}, i = 4, 5, 6.$

4.2 Example 2

Figure 9. G and its edge labels.

Figure 10. G and its six equivalent classes.

Now we look at another example, the graph G (part of the Carbon 60) shown in Figure 9. We can reduce the calculation of $Sz_e^*(G)$ to $Sz_e^*(G) = 5Sz_e^*(e_1) + 5Sz_e^*(e_2) + 10Sz_e^*(e_3) + 5Sz_e^*(e_4)$.

The distance relationship is shown in Figures 11, 12, 13, 14. Consequently we have $Sz_e^*(G) = 5 \times (10 + \frac{5}{2}) \times (10 + \frac{5}{2}) + 5 \times (10 + \frac{5}{2}) \times (10 + \frac{5}{2}) + 10 \times (4 + \frac{3}{2}) \times (18 + \frac{3}{2}) + 5 \times (4 + \frac{3}{2})(18 + \frac{3}{2}) = 2586.25.$

Figure 11. the distance relationships according to edge e_1 .

Figure 13. the distance relationships according to edge e_{3} .

Figure 12. the distance relationships according to edge e_2 .

Figure 14. the distance relationships according to edge e_4 .

Next, we calculate the value by Theorem 3.1 through the graphs $G^i_{\omega',\sigma}$, $i = 1, \cdots, 6$. We only show $G - E_1, G - E_2, G^1_{\omega',\sigma}, G^2_{\omega',\sigma}$ in Figures 15, 16 as representatives.

$$Sz_{e}^{*}(G) = \sum_{i=1}^{6} Sz_{e}^{*}(G_{\omega',\sigma}^{i})$$
(4.4)

$$= 5 \times 2 \times ((2+2+3+3) + \frac{1}{2}(2+3))((2+2+3+3) + \frac{1}{2}(2+3)) + 5 \times 2 \times (18 + \frac{3}{2})(4+3)$$
(4.5)

$$5 \times 3 \times (18 + \frac{1}{2})(4 + \frac{1}{2})$$

$$= 2586.25.$$
(4.5)
(4.6)

Figure 15. $G - E_2 \cong G - E_i, i = 3, 4, 5, 6.$

Figure 16. $G^{2}_{\omega',\sigma} \cong G^{i}_{\omega',\sigma}, i = 3, 4, 5, 6.$

Acknowledgments: We would like to thank the two anonymous referees for their useful comments and suggestions, which helped to improve this paper.

References

- M. Arockiaraj, J. Clement, K. Balasubramanian, Topological indices and their applications to circumcised donut benzenoid systems, Kekulenes and drugs, *Polycyc. Arom. Comp.* 5 (2018) 1–24.
- [2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
- [3] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, *Eur. J. Comb.* 36 (2014) 237–246.
- [4] M. Črepnjak, N. Tratnik, The Szeged index and the Wiener index of partial cubes with applications to chemical graphs, *Appl. Math. Comput.* **309** (2017) 324–333.
- [5] D. Djoković, Distance preserving subgraphs of hypercubes, J. Comb. Theory Ser. B 14 (1973) 263–267.
- [6] R. L. Graham, P. M. Winkler, On isometric embeddings of graphs, Trans. Amer. Math. Soc. 288 (1985) 527–536.

- [7] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, *Graph Theory Notes New York* 27 (1994) 9–15.
- [8] I. Gutman, A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81 (2008) 263–266.
- [9] A. Ilić, M. Ilić, Generalizations of Wiener polarity index and terminal Wiener index, Graph Comb. 29 (2013) 1403–1416.
- [10] S. Klavžar, On the canonical metric representation, average distance, and partial Hamming graphs, *Eur. J. Comb.* 27 (2006) 68–73.
- [11] S. Klavžar, I. Gutman, B. Mohar, Labeling of benzenoid systems which reflects the vertex-distance relations, J. Chem. Inf. Comput. Sci. 35 (1995) 590–593.
- [12] S. Klavžar, M. J. Nadjafi–Arani, Computing distance moments on graphs with transitive Djoković–Winkler's relation, *Discr. Appl. Math.* 166 (2014) 269–272.
- [13] S. Klavžar, M. J. Nadjafi–Arani, Cut method: update on recent developments and equivalence of independent approaches, *Curr. Org. Chem.* **19** (2015) 348–358.
- [14] S. Klavžar, M. J. Nadjafi–Arani, Wiener index in weighted graphs via unification of θ*–classes, Eur. J. Comb. 36 (2014) 71-76.
- [15] M. Knor, R.V. Škrekovski, A. Tepeh, Mathematical aspects of Wiener index, Ars Math. Contemp. 11 (2016) 327–352.
- [16] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49 (2002) 483–496.
- [17] P. Winkler, Isometric embeddings in products of complete graphs, *Discr. Appl. Math.* 7 (1984) 221–225.
- [18] H. Yousefi-Azari, M. H. Khalifeh, A. R. Ashrafi, Calculating the edge-Wiener and Szeged indices of graphs, J. Comput. Appl. Math. 235 (2011) 4866-4870.