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Abstract

Wiener index, defined as the sum of distances between all unordered pairs of vertices
in a graph, is one of the oldest and the most popular molecular descriptors. In the paper,
we would like to point to an “overlooked” problem of determining the minimum value of
this index and corresponding extremes among chemical graphs with prescribed number
of vertices. It turned out that the problem is far from tractable, and surprisingly related
to the cages and the famous degree-diameter problem. Thus, for example, the Petersen
graph, the Flower snark J5, the Heawood graph, and other highly symmetric graphs are
encountered as extremes. In the paper, we give some remarks regarding this problem.

1 Introduction
Wiener index, introduced by Wiener [15], is one of the oldest and most important topolog-

ical indices. Wiener index not only correlates well with many physicochemical properties

of organic compounds, it has a wide application also outside chemistry, and it became the
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topic of countless studies also from the mathematical point of view. Details can be found

in some of many surveys [1, 9, 10, 16].

Denote by d(u, v) the distance between vertices u and v in a graph G. The Wiener

index (i.e. the total distance of the transmission number) of a graph G, denoted by W (G),

is the sum of distances between all (unordered) pairs of vertices of G

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

In [3] and later in many subsequent works (e.g. [6, 7]) it was shown that for trees on n

vertices, the maximum Wiener index is obtained for the path Pn, and the minimum for

the star Sn. Thus, for every tree T on n vertices, it holds

(n− 1)2 = W (Sn) ≤ W (T ) ≤ W (Pn) =

(
n+ 1

3

)
.

Since the distance between any two distinct vertices is at least one, we have that among

all graphs on n vertices Kn has the smallest Wiener index. Removing an edge from a

connected graph results in increased Wiener index [8], which leads to the observation that

Wiener index of a connected graph is less than or equal to Wiener index of its spanning

tree. So, for any connected graph G on n vertices, it holds(
n

2

)
= W (Kn) ≤ W (G) ≤ W (Pn) =

(
n+ 1

3

)
.

There are many results of this type known for more specific classes of graphs. For

instance, among 2-connected graphs on n vertices (or even stronger, among the graphs of

minimum degree 2), the n-cycle has the largest Wiener index. Wang and Guo [14] found

the tree with minimum Wiener index among all trees of order n and with diameter d.

Wang [13] and Zhang et al. [17] determined the tree that minimizes the Wiener index

among trees of given degree sequence. See the survey [10] for further extremal graphs in

graph classes satisfying certain conditions.

In this paper we consider chemical graphs. Recall that a graph is chemical if the

degrees of its vertices do not exceed 4. As it is very often practice to study upper and

lower bounds for various indices in various graph classes, it is natural to ask for the Wiener

index in the class of chemical graphs. The upper bound is obviously attained by the paths,

but characterizing the lower bound seems to be much more complicated. Therefore, we

state it explicitly as a problem and consider it here in the sequel.
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Problem 1. Find all the chemical graphs on n vertices with the minimum value of Wiener

index.

Since adding of an edge decreases Wiener index, one would expect that its minimum

is attained by 4-regular graphs. Though computer results indicate that this is true, we

are not able to prove such a statement. However, we prove that a chemical graph with the

minimum value of Wiener index has at most 3 vertices of degree smaller than 4, see below.

Hence, one can ask what is the minimum value of Wiener index in the class of 4-regular

graphs. We extend our research also to 3-regular graphs, but from the mathematical point

of view the problem is interesting for k-regular graphs for arbitrary k ≥ 3. We remark that

this problem is generalized to graphs with bounded minimum and/or maximum degree

in [10, Section 4].

Problem 2. Find all k-regular graphs on n vertices with the smallest value of Wiener

index.

Recall the well-known degree-diameter problem, see [12] for details:

Problem 3 (The degree-diameter problem). Determine the largest order n(k, d) of a

graph of (a maximum) degree k and diameter d.

Our computer results showed that among graphs with the minimum Wiener index

there are graphs achieving n(k, d) for pairs (k, d) from{(3, 2), (3, 3), (4, 2)}, see also [11].

There might appear graphs achieving n(k, d) also for higher values of diameter d, but for

those we could not search the space of k-regular graphs of order n exhaustively. Anyway,

for higher diameters the graphs achieving n(k, d) do not need to be those with the smallest

Wiener index.

As mentioned above, among extremal graphs found by a computer there are graphs

achieving n(3, 2) and n(3, 3), which are the well-known Petersen graph and the Flower

snark J5. Surprisingly, there appears also the Heawood graph, which is the Cage(3, 6),

i.e., the smallest graph of degree 3 and girth 6, see [5].

We conclude the introduction with the following conjectures. (Probably, it suffices to

choose nk = k + 1 therein.)

Conjecture 4 (The even case conjecture). Let k ≥ 3, and let n be large enough with

respect to k, say n ≥ nk. Suppose that G is a graph on n vertices with the maximum
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degree k, and with the smallest possible value of Wiener index. If kn is even, then G is

k-regular.

Conjecture 5 (The odd case conjecture). Let k ≥ 3, and let n be large enough with

respect to k, say n ≥ nk. Suppose that G is a graph on n vertices with the maximum

degree k, and with the smallest possible value of Wiener index. If kn is odd, then G has

a unique vertex of degree smaller than k and in that case this smaller degree is k − 1.

As regards notation, for a graph G its vertex and edge sets are denoted by V (G) and

E(G), respectively. An edge connecting vertices u and v is denoted by [u, v], or simply by

uv. By dG(u, v) we denote the distance from u to v. The maximum distance from u, i.e.

the eccentricity of u, is denoted by eG(u). The degree of u in G is denoted by degG(u)

and the diameter of G is denoted by diam(G).

2 Preliminaries

As we already mentioned, one would expect that graphs on n vertices with the maximum

degree k which have the smallest Wiener index are regular or almost regular. Unfor-

tunately, we are not able to prove such a statement. We can prove only the following

result.

Proposition 6. Let G be a graph on n vertices with the maximum degree k, n ≥ k + 1,

with the minimum possible value of Wiener index. Then G contains at most k−1 vertices

whose degree is strictly smaller than k, and these vertices induce a clique.

Proof. By way of contradiction, suppose that G has k vertices whose degree is strictly

smaller than k, say x1, x2, . . . , xk. Denote X = {x1, x2, . . . , xk}. Since adding of an edge,

say uv, does not increase any distance, while the distance between u and v is decreased to

1, adding of an edge decreases the Wiener index. But G has the minimum Wiener index,

so we cannot add an edge connecting vertices of X. Thus, there are already all possible

edges between the vertices of X. That is, X induces a complete graph Kk in G. But this

means that the vertices x1, x2, . . . , xk all have degree k−1, and so there is no edge having

one endvertex in X and the other outside X. Since any disconnected graph has Wiener

index ∞, we conclude that V (G) = X. Consequently n = k, a contradiction.

Computer experiments show that graphs on n vertices with maximum degree k which

have the smallest Wiener index are regular when kn is even. Therefore, we will focus
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our attention to regular graphs. Hence, denote by G(n, k) a class of k-regular graphs on

n vertices which have the smallest Wiener index. The value of Wiener index of a graph

from G(n, k) is denoted by wn,k.

Let G be a graph, and let u ∈ V (G). Denote

di(u) =
∣∣{v ∈ V (G); dG(u, v) = i}

∣∣ ,
where 0 ≤ i ≤ eG(u). Obviously, d0(u) = 1 and d1(u) = degG(u). The distance sequence

from u is

Nu(d0(u), d1(u), . . . , deG(u)(u)) .

We omit the index u if no confusion is likely. We have the following lemma.

Lemma 7. Let G be a k-regular graph on n vertices. If all vertices in G have distance

sequence N(n0, n1, . . . , ndiam(G)), where n0 = 1 and ni = k(k−1)i−1 for all i, 1 ≤ i <

diam(G), then G ∈ G(n, k).

Proof. Let u ∈ V (G). Then d0(u) = 1 and d1(u) = k. Let i ≥ 1 and let v contribute

to di(u). That is, dG(u, v) = i. Then v must have at least one neighbour at distance

i − 1 from u, and so it has at most k − 1 neighbours at distance i + 1 from u. Hence,

di+1(u) ≤ (k−1)di(u), and consequently, di(u) ≤ k(k−1)i−1. This means that at distance

at most t from u there are at most 1 + k
∑t

i=1(k−1)i−1 vertices of G.

Let j satisfy

1 + k

j−1∑
i=1

(k−1)i−1 < n ≤ 1 + k

j∑
i=1

(k−1)i−1 . (1)

Denote mt = 1 + k
∑t−1

i=1(k−1)i−1. Then mj < n ≤ mj+1 and G has at least n − mj

vertices whose distance from u is greater than or equal to j.

We have W (G) = 1
2

∑
u∈V (G)

∑
v∈V (G) dG(u, v). Hence, W (G) is smallest if for every

u ∈ V (G) the sum
∑

v∈V (G) dG(u, v) is as small as possible. We have

∑
v∈V (G)

dG(u, v) =

eG(u)∑
i=0

i · di(u) and
eG(u)∑
i=0

di(u) = n .

Hence, increasing di(u) by one while decreasing dq(u) by one, where i < j ≤ q, decreases∑eG(u)
i=0 i · di(u). Therefore∑

v∈V (G)

dG(u, v) ≥ 0 + k

j−1∑
i=1

i(k−1)i−1 + j(n−mj) ,
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and consequently

W (G) ≥ 1

2

∑
u∈V (G)

[
k

j−1∑
i=1

i(k−1)i−1 + j(n−mj)
]
,

with equality if and only if di(v) = k(k−1)i−1 for every v ∈ V (G) and 1 ≤ i < eG(v).

We remark that if all vertices of G have distance sequence as in Lemma 7, then the

value j defined by (1) is the diameter of G. Lemma 7 gives a theoretical lower bound for

wn,k.

Corollary 8. Let n ≥ k + 1 and let j satisfy (1). Then

wn,k ≥
n

2

[
k

j−1∑
i=1

i(k−1)i−1 + j
(
n− 1− k

j−1∑
i=1

(k−1)i−1
)]

.

In the next sections we concentrate on small values of n, when the diameter is not big.

3 Symmetric graphs

In this section we consider symmetric graphs, more precisely the Cayley graphs. An

automorphism of G is a bijection ϕ : V (G) → V (G) such that
(
ϕ(u), ϕ(v)

)
∈ E(G) if

and only if [u, v] ∈ E(G). Automorphisms of G partition V (G) into orbits. We say that

u, v ∈ V (G) belong to the same orbit if there exists an automorphism ϕ of G such that

ϕ(u) = v. If G has a unique orbit, i.e. if for every pair of vertices u, v ∈ V (G) there is an

automorphism of G mapping u to v, then G is vertex-transitive.

A special subclass of vertex-transitive graphs is formed by Cayley graphs. Let (G, ·)

be a group and let S ⊆ G such that the unit element id /∈ S and S is closed with respect

to inverses, that is, x ∈ S implies x−1 ∈ S. Then the Cayley graph G = Cay(G, S) is

a graph with V (G) = G, in which [u, v] ∈ E(G) if and only if there is x ∈ S such that

v = u · x. Since S is closed with respect to inverses, we have also u = v · x−1, and so the

edges of Cayley graphs can be considered as undirected. Since id /∈ S, they do not contain

loops. For a simpler description, for arbitrary set S ⊆ G with id /∈ S, we denote by 〈S〉

the set {x, x−1; x ∈ S}. Hence, 〈S〉 is the minimal subset of G containing S, which is

closed with respect to inverses.

For our problem, Cayley graphs have two important advantages. First, they are easy

to describe. It suffices to specify the group and the set of generators S. And second,

if we check that id (or any other vertex) has some graphical property in Cay(G, S),
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then all vertices of Cay(G, S) have this property. This follows from the fact that if

u, v ∈ V
(
Cay(G, S)

)
, that is if u, v ∈ G, then ϕ : x 7→ (v · u−1) · x is an automorphism

of Cay(G, S) mapping u to v. Hence, Cayley graphs are vertex-transitive.

For graphs with diameter 2, Lemma 7 reduces to the following statement.

Proposition 9. Let G be a k-regular graph on n vertices. If diam(G) ≤ 2, then G ∈

G(n, k) and wn,k = n2 − 1
2
kn− n.

Observe that if n = k + 1, then diam(G) = 1 and n2 − 1
2
kn− n =

(
n
2

)
as expected. In

the next statement we construct graphs in G(n, k) when nk is even and k is “small”.

Theorem 10. Let k satisfy k + 2 ≤ n ≤ 3k − 1 and let kn be even. Then there is a

Cayley graph on a cyclic group, which has degree k, diameter 2 and n vertices. Hence,

wn,k = n2 − 1
2
kn− n in this case.

Proof. First suppose that k is even. Let S ′ = {1, 2, 3, . . . , bn
2
c−1}. Denote

S ′′ = {2, 3, 5, 6, 8, 9, . . . , bn
2
c−δ},

where δ = 3 if bn
2
c − 2 ≡ 1 (mod 3) and δ = 2 otherwise. In other words, S ′′ contains

all values of S ′ except those of the form 3t + 1 and bn
2
c−1. Now delete from S ′ exactly

|S ′| − k
2

values of the set S ′′, and denote the resulting set by S. Then S will be the set of

generators of our Cayley graph. Moreover,

{1, 4, 7, . . . , bn
2
c−1} ⊆ S.

However, we have to check if one can delete exactly |S ′| − k
2

values of S ′′ from S ′.

That is, we have to check if |S ′′| ≥ |S ′| − k
2
, which is equivalent to k

2
≥ |S ′ − S ′′|. Since

|{1, 4, 7, . . . , bn
2
c−1}| = dn+1

6
e (check all the congruence classes modulo 6, the crucial case

is n ≡ 0 (mod 6)), we get an inequality k
2
≥ dn+1

6
e, which is true since 3k−1 ≥ n and k is

even. Since S ⊆ S ′, we get k
2
≤ bn

2
c−1, which is equivalent to the assumption k + 2 ≤ n.

Hence, a required set S exists.

Let G = Cay(Zn, 〈S〉). Since 1 ∈ S, G contains a Hamiltonian cycle (0, 1, 2, . . . , n−1).

Moreover, since all vertices of the form 3t + 1 from S ′ are in S, and also bn
2
c−1 ∈ S, for

every x ∈ Zn either (0, x) or (0, x−1) or (0, x+1) is in E(G). Since (x−1, x), (x, x+1) ∈

E(G), we conclude that eG(0) ≤ 2. However, (0, bn
2
c) /∈ E(G), and so eG(0) = 2. Since G

is a Cayley graph, we have eG(x) = 2 for every x ∈ V (G), and consequently diam(G) = 2.
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If k is odd, the proof is analogous. In this case n must be even and S must contain
n
2
. Thus, let S ′ = {1, 2, 3, . . . , n

2
}. Denote

S ′′ = {2, 3, 5, 6, 8, 9, . . . , n
2
−δ},

where δ = 2 if n
2
− 1 ≡ 1 (mod 3) and δ = 1 otherwise. Now delete from S ′ exactly

|S ′| − k+1
2

values of the set S ′′, and denote the resulting set by S. Observe that since

k+2 ≤ n, we have k+3 ≤ n due to parities of k and n. Hence, n
2
− k+1

2
≥ 1 and we delete

at least one value of S ′′ from S ′. Again, S will be the set of generators of our Cayley

graph. Since S contains n
2
, one generator is an involution.

Analogously as above, {1, 4, 7, . . . , n
2
} ⊆ S and |{1, 4, 7, . . . , n

2
}| = dn+4

6
e. Hence, a

required set S exists if |〈S〉| ≥ 2dn+4
6
e−1. This gives an inequality k ≥ 2dn+4

6
e−1, which

is true since 3k − 1 ≥ n and k is odd (consider n in all three congruence classes of even

number modulo 6).

Denote G = Cay(Zn, 〈S〉). Analogously as above we get eG(0) = 2, and so diam(G) =

2. The final statement of the corollary is a consequence of Proposition 9.

We remark that if S is chosen carefully, sometimes it is possible to find a Cayley

graph on cyclic group, which has degree k, diameter 2 and n vertices, even for n larger

than 3k − 1. For instance, Cay(Z13, 〈1, 5〉) has diameter 2 though 13 = 3k + 1 in this

case. However, there does not exist a Cayley graph Cay(Z12, 〈1, x〉) of diameter 2, though

Cay(Z12, 〈2, 3〉) has diameter 2.

Observe that if Cay(G, 〈S〉) is 4-regular of diameter 2 and G is an Abelian group, then

n ≤ 13. This observation was generalized in [12]:

Proposition 11. Let G be a Cayley graph on Abelian group, which has degree k, diameter

2, and n vertices. Then n ≤ k2/2 + k + 1.

As regards higher diameters we have the following theorem, see [2].

Theorem 12. Let G be a Cayley graph on Abelian group, which has degree 4, diameter

d, and n vertices. Then n ≤ 2d2 + 2d+ 1 and the equality is attained for all values of d.

However, Theorem 12 does not mean that if one denotes nd = 2d2+2d+1, then for all

n ∈ (nd−1, nd] there exists a Cayley graph on Abelian group, which has degree 4, diameter

d and n vertices.
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Figure 1. The graphs of G(12, 3), G(16, 3), G(18, 3) and G(22, 3).

4 Computer results

Here we present results obtained by a computer together with some comments. We

consider degrees 3 and 4. Using an exhaustive search, for degree 3 we were able to find

all optimal graphs on even number of vertices up to n = 22, for those of degree 4 we

succeeded up to n = 17. Perhaps one can go a little further with better software and

hardware resources.
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n 6 8 10 12 14 16 18 20 22
wn,3 21 44 75 126 189 264 351 450 573

diameter 2 2 2 3 3 3 3 3 4
# of graphs 2 2 1 2 7 6 1 1 1

# of VT-graphs 2 1 1 0 1 0 0 0 0

Table 1. Small graphs for the case k = 3.

We start with the case k = 3. In Table 1, for all n ∈ {6, 8, . . . , 22} we have the number

of extremal graphs, their Wiener index and their diameter. We present also the number

of vertex-transitive extremal graphs (VT-graphs for short). We remark that in all cases,

wn,k reaches the bound presented in Corollary 8. The only exception is n = 22 where the

exact value of w3,22 exceeds the bound by 12.

In the list below we provide some additional information with emphasis to the vertex-

transitive graphs. With a unique exception, all the vertex-transitive graphs are Cayley.

Of course, the exception is the well-known Petersen graph.

n = 6: The two graphs are Cay(Z6, 〈1, 3〉) and Cay(Z6, 〈2, 3〉).

n = 8: The vertex-transitive graph is Cay(Z8, 〈1, 4〉).

n = 10: The vertex-transitive graph is the well-known Petersen graph.

n = 12: Both graphs have distance sequences N(1, 3, 6, 2) and they are depicted in Fig-

ure 1.

n = 14: The vertex-transitive graph is a Cayley graph on dihedral group D14, that is

Cay(D14, 〈(1, 0), (1, 2), (1, 6)〉), where D14 = Z2 n Z4 and the multiplication is

(a, b)(c, d) = (a+ c, b+ (−1)ad). It is the Heywood graph, known as the Cage(3, 6),

which means that it is the graph of degree 3 and girth 6 with the minimum number

of vertices. The distance sequence of this graph is N(1, 3, 6, 4).

n = 16: All these graphs have distance sequences N(1, 3, 6, 6) and they are depicted in

Figure 1.

n = 18: The distance sequence of this graph is N(1, 3, 6, 8), see Figure 1.

n = 20: The graph is the well-known Flower snark J5. Its distance sequence is N(1, 3, 6,

10). Although it is not a Moore graph, it is the unique graph of degree 3 and

diameter 3 on the maximum possible number of vertices, see [4].
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n = 22: Six vertices of this graph have distance sequence N(1, 3, 6, 12), eight have dis-

tance sequence N(1, 3, 6, 11, 1) and eight have distance sequence N(1, 3, 6, 10, 2), see

Figure 1.

On Figure 1 we present all graphs from G(n, 3), where n ∈ {12, 16, 18, 22}, since in

these classes there is no Cayley (or generally known) graph in G(n, 3). The graphs are

depicted so that a reader can observe at least some automorphisms immediately. The

vertices in different orbits are depicted differently.

Now we consider the case k = 4. In Table 2, for all n ∈ {6, 7, . . . , 17} we have the

number of extremal graphs, their Wiener index and their diameter. We present also

the number of vertex-transitive extremal graphs. In all cases, wn,k reaches the bound

presented in Corollary 8. The only exceptions are n = 16 and n = 17, where the exact

value of w4,16 exceeds the bound by 2 and 9, respectively.

n 6 7 8 9 10 11 12 13 14 15 16 17
wn,4 18 28 40 54 70 88 108 130 154 180 210 247

diameter 2 2 2 2 2 2 2 2 2 2 3 3
# of graphs 1 2 6 16 24 37 26 10 1 1 1 2

# of VT-graphs 1 1 3 3 1 1 2 1 0 0 0 0

Table 2. Small graphs for the case k = 4.

In the list below we provide some additional information with emphasis to the vertex-

transitive graphs.

n = 6: The graph is Cay(Z6, 〈1, 2〉).

n = 7: The vertex-transitive graph is Cay(Z7, 〈1, 3〉).

n = 8: The vertex-transitive graphs are Cay(Z8, 〈1, 3〉), Cay(Z8, 〈1, 2〉) and

Cay(D8, 〈(0, 1), (0, 2), (1, 1)〉), where D8 = Z2 n Z4 and the multiplication is de-

fined by (a, b)(c, d) = (a+ c, b+ (−1)ad).

n = 9: The vertex-transitive graphs are Cay(Z9, 〈1, 4〉), Cay(Z9, 〈1, 3〉) and

Cay(Z3 × Z3, 〈(0, 1), (1, 0)〉).

n = 10: The vertex-transitive graph is Cay(Z10, 〈1, 4〉).

n = 11: The vertex-transitive graph is Cay(Z11, 〈1, 4〉).
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n = 12: The two vertex-transitive graphs are Cay(Z12, 〈2, 3〉) and

Cay(A4, 〈(12)(34), (13)(24), (123)〉), where A4 is the alternating group, i.e. the

group of even permutations of the set {1, 2, 3, 4}.

n = 13: The vertex-transitive graph is Cay(Z13, 〈1, 5〉).

n = 14: The graph is depicted in Figure 2.

n = 15: The graph is depicted in Figure 2. Though it is not a Moore graph, it is the

unique graph of degree 4 and diameter 2 on the maximum possible number of

vertices, see [4].

n = 16: Twelve vertices of this graph have distance sequence N(1, 4, 11) and four have

distance sequence N(1, 4, 10, 1), see Figure 2.

n = 17: There are more than 86 millions of 4-regular connected graphs on 17 vertices, but

only two of them have Wiener index 247. These graphs are depicted in Figure 2.

The first graph has two vertices with distance sequence N(1, 4, 12), twelve vertices

with distance sequence N(1, 4, 11, 1) and three with distance sequence N(1, 4, 10, 2).

The second graph has eight vertices with distance sequence N(1, 4, 12) and nine with

distance sequence N(1, 4, 10, 2). Both these graphs have triangles, see Figure 2.

On Figure 2 we present all graphs from G(n, 4), where n ∈ {14, 15, 16, 17}, since in

these classes there is no Cayley graph in G(n, 4). As in Figure 1, vertices in different

orbits are depicted differently.

It seems to be surprising that although for larger values of n there are more regular

graphs, for n ∈ {18, 20, 22} in the case k = 3, and for n ∈ {14, 15, 16} in the case k = 4,

the extremal graphs are unique.
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Figure 2. The graphs of G(14, 4), G(15, 4), G(16, 4) and G(17, 4).
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