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Abstract

The Wiener index of a graph is defined as the sum of distances be-
tween all pairs of vertices. As one of the most well known chemical
indices, the extremal structures that maximize or minimize the Wiener
index have been extensively studied for many different classes of graphs,
among which trees with a given degree sequence or segment sequence.
In this note we consider trees in which both the degree sequence and
segment sequence are predetermined, and examine the extremal prob-
lems. Characteristics of the extremal structures are presented, some
directly from previously established methods. We also pose some ques-
tions from our study.
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1 Introduction
The study of chemical indices has been an important part of chemical graph theory. One

of the most well known such indices is called the Wiener index, defined as the sum of

distances between all pairs of vertices:

W (G) =
∑

u,v∈V (G)

d(u, v)

where d(u, v) is the distance between vertices u and v in G [27, 28].

Many studies related to the Wiener index have been published over the years [2, 3,

6, 7, 10, 11, 13, 14, 20, 22, 25]. Among these studies we are particularly interested in the

extremal problems. That is, among a given class of graphs, find the ones that maximize

or minimize the Wiener index. Because of the important role that acyclic structures play

in many chemists’ and mathematicians’ research interests, the examination of extremal
trees has attracted much attention. For recent results in this direction one may see

[4, 9, 12, 15, 17–19,21].

Of various different constraints one may put on trees, the degree sequence (the non-

increasing sequence of vertex degrees) is a natural condition corresponding to the valences

of atoms in a molecular graph. The extremal tree with a given degree sequence, that

minimizes the Wiener index, was identified in [26] and [30]. The trees that maximize

the Wiener index, although they cannot be characterized completely, were shown to be

caterpillars (trees that turn into paths when all leaves are removed) [24]. Such caterpillars

must satisfy the so called ∨-property, that the vertex degrees on the backbone of the

caterpillar must decrease from the two ends towards the middle [29].

A segment of a tree T is a path in T with the property that each of the ends is either a

leaf or a branch vertex (of degree at least 3) and that all internal vertices of the path have

degree 2. Similar to the degree sequence, the segment sequence of T is the non-increasing

sequence of the lengths of all segments of T . For a given segment sequence (l1, l2, . . . , lm),

the starlike tree S(l1, l2, . . . , lm) is the tree with exactly one vertex of degree ≥ 3 formed by

identifying one end of each of the m segments. It was shown in [16] that S(l1, l2, . . . , lm)

minimizes the Wiener index among all trees with segment sequence (l1, l2, . . . , lm). The

extremal tree with a given segment sequence, that maximizes the Wiener index, was

conjectured to be the quasi-caterpillar (a tree in which all branch vertices lie on a path,

see Figure 1) in [16] and proved in [1].
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Figure 1: A quasi-caterpillar with segment sequence (5,5,3,3,2,2,2,2,1,1,1,1,1).

In this note we will consider the extremal problems, with respect to the Wiener index,

among trees with both of degree sequence and segment sequence predetermined. First,

in Section 2, we introduce an operation that increases or decreases the Wiener index

under certain conditions. This operation, used in some so-called “sliding lemma”, leads

to basic properties related to the degrees and segments along a path in an extremal

tree. Such properties are analogous to the aforementioned ∨-property. We then show in

Section 3 that the tree with maximum Wiener index among trees with both given degree

and segment sequences must be a quasi-caterpillar. This proof, although technical, is

very similar to that in [1]. Through further analysis we present the characteristics of this

maximizing quasi-caterpillar in Section 4. Lastly we summarize our findings in Section 5,

where we also briefly discuss the difficulty in completely characterizing the extremal trees

that minimize the Wiener index.

2 The “sliding lemma” and properties of extremal
trees

First let us introduce the following observation on the change of the value of the Wiener

index when we “slide” a part of a tree along a path. For this purpose let v be on a

path P (u,w) from u to w in T , such that v is the only branch vertex on P (u,w) and

d(u, v) < d(v, w). Furthermore, let Tu, Tv, Tw denote the components in T − E(P (u,w))

that contain u, v, w, respectively.

Lemma 2.1 Following the above notations, suppose v′ is on P (u,w) such that d(u, v′) =

d(v, w) and d(v′, w) = d(u, v). Let T ′ be obtained from T by detaching Tv from v and

reattaching it to v′ (Figure 2).

• If |Tu| ≥ |Tw|, then W (T ′) ≥ W (T ) with equality if and only if |Tu| = |Tw|.
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• If |Tu| ≤ |Tw|, then W (T ′) ≤ W (T ) with equality if and only if |Tu| = |Tw|.

u v v′ w

Tv

Tu Tw
u v v′ w

Tv

Tu Tw

Figure 2: “Sliding” Tv from v to v′.

Proof. We will only prove the first case, the second one is similar.

Note that from T to T ′, only the distances between vertices in Tv − {v} and vertices

not in Tv − {v} changed. Among such pairs of vertices, the sum of all distances from a

vertex x in Tv − {v} to all vertices on the path P (u,w) remains the same. Consequently

we only need to consider the distances between a vertex in Tu − {u} or Tw − {w} and a

vertex in Tv − {v}.

• If x ∈ V (Tv)− {v} and y ∈ V (Tu)− {u}, then d(x, y) increased by d(v, v′) from T

to T ′;

• Similarly, if x ∈ V (Tv)−{v} and y ∈ V (Tw)−{w}, then d(x, y) decreased by d(v, v′)

from T to T ′.

Thus

W (T ′)−W (T ) = (|Tv| − 1)(|Tu| − |Tw|)d(v, v′) ≥ 0

with equality if and only if |Tu| = |Tw|.

It is easy to see that the above “sliding” operation does not change the degree sequence

or the segment sequence of the tree. Applying Lemma 2.1 to the extremal trees with

given degree and segment sequences yields some interesting partial characteristics of the

extremal trees.

First we will consider trees, with given degree and segment sequences, that minimize

the Wiener index. For such a tree T , let P be a path with the greatest number of segments

in T and denote the shortest segment on P by P (u1, v1) with d(u1, v1) = c. We now label

the branch vertices on P by v1, v2, · · · on the same side of P (u1, v1) as v1, and u1, u2, · · · on

the same side of P (u1, v1) as u1. Let Xi (Yj) denote the component containing ui (vj) in

T − E(P ), we will consider the relations between |Xi|’s, |Yj|’s, as well as ai = d(ui, ui+1)

and bj = d(vj, vj+1) as illustrated in Figure 3. Here we use X≥t to denote the graph

induced by Xt, Xt+1, . . .. Similarly for Y≥t.
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X≥t
Xt−1 X2 X1 Y1 Y2 Yt−1

Y≥t

ut ut−1 u2 u1 v1 v2 vt−1 vt
a1 c b1

Figure 3: Path P with the greatest number of segments.

Proposition 2.1 If T minimizes the Wiener index, among all trees with given degree

and segment sequences, then for P described as above we may assume

• c ≤ a1 ≤ b1;

• |X1| ≥ |X2| ≥ . . .;

• |Y1| ≥ |Y2| ≥ . . .;

• c ≤ a1 ≤ a2 ≤ . . .;

• c ≤ b1 ≤ b2 ≤ · · · .

Proof. First, since P (u1, v1) is the shortest segment on P , we may assume, without loss

of generality, that c ≤ a1 ≤ b1. We now claim that

|Y≥1| ≥ |X≥2|. (1)

If c = a1, then it is easy to see that (1) can be achieved by relabeling the graph if

necessary. Otherwise, let c < a1, if (1) is not true, then |Y≥1| < |X≥2|. Lemma 2.1 implies

that sliding X1 from u1 towards u2 would decrease the Wiener index, a contradiction to

the extremality of T .

With (1), suppose now, for contradiction, that |X1| < |X2|. Let T ′ be obtained from

T by “switching” the components X1 and X2. From T to T ′, we have:

• the distance between any vertex in X2 and any vertex in Y≥1 ∪ P (u1, v1) decreases

by a1;

• the distance between any vertex in X1 and any vertex in Y≥1 ∪ P (u1, v1) increases

by a1;

• the distance between any vertex in X2 and any vertex in X≥2 −X2 increases by a1;

• the distance between any vertex in X1 and any vertex in X≥2−X2 decreases by a1;
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• the distances between vertices of X1 and the vertices on the segment between u1

and u2 change, but the total contribution to the Wiener index remains the same;

the same is true for X2.

• all distances between other pairs of vertices stay the same.

Hence

W (T ′)−W (T ) = a1
(
|X1| − |X2|

)
·
(
|Y≥1 ∪ P (u1, v1)| − |X≥2 −X2|

)
< 0,

a contradiction.

Note that by |Y≥1∪X1∪P (u1, v1)| > |Y≥1| ≥ |X≥2| > |X≥3|, we can show |X2| ≥ |X3|

through exactly the same argument. And more generally, |X1| ≥ |X2| ≥ |X3| ≥ . . ..

Similarly, we also conclude |Y1| ≥ |Y2| ≥ . . ..

Next we show that c ≤ a1 ≤ a2. Otherwise, suppose a1 > a2. Note that from (1)

we must have |X≥3| ≥ |X1 ∪ P (u1, v1) ∪ Y≥1|, a contradiction. Thus c ≤ a1 ≤ a2. More

generally we have c ≤ a1 ≤ a2 ≤ . . . and similarly c ≤ b1 ≤ b2 ≤ · · · .

Similar conclusions can be drawn for trees that maximize the Wiener index, we skip

the proofs.

Proposition 2.2 If T maximizes the Wiener index, among all trees with given degree

and segment sequences, then for P described as above but with P (u1, v1) being the longest

segment on P , we may assume

• c ≥ a1 ≥ b1;

• |X1| ≤ |X2| ≤ . . .;

• |Y1| ≤ |Y2| ≤ . . .;

• c ≥ a1 ≥ a2 ≥ . . .;

• c ≥ b1 ≥ b2 ≥ · · · .

3 Maximum Wiener index in trees with given degree
and segment sequences

In this section we show that the tree maximizing the Wiener index, given degree and

segment sequences, must be a quasi-caterpillar. The proof is very similar to that of [1]

and we skip some details.
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Theorem 3.1 Among trees with given degree sequence and segment sequence, the Wiener

index is maximized only by quasi-caterpillars.

Proof. For convenience we will call an extremal tree T with the maximum Wiener index

an optimal tree. Let P = P (v0, vk) be a path of T with the greatest number of segments,

and label the branch vertices on P by v1, v2, . . . , vk−1 (from v0, towards vk). For each i

between 1 and k − 1, let the neighbors of vi that do not lie on P be vi,1, . . . , vi,li , and let

Ti,j (1 ≤ j ≤ li) denote the component containing vi,j after removing the edge vivi,j.

In each of the subtrees Ti,j, consider the branch vertex (or leaf if there is no branch

vertex) closest to vi and call it ui,j. We then use Si,j for the component containing ui,j in

T − E(P (vi, ui,j)) (Figure 4).

v0 vkvi

ui,2

Si,2

ui,1

Si,1

Ti,1 Ti,2 Ti,li

vi,1 vi,2 vi,li

ui,li

Si,li
. . . . . .

Figure 4: The labeling of T

Supposing, for contradiction, that T is not a quasi-caterpillar, then let S = Si0,j0

be of the largest order among Si,j (1 ≤ i ≤ k, 1 ≤ j ≤ li). Let T≤i0 denote the

component containing vi0 in T −E(P (vi0 , vi0+1)) and T>i0 the component containing vi0+1

in T − E(P (vi0 , vi0+1)). Similarly for T<i0 and T≥i0 . As in [1], we may assume, without

loss of generality, that

|T<i0| ≥ |T>i0| and |S| > |Si,j| for all i > i0 and all j.

By our choice of P as a path with the greatest number of segments, vi0 cannot be the

last branch vertex and hence vi0+1 is still a branch vertex. We now consider the subtree

Ti0+1,1 consisting of the path from vi0+1 to ui0+1,1 and the subtree S ′ = Si0+1,1 (Figure 5).

Denote p (p′, respectively) be the length of the path P (vi0 , ui0,j0) (P (vi0+1, ui0+1,1), re-

spectively).
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v0 vi0 vi0+1 vk

vi0,1
vi0,j0

vi0,li0 vi0+1,1

ui0,1
ui0,j0 ui0+1,1

. . . . . .. . . S S ′

Ti0,j0 Ti0+1,1

Figure 5: The branches that are switched.

We can now construct a new tree T ′:

1. If p ≥ p′, let T ′ be obtained from T by switching Ti0,j0 and Ti0+1,1.

2. If p < p′, let T ′ be obtained from T by switching S and S ′.

It has been shown in [1], that we have

W (T ′)−W (T ) > 0

in either case. We also note that from T to T ′ both the degree sequence and the segment

sequence stay the same, hence yielding a contradiction to the optimality of T .

4 Further characterization of the extremal
quasi-caterpillar

In a quasi-caterpillar, let the path containing all the branch vertices be called the backbone.

We call all the segments that do not lie on the backbone (and thus connect a leaf with

a branch vertex) pendant segments. For a tree with given degree and segment sequences

that maximize the Wiener index, knowing that it has to be a quasi-caterpillar from The-

orem 3.1, we now show some further properties of such an optimal quasi-caterpillar in

terms of the ordering of vertex degrees and segment lengths.

Theorem 4.1 For a quasi-caterpillar that maximizes the Wiener index among trees with

given degree and segment sequences, let the backbone contain k segments which are of

lengths r1, r2, . . . , rk from one end to another. Then there must exist a

j0 ∈ {1, 2, . . . , k}

such that the following are satisfied:
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1. The sequence r1, r2, . . . , rk is unimodal, i.e.,

r1 ≤ r2 ≤ · · · ≤ rj0 ≥ · · · ≥ rk;

2. Let the branch vertices be vi for 1 ≤ i ≤ k − 1 such that P (vi, vi+1) is the segment

with length ri+1. Denote the lengths of the pendent segments attached at vi by si,t,

1 ≤ t ≤ `i where deg(vi) = `i + 2 for 1 ≤ i ≤ k − 1. Then

max
1≤t≤`i+1

si+1,t ≤ min
1≤t≤`i

si,t for i ≤ j0 − 2 (2)

and

max
1≤t≤`i−1

si−1,t ≤ min
1≤t≤`i

si,t for i ≥ j0 (3)

3. Recall that deg(vi) = `i + 2 for 1 ≤ i ≤ k − 1, we have

`1 ≥ `2 ≥ · · · ≥ `j0−1, and `j0 ≤ `j0+1 ≤ · · · ≤ `k−1,

or equivalently,

deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vj0−1), and deg(vj0) ≤ deg(vj0+1) ≤ · · · ≤ deg(vk−1).

Proof. Part (1) follows from essentially the same proof as that in [1] through repeated

application of Lemma 2.1. We skip the proof here.

(2) Following the notations in Theorem 3.1, note that each Ti,j is simply a pendant

segment with a common end vertex. Let i0 ≤ j0 − 2 be the largest index where (2) failed

and

si0,t0 < si0+1,t′0

for some t0 and t′0.

Consider, now, the tree T ′ obtained from T by switching Ti0,t0 and Ti0+1,t′0
(Figure 6).

v0 vi0 vi0+1 vk

vi0,t0
vi0+1,t′0

Ti0,t0
Ti0+1,t′0

v0 vi0 vi0+1 vk

vi0+1,t′0

vi0,t0

Ti0+1,t′0

Ti0,t0

Figure 6: The trees T and T ′ in case (2)

It is easy to see that T ′ has the same degree and segment sequences as T . From T ′ to

T , we have the following changes in the distances between vertices:
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• the distance between any vertex in T≤i0 − Ti0,t0 and any vertex in Ti0+1,t′0
decreases

by d(vi0 , vi0+1) = ri0+1;

• the distance between any vertex in T≥i0+1 − Ti0+1,t′0
and any vertex in Ti0+1,t′0

in-

creases by d(vi0 , vi0+1) = ri0+1;

• the distance between any vertex in T≤i0 −Ti0,t0 and any vertex in Ti0,t0 increases by

d(vi0 , vi0+1) = ri0+1;

• the distance between any vertex in T≥i0+1−Ti0+1,t′0
and any vertex in Ti0,t0 decreases

by d(vi0 , vi0+1) = ri0+1;

• the distances between vertices of Ti0,t0 and the vertices in P (vi0 , vi0+1) change, but

the total contribution to the Wiener index remains the same; the same is true for

Ti0+1,t′0
.

Consequently,

W (T ′)−W (T ) = ri0+1

(
si0+1,t′0

− si0,t0
)
·
(
|T≥i0+1 − Ti0+1,t′0

| − |T≤i0 − Ti0,t0|
)
.

Since ri0+1 ≤ ri0+2, by Lemma 2.1, |T≥i0+2| ≥ |T≤i0|. Then

|T≤i0 − Ti0,t0| < |T≤i0| ≤ |T≥i0+2| < |T≥i0+1 − Ti0+1,t′0
|.

Thus W (T ′) > W (T ), a contradiction.

(3) can be shown in exactly the same way.

(3) First we show that `1 ≥ `2 ≥ · · · ≥ `j0−1, otherwise, let i0 (< j0) be the largest index

such that `i0−1 < `i0 .

Let `i0 − `i0−1 = x and define

Ti0,≤x = Ti0,1 ∪ Ti0,2 ∪ · · · ∪ Ti0,x.

Consider the tree

T ′ = T − {vi0vi0,1, vi0vi0,2, · · · , vi0vi0,x}+ {vi0−1vi0,1, vi0−1vi0,2, · · · , vi0−1vi0,x}.

Again it is easy to see that the degree sequence and segment sequence stay the same from

T to T ′ (Figure 7):
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• the distance between any vertex in T≤i0−1 and any vertex in Ti0,≤x decreases by

d(vi0−1, vi0) = ri0 ;

• the distance between any vertex in T≥i0 − Ti0,≤x and any vertex in Ti0,≤x increases

by d(vi0−1, vi0) = ri0 ;

• the distances between vertices of Ti0,≤x and the vertices on P (vi0−1, vi0) change, but

the total contribution to the Wiener index remains the same.

v0 vi0−1 vi0 vk

vi0,1 vi0,x. . .. . .. . .

v0 vi0−1 vi0 vk

vi0,1 vi0,x. . . . . . . . .

Figure 7: Transformation in case (3)

Hence

W (T ′)−W (T ) = ri0 · |Ti0,≤x| ·
(
|T≥i0 − Ti0,≤x| − |T≤i0−1|

)
.

Again by Lemma 2.1 and the fact that ri0 ≤ ri0+1, we have |T≥i0+1| ≥ |T≤i0−1| and

|T≤i0−1| ≤ |T≥i0+1| < |T≥i0 − Ti0,≤x|.

Thus W (T ′) > W (T ), a contradiction.

Similarly, one can show that `j0 ≤ `j0+1 ≤ · · · ≤ `k−1.

5 Concluding remarks

In this note we considered extremal problems, with respect to the Wiener index, among

trees with given degree and segment sequences. We first presented a “sliding lemma” that

is very similar to other versions of lemmas under the same name, while maintaining both

degree and segment sequences. This lemma is then used to find partial characteristics

of the extremal trees that minimize or maximize the Wiener index, with given degree

and segment sequences. Through more detailed analysis, we show that the tree with the

maximum Wiener index must be a quasi-caterpillar, and provide further characterizations

of this extremal quasi-caterpillar. Some of the proofs are direct applications of previously

established techniques.

On the other hand, the analogue of Proposition 2.1 for trees with only predetermined

degree sequence (but not segment sequence), first established in [26], was an important

-115-



part of a proof that established the extremality of the greedy tree among trees with a given

degree sequence. The other part of the proof in [26] requires the comparison between the

components Xi and Yi in Proposition 2.1 for any i. The following examples show that we

do not have an easy way to do this even in the i = 1 case, where we have |X1| < |Y1| in

Figure 8 and |X1| > |Y1| in Figure 9. But “switching” X1 and Y1 in either case would result

in an increase in the Wiener index. This presents the main difficulty in identifying the

extremal tree that minimizes the Wiener index with given degree and segment sequences,

which we leave as an open problem.

X2

X1

Y1

Y2

a1 c b1

Figure 8: A tree with |X1| < |Y1|.

X2

X1

Y1

Y2

a1 c b1

Figure 9: A tree with |X1| > |Y1|.
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