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Abstract

We introduce and investigate a new topological index, the Lanzhou index, and show

that it outperforms several existing indices on some benchmark datasets recom-

mended by the International Academy of Mathematical Chemistry. We determine

its extremal values and characterize extremal graphs, trees, and restricted trees.

Nothing speaks more on the quality
of proposed analytic potentials for water

than the fact that there are more than
seven hundreds of them in the literature.

Anonymous

1 Introduction

A spectre is haunting Mathematical Chemistry – the spectre of proliferation of Topological

Indices1. Like the water potentials (see [4] for situation some 15 years ago), hundreds and

1Paraphrased after the first sentence of The Communist Manifesto by K. Marx and F. Engels.
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thousands of them are clogging the literature, and new ones keep appearing with every

new issue of several research journals. Even some of their most ardent one-time propo-

nents and promoters now recognize that something must be done in order to keep the field

from descending into chaos. Milan Randić, for example, compiled a list of commandments

(twelve of them) that a new quantity must fulfill to be worth of study [11]. Others, like

Ivan Gutman, took a more proactive approach, touring mathematical chemistry confer-

ences and advocating restrain in introducing new and investigating existing topological

indices [6, 7]. According to Gutman’s views, only the quantities that outperform the

best of currently known topological indices in modeling some chemically relevant prop-

erty deserve to be introduced and studied. In addition, he approves of publishing results

on already existing indices only if they are deep enough and mathematically interesting.

The main purpose of this note is to show that those requirements, strict as they are, are

reasonable and not impossible to meet. We introduce a new topological index, show that

it behaves better than the existing ones in predicting a chemically relevant property, and

we also establish mathematically interesting results concerning the extremal structures.

2 Definitions and preliminary results

We start by introducing some notation. For a given graph G, its vertex set is denoted by

V (G) and its edge set by E(G). The degree of a vertex u ∈ V (G) is equal to the number

of its neighbors and we denote it by du. The complete graph, the path, and the star on n

vertices are denoted by Kn, Pn, and Sn, respectively, while Tn denotes a generic tree on

n vertices. By Km,n we denote the complete bipartite graph with classes of bipartition of

sizes m and n. The complement graph G of a graph G has the same vertex set V (G),

and two vertices are adjacent in G if and only if they are not adjacent in G. The first

Zagreb index M1(G) of a graph G is defined as

M1(G) =
∑

u∈V (G)

d2
u,

while the forgotten index of G is defined as

F (G) =
∑

u∈V (G)

d3
u.

We notice that M1(G) and F (G) are defined in a similar way. Indeed, they were defined

in the same paper [10], but their fortunes since have been remarkably different. While
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the first Zagreb index became one of the most popular and well researched topological

indices, the other one fell into oblivion and remained there until very recently, when it

was reintroduced by Furtula and Gutman [3].

As mentioned before, Ivan Gutman has been arguing for quite some time that only those

new descriptors which outperform the existing ones deserve to be introduced and further

studied. As a part of this effort, he and his collaborators recently published several

papers trying to identify well performing descriptors among the existing ones and to

provide a set of benchmark values of correlation coefficients that any new descriptors

should aim to exceed [5, 8, 9]. Most of those papers were concerned with degree-based

indices [1, 2] similar to those mentioned above and to the one we will consider later

in this paper. A nice example of that approach is the above-mentioned paper on the

forgotten index [3], which contains a section dedicated to justification of the new index by

demonstrating its chemical usefulness. The predictive ability of the forgotten index was

tested by comparing it with the first Zagreb index on the benchmark dataset of 18 octane

isomers recommended by the International Academy of Mathematical Chemistry. It was

found that their predictive powers are quite similar, with both indices performing well

(i.e., yielding the correlation coefficient greater than 0.95) on the same two properties and

yielding no satisfactory correlation on eleven others. It turned out, however, that for one

of the remaining properties, (the logarithm of) the octanol-water partition coefficient P ,

an excellent correlation was obtained by a linear combination of M1(G) and F (G) of the

form M1(G)+λF (G), where λ was a free parameter ranging from -20 to 20. A sharp peak

was obtained at λ = −0.140 (see Fig. 2 of [3]), leading to the expression 0.2058(M1(G)−

0.14F (G)) + 7.5864 for logP , with the absolute value of the correlation coefficient equal

to 0.99896 and the mean absolute percentage error of 0.06%. No explanation was offered

for the value of λ resulting in such an excellent agreement with experimental values of

logP .

One of our goals here is to eliminate the need of a free parameter λ in M1(G) − λF (G)

by offering an explanation for the observed value of λ in terms intrinsic to graph(s)

under consideration. More precisely, we will define a new topological index without free

parameters that (almost) outperforms M1(G)− 0.14F (G) on the same dataset, and that

significantly outperforms it on a larger one.

Crucial for our goal is the observation that the optimal value of λopt = −0.140 is, by
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absolute value, very close to 1/7, the reciprocal value of the largest possible degree of

a vertex in a simple graph on 8 vertices. By interpreting λopt as −1/(n − 1) and by

multiplying through by n − 1 to get rid of fractions, we come to consider a quantity

defined as

(n− 1)M1(G)− F (G) =
∑

u∈V (G)

d2
u[(n− 1)− du] =

∑
u∈V (G)

dud
2
u,

where by du we denote the degree of u in G, the complement of G. We denote the newly

defined quantity by Lz(G) and call it the Lanzhou index of G. (The name was chosen

since the observation was made and subsequent work was done in the city of Lanzhou

in China during a visit of Croatian researchers within the scope of a bilateral Croatian-

Chinese research project mentioned in the Acknowledgment.) Hence,

Lz(G) =
∑

u∈V (G)

dud
2
u.

3 Main results

3.1 Justification

Our first task is to justify the new index by demonstrating its predictive ability for a chem-

ically relevant property of a non-trivial class of molecules. We have already mentioned

that our new index, the Lanzhou index, almost outperforms the Furtula - Gutman linear

combination M1(G)−0.14F (G). By “almost” we mean that Lanzhou index yields slightly

smaller absolute value of the correlation coefficient, namely 0.96693 instead of Furtula -

Gutman’s 0.99896. We admit that the correlation is a bit weaker for the Lanzhou index.

However, we believe that the slightly poorer correlation coefficient is by far outweighed by

elimination of the free parameter, and, consequently, by far wider range of applications.

To illustrate our point, we have compared performances of the first Zagreb index M1(G),

the forgotten index F (G), the Furtula - Gutman linear combination M1(G)− 0.14F (G),

and the Lanzhou index Lz(G) in predicting the logarithm of the octanol-water partition

coefficient for 32 (out of 35) nonane isomers. Additionally, as a kind of control, we have

performed the same computations for an ad-hoc quantity Lz(G) defined by switching the

roles of degrees of vertices in a graph and in its complement, Lz(G) =
∑

u∈V (G) dudu
2
.

The results are summarized in Table 1. (The first four values of the upper row are as

reported in [3].)
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M1 F M1 − 0.140F Lz Lz

octanes -0.07933 0.00550 -0.99876 -0.96693 0.16616

nonanes -0.78729 -0.73379 -0.65970 -0.98869 0.82598

Table 1. Comparison of correlation coefficients of five indices for the octanol-water

partition coefficient of octane and nonane isomers.

Several interesting things can be gleaned from Table 1. As expected, neither M1(G)

nor F (G) perform well for nonanes. However, their linear combination with Furtula

- Gutman’s value of the free parameter performs even worse. This indicates that the

octane-optimal value λopt = −0.140 is not suitable for other numbers of vertices. On the

contrary, when replaced by −1/8, yielding thus the Lanzhou index, it yields a very good

correlation coefficient. That also indicates that the scaling with the number of vertices

is well described by the factor of −1/(n − 1). The rightmost column was computed in

order to asses the sensitivity of our definition to switching the roles of degrees in a graph

and in its complement. The performance of this quantity, a kind of Lanzhou coindex, is

consistently (and significantly) worse than for Lanzhou index, indicating thusly that our

definition, arbitrary as it seems to be, captures something relevant for determination of

the octanol-water partition coefficient.

We have tried to asses the performance of Lanzhou index also for larger molecules. How-

ever, our efforts were hampered by lack of reliable data on octanol-water partition coef-

ficients for branched isomers of decanes and larger alkanes. On the lower end (i.e., for

heptanes and hexanes) we found that the Lanzhou index performs poorly. We ascribe

the poor performance to a very narrow range of values (only two different values for nine

heptanes) and small number of isomers.

3.2 Extremal graphs, trees and chemical trees

In this subsection we study some of mathematical properties of Lanzhou index. In partic-

ular, we determine its extremal values over general graphs, trees, and trees with maximum

degree at most four, and characterize the extremal cases.

We start by stating several results that can be verified by direct computation.

Proposition 1

Lz(Kn) = Lz(Kn) = 0;
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Lz(Km,n) = mn(2mn−m− n);

Lz(Pn) = 2(n− 2)(2n− 5);

Lz(Sn) = (n− 1)(n− 2).

Next we state the extremal values of Lanzhou index for general graphs and characterize

the extremal cases.

Proposition 2

Let G be a graph on n vertices. Then

0 ≤ Lz(G) ≤ 4

27
n(n− 1)3.

The left inequality is satisfied if and only if G is either complete or empty graph. The right

inequality is satisfied if and only if n ≡ 1 (mod 3) and G is r-regular with r = 2
3
(n− 1).

Proof

We denote by c(x) = x2(n− 1− x) the contribution of a vertex of degree x to the value

of Lz(G). Since c(x) is non-negative for all values of 0 ≤ x ≤ n− 1, the only way to get

zero is to have all vertex contributions equal to zero. Hence, the complete graph and its

complement are the only graphs on n vertices whose Lanzhou index is equal to zero.

On the other hand, the largest possible contribution of a vertex to Lz(G) will be for

vertices of degree equal to the zero(s) of c′(x). Since c′(x) = x(2(n − 1) − 3x), its only

non-zero root is integer if and only if n−1 is divisible by 3, hence the second claim holds.

Nice class of extremal graphs are circulant graphs Ck
3k+1, the k-th powers of cycles on

3k+ 1 vertices. (The k-th power Gk of G is obtained from G by adding edges between all

pairs of vertices at distance at most k in G.)

Now we turn our attention to trees. As all trees on at most 4 vertices belong to the cases

covered in Proposition 1, in the rest we consider only trees on n ≥ 5 vertices.

A double star Sk,l is a tree obtained from K2 by attaching k − 1 leaves to one of its

vertices and l − 1 leaves to the other one. Hence, Sk,l has one vertex of degree k, one of

degree l, and k + l − 2 vertices of degree one. A double star on n vertices is balanced

if the difference between k and l is the smallest possible. Depending on parity of n,

this difference will be either zero for an even n or one for an odd n. Hence, a balanced

double star on n vertices is either Sn/2,n/2 or S(n−1)/2,(n+1)/2. When the parity of n is not

important, we denote the balanced double star on n vertices by BDS(n).

The following result is readily verified by direct computation.
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Proposition 3

Lz(Sn/2,n/2) =
n3

4
+
n2

2
− 4n+ 4;

Lz(S(n−1)/2,(n+1)/2) =
n3

4
+
n2

2
− 17

4
n+

7

2
.

We are going to show that the balanced double stars maximize the Lanzhou index over all

trees on n vertices for large enough n, while the minimum value is achieved for ordinary

stars Sn for all n.

Proposition 4

Let Tn be a tree on n ≥ 15 vertices. Then

Lz(Sn) ≤ Lz(Tn) ≤ Lz(BDS(n)).

The lower bound is achieved if and only if Tn = Sn, while the upper bound is achieved if

and only if Tn = BDS(n).

Proof

Let V = V (Tn) be the vertex set of Tn. It can be decomposed as V = L ∪ R, where L

is the set of leaves and R the set of non-leaves of Tn. Let l = |L| and r = |R| be the

cardinalities of L and R, respectively. Starting from∑
u∈R

du + l = 2n− 2

and rewriting it as ∑
u∈R

(du − 2) + 2(n− l) + l = 2n− 2,

we arrive at ∑
u∈R

(du − 2) = l − 2. (1)

Now we recall our definition of c(x), the contribution of a vertex of degree x to Lz(Tn).

As in the general case, c(x) = x2(n − 1 − x). In particular, contributions of each of the

leaves are given by c(1) = n− 2. Now we have

Lz(Tn) =
∑
u∈V

c(du) =
∑
u∈R

c(du) + (l − 2)c(1) + 2c(1).

By expressing l − 2 via (1) we obtain

Lz(Tn) =
∑
u∈R

[c(du) + (du − 2)c(1)] + 2c(1). (2)
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We wish to maximize the sum on the right hand side of the above equation. By taking

into account ∑
u∈R

(du − 2 + 1) = l − 2 + r,

we arrive at ∑
u∈R

(du − 1) = n− 2. (3)

Now we write Lz(Tn) by taking equation (2) and multiplying each term in the sum by

du−1
du−1

, thus obtaining

Lz(Tn) =
∑
u∈R

c(du) + (du − 2)c(1)

du − 1
(du − 1) + 2c(1). (4)

We define a function λ(x) by

λ(x) =
c(x) + (x− 2)c(1)

x− 1

and denote by λ+ and λ− its maximum and minimum value, respectively, over all positive

integer values of argument yielding non-negative values of λ(x). Hence,

λ+ = max
du

λ(du), λ− = min
du

λ(du).

Clearly,

λ−
∑
u∈R

(du − 1) + 2c(1) ≤ Lz(Tn) ≤ λ+
∑
u∈R

(du − 1) + 2c(1),

and then, by (3),

λ− · (n− 2) + 2c(1) ≤ Lz(Tn) ≤ λ+ · (n− 2) + 2c(1).

But λ(x) is, in fact, a quadratic polynomial with negative leading coefficient, since x = 1

is a root of its numerator. It can be explicitly written as

λ(x) = −x2 + (n− 2)x+ 2(n− 2).

By checking its values at x = 2 and x = n−1 we immediately obtain λ− = λ(n−1) = n−3.

Hence,

Lz(Tn) ≥ λ− · (n− 2) + 2c(1) = (n− 3)(n− 2) + 2(n− 2) = (n− 1)(n− 2) = Lz(Sn).

So, the Lanzhou index is minimized for stars and only for stars.
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Let us now turn our attention to finding the trees maximizing the Lanzhou index. We

first suppose that n is even. Then the maximum value of λ(x) is achieved for x = n−2
2

, and

values of λ(x) are symmetric with respect to x = n
2
−1. In particular, λ(n

2
−1) = n2

4
+n−3,

λ(n
2
) = λ(n

2
−2) = n2

4
+n−4 and λ(n

2
+1) = λ(n

2
−3) = n2

4
+n−7. Hence λ+ = λ(n

2
−1),

leading to the upper bound

Lz(Tn) ≤ n3

4
+
n2

2
− 3n+ 2.

This upper bound is a bit larger than the value achieved by Lz(Sn/2,n/2); the difference

is equal to n − 2. In order to prove our claim we must show that no other tree has the

Lanzhou index closer to the upper bound than the balanced double star.

So, let us suppose that Sn/2,n/2 is not the extremal tree. Formula (3) implies that any

extremal tree Te can contain at most two vertices of high degree (here by high degree we

mean the degree of of n
2
, n

2
− 1 or n

2
− 2). Since Te is not equal to Sn/2,n/2, at least one

of those two vertices must have the degree strictly smaller than n
2
. If none of them has

degree equal to n
2
− 1, it follows from relation (4) and Proposition 3 that Lz(Te) cannot

exceed Lz(Sn/2,n/2). Hence we have three possible cases.

Case 1.

Te contains a vertex of degree n/2. Both that vertex and the vertex of degree n
2
− 1

must be in R. Since the sum of du − 1 over all vertices in R must be equal to n − 2, R

must contain a vertex of degree 2. All other vertices of Te must be leaves. Now by direct

computation we obtain

Lz(Te) =
n3

4
+
n2

4
− n

2
− 6 < Lz(Sn/2,n/2)

for large enough n (say, n ≥ 11), a contradiction.

Case 2.

Te contains two vertices of degree n
2
− 1. Now the sum of their degrees is n − 2 and R

must contain either two additional vertices of degree 2 or one additional vertex of degree

3. In both cases we obtain that the Lanzhou indices of those trees have the same leading

cubic term as Lz(Sn/2,n/2), while no quadratic term is present. Hence in both cases they

remain smaller than Lz(Sn/2,n/2) for large enough n, yielding again a contradiction.

Case 3.

Te contains a vertex of degree n/2 − 1 and a vertex of degree n/2 − 2. Since the sum of

their degrees gives only n − 3, there must be additional vertices in R. There are three
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possible situations: three vertices of degree 2, one vertex of degree 3 and one of degree

2, or just one vertex of degree 4. In all three cases direct computation verifies that their

Lanzhou indices do not exceed Lz(Sn/2,n/2).

Hence the balanced double star Sn/2,n/2 has the maximum Lanzhou index among all trees

on an even number of vertices. The case of an odd number of vertices follows in the same

manner and we omit the details.

It remains to consider the trees with less than 15 vertices. We say that a tree Tn 6= BDS(n)

is excessive if Lz(Tn) > Lz(BDS(n)). If Lz(Tn) ≥ Lz(BDS(n)), we say that Tn is

weakly excessive. It follows from Proposition 4 that the number of excessive and of

weakly excessive trees is finite. Furthermore, there are no excessive nor weakly excessive

trees on more than 14 vertices. We have computed Lanzhou index for all trees on at most

14 vertices. The results are summarized in Table 2. Its columns give the number of vertices

n, the total number of trees t(n), the number of weakly excessive trees twe(n), the number

of excessive trees tex(n), the number of trees maximizing the Lanzhou index tmax(n)

(excluding the balanced double star), the maximum value of Lanzhou index over all trees

on n vertices Lzmax(n), and Lanzhou index of the balanced double star Lz(BDS(n)).

n t(n) twe(n) tex(n) tmax(n) Lzmax(n) Lz(BDS(n))

4 2 0 0 0 12 12

5 3 1 1 1 30 26

6 6 2 2 1 56 52

7 11 7 6 6 90 84

8 23 16 12 1 138 132

9 47 29 24 2 196 188

10 106 21 2 2 270 264

11 235 14 6 1 360 350

12 551 4 4 2 464 460

13 1301 9 2 2 588 582

14 3159 1 0 1 732 732

Table 2. Statistics of weakly excessive, excessive, and extremal trees, and maxi-

mum value of Lanzhou index for trees on 4 ≤ n ≤ 14 vertices.

Hence, there are altogether 104 weakly excessive and 59 excessive trees. For all 5 ≤ n ≤ 13,

(and only for those values), the Lanzhou index is maximized by an excessive tree, while

for n = 14 there is also one weakly excessive tree with maximum value. The unique
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maximizing trees for n = 5 and 6 are respective paths P5 and P6. Other 16 excessive trees

maximizing Lanzhou index for a given number of vertices are shown in Fig. 1.

n = 8

n = 7

n = 9

n = 10

n = 11

n = 12

n = 13

Figure 1. Excessive trees maximizing Lanzhou index.

Similar analysis could be employed to find the extremal graphs and values of Lanzhou

index over unicyclic graphs and over other classes of graphs with low connectivity. As an

example, we determine extremal values and structures for Lanzhou index over all chemical

trees, i.e., the trees whose maximum degree does not exceed four.

Let T ∆
n denote the set of all trees on n vertices with maximum degree at most ∆. The

smallest interesting case is ∆ = 3, while for ∆ = 4 we obtain the class of chemical trees.

We consider ∆ = 3 first.

Let Tn ∈ T 3
n and let t denote the number of vertices of degree 3 in Tn. If we denote the

number of leaves by l, it follows from

3t+ 2(n− t− l) + l = 2(n− 1)

that l = t+ 2. The smallest possible value of t is zero, the largest is given by t = n−2
2

for

even and t = n−3
2

for odd values of n. It is easy to see that for any even n there always

exist a tree with maximum possible number of vertices of degree 3; it suffices to start

from T4 = K1,3, and construct Tn+2 by adding a pair of leaves to one leaf of Tn. A similar
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construction will work for odd n, starting from T5, the only tree on 5 vertices with one

vertex of degree 3.

Proposition 5

Let n ≥ 8 be an integer and Tn ∈ T 3
n . Then

4n2 − 18n+ 20 ≤ Lz(Tn) ≤ 5n2 − 27n+ 34− (n− 7)
1− (−1)n

2
.

The left inequality is satisfied if and only if Tn = Pn. The right inequality is satisfied for

any tree without vertices of degree 2 if n is even, and for any tree with exactly one vertex

of degree 2 if n is odd.

Proof

By direct computation we readily obtain

Lz(Tn) = 9t(n− 4) + 4(n− 2t− 2)(n− 3) + (t+ 2)(n− 2) = 2(n− 7)t+ Lz(Pn),

and hence

Lz(Tn)− Lz(Pn) = 2(n− 7)t.

The right hand side is an increasing function of t for a fixed n ≥ 8. It is minimized for the

smallest and maximized for the largest possible value of t. That immediately proves the

left inequality and yields the equality case. The right inequality now follows by plugging

in the largest possible value of t and expressing the results in a more compact form.

The case of chemical trees T 4
n is a bit more complicated, but it follows along the same

lines. Let Tn ∈ T 4
n and let f and t denote the number of vertices of degree 4 and 3,

respectively. Then the number of leaves is given by l = 2f + t + 2 and the number of

vertices of degree 2 is equal to n− 3f − 2t− 2. Again, by direct computation, it follows

Lz(Tn)− Lz(Pn) = 6(n− 8)f + 2(n− 7)t.

As both expressions on the right hand side are increasing in f and t for n ≥ 8, it follows

immediately that for large enough n the Lanzhou index of chemical trees on n vertices is

minimized by Pn and only by Pn.

In order to find the maximum values and the corresponding structures, one would need

to maximize 6(n − 8)f + 2(n − 7)t over all integer f and t satisfying the constraint

3f + 2t ≤ n+ 2. However, a quick glance at the linear relaxation of this problem suffices

to convince one that it always pays of to maximize f . Indeed, the contribution of a pair
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of vertices of degrees 4 and 2 always exceeds the contribution of two vertices of degree

3. Hence, the right hand side will be maximized for all chemical trees containing the

maximum possible number of vertices of degree 4. Such trees can be constructed starting

from the smallest such trees on 5, 6, and 7 vertices, by adding three leaves on one chosen

leaf. The maximum number of vertices of degree 4 in a chemical tree on n vertices is given

by n−2
3

, n−3
3

and n−4
3

if n ≡ 2 (mod 3), n ≡ 0 (mod 3), and n ≡ 1 (mod 3), respectively.

In all cases, the leading term in Lz(Tn) is given by 6n2. We omit the lower order terms.

We summarize our results for chemical trees.

Proposition 6

Let n ≥ 8 be an integer and Tn ∈ T 4
n . Then

4n2 − 18n+ 20 ≤ Lz(Tn) ≤ 6n2 +O(n).

The left inequality is satisfied if and only if Tn = Pn. The maximum value of Lz(Tn) is

achieved for any tree having the largest possible number of vertices of degree 4 for a given

n.

For a general ∆, the largest possible number of vertices of degree ∆ in a tree on n vertices

is of the order of n
∆−1

, and their collective contribution to Lz(Tn)−Lz(Pn) is of the order

of (∆−2)2+∆−2
∆−1

n2. That leads to

Lz(Tn)− Lz(Pn) =
(∆− 2)2 + ∆− 2

∆− 1
n2 +O(n)

for large enough n, yielding the leading term of
(

(∆−2)2+∆−2
∆−1

+ 4
)
n2 for the maximum

values of Lz(Tn) over all trees of maximum degree at most ∆.

4 Conclusion

We have introduced and investigated the Lanzhou index, a new topological index that de-

scribes a chemically relevant property better than previously available topological indices.

In that way we have demonstrated that introducing and studying new topological indices

is not incompatible with parsimony principles advocating by Ivan Gutman. The main

idea behind our new index is elimination of a free parameter by interpreting it in terms of

parameters intrinsic to graphs under consideration. We believe that our approach could

be successfully emulated on several classes of so called variable indices which depend on

free parameter(s).
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[1] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-

degree-based molecular structure descriptors, MATCH Commun. Math. Comput.

Chem. 66 (2011) 613–626.
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