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Abstract

We suggest a line of work for improving the current state-of-the art in computa-
tional methods for mass spectrometry. Our main focus is on increasing the chemical
realism of the modeling of the fragmentation process. Two core ingredients of our
proposal are i) describing the individual fragmentation reactions via graph trans-
formation rules and ii) expressing the dynamics of the system via reaction rates
and quasi-equilibrium theory. We use graph transformation rules both for specify-
ing the possible core fragmentation reactions, and for characterizing the reaction
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sites when learning values for the rates. We employ a strategy framework in or-
der to systematically expand the chemical space of fragments. We think that this
approach in terms of chemical modeling is more mechanistically explicit than pre-
vious ones, and believe this can lead to both better spectrum prediction and more
explanatory power. Our modeling of system dynamics also allows better separation
of instrument dependent and instrument independent parameters of the model.

1 Introduction
Mass spectrometry is an analytic technique for characterizing single molecules and mo-

lecular mixtures which uses the fact that acceleration of charged particles in an electric

field depends on their mass-to-charge ratio. Ionization of the sample molecules transfers

sufficient energy to trigger their fragmentation. The outcome of such experiments are

mass spectra containing peaks representing the (relative) abundances of fragments as a

function of their mass-to-charge ratio. For an example of a spectrum, see Fig. 3 with

m/z (mass m, charge z) as abscissa and intensity (abundances of fragments) as ordinate.

The pattern of fragment masses and abundances contains ample information on the mo-

lecular structure. While it is sufficient in most cases to identify a known molecule, it has

remained an excruciatingly difficult and often impossible task to determine the structure

of an unknown molecule by mass spectrometry alone [1].

The mass spectrometry-based identification of small molecules usually relies on the

search of the corresponding mass spectrum in a reference spectrum database [2–5]. This

approach, however, will not be successful for molecules that do not yet have a database

entry, and therefore critically depends on computational methods for the in silico predic-

tion of a mass spectrum from the molecular structure [6]. Four very different computa-

tional approaches are widely used throughout the literature: (i) rule-based fragmentation

(ii) combinatorial fragmentation (iii) fragmentation trees, and (iv) competitive fragment-

ation. The first three approaches aim at ranking a set of candidate structures by their

potential to explain a maximum number of informative peaks that are observed in the mass

spectrum of an unknown compound. Peaks with high m/z values, and among those the

peaks with higher intensities, usually convey more structural information than peaks with

low m/z values and are deemed informative peaks. A peak in a mass spectrum is explained

by a candidate structure if a fragment with corresponding mass, within user-defined error

bounds, can be generated via bond breaking processes. The candidate structure which

explains the maximum number of informative peaks is the most likely to have generated
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the unknown mass spectrum. Being based on the number of matched peaks, none of

these approaches take the full intensity information in the mass spectrum into account.

A mass spectrum without intensity information is frequently called a barcode spectrum.

The most popular computational tools for these three approaches are the open source

software MetFrag [7, 8], the commercial packages Mass Frontier and MOLGEN-MSF [9],

and the package SIRIUS [10] for which no source code is available. The methods differ
mainly in the way the fragmentation graphs are constructed. While Mass Frontier and

MOLGEN-MSF rely on a large, hand-curated set of experimentally observed fragmenta-

tion reactions, MetFrac systematically breaks every bond in the candidate molecule and

prunes this highly combinatorial search space with heuristic filtering strategies based on

physicochemical properties of the broken bonds and generated fragments. MOLGEN-MSF

in addition calculates the theoretical isotope fine structure for each predicted fragment

and filters out fragments where the predicted isotope fine structure does not match the

isotope fine structure of the targeted peak in the reference spectrum. The key concept of

SIRIUS is the so-called fragmentation tree [11], which explains the fragmentation cascade

on the level of the molecular formulas. The fragmentation tree is directly calculated from

the mass spectral data using combinatorial optimization techniques; this fact sets SIRIUS

apart from the other methods.

Competitive Fragmentation Modeling (CFM) [12–15] is among the current state-of-

the-art methods and the only one that tries to predict mass spectra including peak in-

tensities from molecular structures. The method combines a restricted combinatorial

fragmentation method with a Markov-type dynamics on the generated fragmentation

graph to estimate intensity values for the predicted fragments. Parameters such as bond

breaking propensities are inferred from experimental mass spectrum data with the help of

machine-learning techniques. The idea was pioneered already in [16] for a specific class of

fragmentation reactions. The computational model parameters can be trained for different

experimental techniques (e.g. hard and soft ionization methods), which makes this ap-

proach quite flexible. The source code as well as a web service CFM-ID [12] are available.

For recent reviews on computational approaches in small molecule mass spectrometry we

refer to [6, 17].

Semiempirical methods have successfully been applied to calculate bond orders, energy

partitioning, or ionization potentials for small molecular systems (see literature reviewed
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in [18]). However, there are currently no parameters available for third-row elements, and

Silicium for instance is an integral part of derivatization agents for gas chromatography-

mass spectrometry approaches. Furthermore, to obtain reliable estimates for the activ-

ation energy of bond fission, a high level of theory is required, which makes practical

computations very expensive. Recently, first-principle methods from quantum mechanics

have been applied to the de-novo prediction of electron ionization mass spectra [18–20].

These methods are, however, computationally extremely expensive. At least at the present

they are not suited for high-throughput applications.

In this contribution we describe a road map for improving the current computational

methods for the prediction of mass spectra. In our view, the key issue is achieving a

chemically more realistic modeling of the fragmentation process without sacrificing com-

putational feasibility. To this end, we propose to (i) describe the individual fragmenta-

tion reactions by means of graph transformation rules and (ii) to express the dynamics

of the system in terms of reaction rates and quasi-equilibrium theory. Graph transform-

ation rules strike a useful balance between chemical expressiveness and computational

efficiency. We use them here both to specify the possible core fragmentation reactions,

and to characterize the reaction sites when learning values for the rates. We argue that

the mechanistically more explicit modeling of the underlying chemical reality not only

holds more explanatory power but also promises substantial practical improvements for

the prediction of mass spectra. Missing lines in predicted spectra, for instance, are directly

indicative that fragmentation reactions are missing from the rule set, which the mechan-

istic nature of the model makes much easier to identify and correct. Our modeling of

system dynamics also allows better separation of instrument dependent and instrument

independent parameters of the model.

This paper is organized as follows: In Section 2, we define the formal model for

describing graph transformation rules and strategy frameworks. In Section 3, we give an

overview of how fragmentation graphs are used to predict mass spectra. In Section 4,

we explain how graph transformation can be used to find the fragmentation graphs of

molecules. In Section 5, we explain our modeling of systems dynamics and outline how

the rates and other parameters can be learned from mass spectrometry data and then

used to predict spectra of further molecules. The core of our proposal is embodied by

Sec. 4 and 5.
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2 Graph Transformation
Any computational approach for predicting mass spectra inherently requires a repres-

entation of molecules and a method for transforming molecules via fragmentation reac-

tions. This essentially amounts to a model for an artificial chemistry. Several abstraction

approaches exist for molecules (e.g., the molecular formula, the structural formula, and

approaches that include partial or complete information on the three-dimensional arrange-

ment of atoms) as well as for chemical reactions (e.g., the λ-calculus [21], the chemical

abstract machine [22], or graph transformation systems [23]). In this contribution we

model chemical compounds as labeled undirected graphs and chemical reactions as graph

transformation rules utilizing the Double Pushout (DPO) approach [24]. In a nutshell,

graph transformation rules add reaction modeling to the classic modeling of molecules as

static graphs. We note that all the formal modeling described in this section has been

implemented in an efficient software library MØD [25].

2.1 Graph Transformation Framework
Chemical reactions usually act on more than one compound and create more than one

compound. Therefore we consider graph transformation that in general can operate on

graphs whose connected components represent the individual molecules. As educts and

products of reactions can appear in multiplicities, we will implicitly interpret a set of

connected graphs as a multiset of connected graphs when applying a rule. A rule p thus

transforms a multiset of connected graphs (usually denoted G) to a multiset of connection

graphs (usually denoted H). A DPO transformation rule p = (L l←− K
r−→ R) formally

consists of three graphs L, R, and K, as well as two graph morphisms l and r. Such a rule

can be applied to G if the graph L can be found as a subgraph in G, i.e., if a matching

graph morphism m : L → G exists. The copy of L in G is then replaced by R by first

removing L\K from G, obtaining an intermediary graph D, to which R\K is added. The

result is the new graph H, which again may consist of multiple connected components.1

Such a direct derivation is denoted G
p,m==⇒ H, or simply G

p=⇒ H or G ⇒ H when the

matching morphism or rule is not relevant. By splitting H into its connected components

we obtain a multiset of connected graphs that correspond to the products of a chemical
1Formally, the two squares, see Fig. 1, are pushouts, a concept form category theory. This means G is

the gluing of L together with D along the common graph K, and similarly for H with R, D, and K For
brevity, we here skip defining this constraint—see [24] for full details.
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reaction. For a formal and detailed introduction and a comparison with other modeling

approaches we refer the reader to [23, 24, 26].

An example of a rule p and its application is depicted in Fig. 1.
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Figure 1. A direct derivation in the Double Pushout approach to graph transform-
ation. The transformation rule p = (L l⇐= K

r=⇒ R) is applied to the
graph G by finding a subgraph match of L in G, i.e., a match morphism
m : L → G. The resulting graph H is derived by first removing L\K
from G, and then adding R\K. The rule p represents H-Y elimination.

The top span corresponds to the transformation rule p and the bottom span corres-

ponds to the application of p to G leading to H. The reaction mechanism encoded by the

rule in Fig. 1 is commonly known as H-Y elimination, which splits a compound in a mass

spectrometer. We underline that graph transformation facilitate the construction of rules

that are chemical in nature, i.e., there is a chemical reaction underlying the transforma-

tion rule. Also note that the graph L of a rule does not need to match entire molecules,

but merely parts of them. In other words, L defines a neighborhood of the reaction site,

which specifies exactly where in molecules this rule can be applied. Hence, a single rule

can capture the same type of reaction in many molecules, and even in several places in

the same molecule.

2.2 Strategy Framework

For the prediction of a mass spectrum, and for compound identification when spectra are

given, the chemical space of potential fragments needs to be computed. Computational

approaches for this often suffer from a combinatorial explosion. For example, in order
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to keep the computational cost within tractable limits, only two consecutive fragment-

ation steps were considered for applications of CFM-ID reported in [12].2 In [27], the

strategic graph transformation framework was presented, which allows the use of soph-

isticated strategies for expanding the chemical space of interest more systematically. In

the following we present an abbreviated version of the framework, as needed for this

contribution.

The core of the framework is rule application. Given a set of connected graphs U and

a graph transformation rule p, the application p(U) of p on U is a new set of connected

graphs U ′ defined as follows:

U ′ = U ∪ {h | ∃G ⊆ U : G p=⇒ H and h ∈ CC(H)} (1)

That is, for each G on which p can be applied, we add the set of connected components

CC(H) of the H resulting from the rule application. Repeated application of a rule can

then accumulate a set of reachable graphs from the initial set. In a chemical context, this

amounts to the construction of a reaction network.

The strategy framework is a domain specific programming language for graph trans-

formation, in which rule application is the fundamental operation. In the framework, a

strategy is a function from a set of graphs to another set of graphs. A single rule p is

a strategy by itself, whose application on a set of graphs is as defined above. Existing

strategies can be composed to new strategies in various ways, the semantics of which we

now briefly describe. A full description of the framework can be found in [27].

As above, we use U to denote the set of input graphs, and U ′ the resulting set of

graphs. The letter Q is used to denote arbitrary strategies, and square brackets are

used to delimit parameters of strategies. The notational scheme for the application of a

strategy is thus U ′ = strat[parameter](U).

Parallel. Given a set of strategies {Q1, Q2, . . . , Qn}, the strategy parallel[{Q1, Q2,

. . . , Qn}] applies each Qi to the input independently, and returns the union of the results.

Sequence. Given strategies Q1, Q2, . . . , Qn, we write Q = Q1 → Q2 → · · · → Qn for

the composition of applying each strategy, i.e., Q(U) = Qn(. . . (Q2(Q1(U))) . . . ). Addi-

tionally, Q = Q′n denotes the n-fold composition of the strategy Q′.
2In [15], Allen notes that experiments with a search depth of three were carried out, but the increased

computational effort did not substantially improve the results.
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Repeat. Given a strategy Q′ and a non-negative integer n, the strategy repeat[n,Q′]

is equivalent to Q′k for the smallest k such that either n = k, or the graph set is empty,

or the graph set has reached a fixed point.

Filter. Given a predicate P on graphs, a filter strategy filter[P ] returns the set of

graphs satisfying the predicate.

Derivation Predicate. Given a predicate P on direct derivations and a strategy Q′,

we write derivationPredicate[P,Q′] for a derivation predicate strategy. It executes Q′

on the input, but modifies rule application, Eq. (1), so only direct derivations satisfying

the predicate are accepted.

In short, reaction networks can be built from one or more starting molecules (graphs)

using repeated application of rules, and the strategy framework offers a flexible way of

specifying and controlling the construction of such networks.

3 Overall Model for Mass Spectrum Prediction

The overall model we use for mass spectrum prediction is based on the concept of frag-

mentation graphs. A single fragmentation breaks a charged molecule into two parts, of

which one receives the charge and the other stays neutral. As only charged molecules

are detectable in a mass spectrometer, only the charged fragment is relevant, hence each

fragmentation can be considered a one-to-one reaction. This charged fragment may then

fragment again into even smaller fragments. Therefore, the possible ways of repeatedly

fragmenting a charged molecule M into smaller parts is well represented by a directed

acyclic graph (DAG), denoted the fragmentation graph for M. The nodes of the DAG are

the possible fragments, the arcs of the DAG are the one-to-one fragmentation reactions,

and M is the source of the DAG. One may include the ionization step in the DAG by

allowing the source to be the uncharged version of M, and letting every outgoing arc of

the source point to an ionized version of M. Each outgoing arc therefore corresponds to

an independent reaction channel in the language of chemical kinetics.

As an example consider Fig. 2, depicting a reaction network for the fragmentation

of the molecule glycolonitrile (CAS 107-16-4). The fragmentation graph is marked as a

blue subgraph and everything else are neutral fragments which are not detectable. Each
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fragment is shown with an id and its monoisotopic mass. Each reaction also has an

identifier, whose precise meaning will become clear in Sec. 4. Though glycolonitrile is

a small molecule, it gives rise to several different types of fragmentations, including a

rearrangement (r96) and three elimination (r71, r75, r77) reactions. It also illustrates that

ionization (r0, r1, r4, r10) can yield multiple different ions, here five, as during EI electrons

from different atom/bonds of the molecule can be removed to form the primary molecule

ion M+. This ion is thus a mixture of different ionization states rather than a single

homogeneous ion. Note that the compound cyanide (id 5) can be obtained in three ways,

both as a product of cleavage (r38 and r52) but also as a consequence of ionization (r4).

If the probability of each fragmentation in a fragmentation graph is known, the graph

translates into a spectrum: For any given fragment, a path of consecutive fragmentations

leading to it has a probability given by the product of the probabilities of the fragment-

ations along it; the sum over all such paths gives the intensity at which the fragment

occurs. Different ions with the same mass and charge will all contribute to the corres-

ponding peak in the mass spectrum. For example, in Fig. 2 this means that the five ions

with monoisotopic mass 57.02 u (nodes with id 1, 2, 7, 26 and 28) will all contribute to

the peak at m/z 57.02 (identified as glycolonitrile ion).

Thus, the overall model we consider has three phases:

1. Generation of the fragmentation graph

2. Estimation of probabilities of the fragmentations

3. Construction of a spectrum.

This overall model has been used before, most closely related to our line of work by

Allen et al. in a series of works [12–15] leading to the program CFM-ID [28]. For compar-

ison with our proposal below, we outline their approach: For phase 1, they systematically

break all non-hydrogen bonds, each time ensuring satisfaction of a set of chemically mo-

tivated constraints (such as mass preservation, charge preservation, and possible hydrogen

rearrangements) by using integer linear programming. For phase 2, they introduce a break

tendency for each fragmentation, i.e., how likely it is that a fragmentation will occur. The

break tendencies are learned using machine learning, using models built on the assumption

that similar molecules break in similar ways. To quantify similarity, each fragmentation

is associated with a feature vector, a binary vector in which each entry i indicates if the
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fragmentation has feature i. Most features are characteristics of the surroundings of the

bond broken by the fragmentation, e.g., the presence of particular atoms within a certain

distance or if a broken ring was aromatic or not. Using this feature vector as input, they

train two types of models for the break tendency, a linear model and a neural network.

Finally, each break tendency is translated into a probability for the fragmentation using a

softmax function [29] taking into account the other possible fragmentations for the same

molecule, i.e., other outgoing arcs in the fragmentation graph.

The core of our proposal is performing phase 1 and phase 2 using new approaches. This

is the subject of Sec. 4 and 5, respectively. Phase 3 is a fairly straightforward calculation

based on the fragmentation graph and the probabilities as described above, and will not

be discussed in more detail here.

4 Using Graph Transformation for Modeling Frag-
mentation

Graph transformation is a formalism well suited for the generation of fragmentation

graphs, since it allows precise and flexible specification of fragmentation reactions, based

on knowledge of the underlying chemistry. Given a set of appropriate graph transforma-

tion rules and a derivation strategy, generation of the fragmentation graph is a straightfor-

ward application of these to the input molecule. In this section we illustrate by an example

how to use graph transformation rules and the strategy framework for the construction

of fragmentation graphs.

Consider once again the graph transformation rule depicted in Fig. 1. This models a

rule used for fragmentation, namely an H-Y elimination. It is part of the rule set used to

create the fragmentation graph in Fig. 2. The other rules used for this graph are listed

in App. A. All are part of a database of ionization and fragmentation rules, which we are

currently building. The rules above were extracted manually from McLafferty’s book [30].

Now, consider the reaction network depicted in Fig. 2, and recall that the fragmentation

graph is the blue subgraph. The network is produced by first applying the ionization

rules to the input graph, with subsequent removal of charge neutral fragments. Then,

the fragmentation rules are applied repeatedly (here four times) to the remaining charged

fragments, also with removal of neutral fragments in each iteration. Note, that the number

of fragmentation steps is configurable, which can reflect e.g. different ionization methods.
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Thus, the strategy is as follows.

parallel[Rionization]→ filter[Pcharge]→ repeat[4,

parallel[Rfragmentation]→ filter[Pcharge]

]

with

Pcharge(g) = charge(g) 6= 0

Using the software package MØD [23, 25] the strategy above is implemented in the

following way:
targetCompounds = [ smiles ("N#CCO")]

def hasCharge (g, gs , first ):
return sum(v. charge for v in g. vertices ) != 0

strat = (
ionizationRules
>> filterSubset ( hasCharge )
>> repeat [4](

fragmentationRules >> filterSubset ( hasCharge )
)

)
dg = dgRuleComp ( inputGraphs , addSubset ( targetCompounds ) >> strat )
dg.calc ()
dg. print ()

The strategy framework can also call external programs in order to control the expan-

sion process. For instance, if we want to only apply fragmentation rules to the charged

fragments that are most likely to fragment further, an external program can be called

for estimating such probabilities for the different fragments and reactions. Examples of

other, more advanced strategies are found in App. C. Naturally, different strategies lead

to different fragmentation graphs.

To give a better understanding of our model and its advantages, we will look a bit

closer at the fragmentation graph for glycolonitrile in Fig. 2 and compare it to the reference

spectrum for glycolonitrile depicted in Fig. 3 (NIST MS number 230418).
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Figure 3. The EI spectrum of glyconitrile (NIST MS number 230418).

The spectrum is a low-resolution spectrum, hence m/z values are treated as integers.

The two most abundant peaks in the spectrum are located at m/z 18 and m/z 28. There

are two vertices in the fragmentation graph with m/z 18, namely vertices 41 and 23,

both water, but only vertex 41 is ionized and therefore detectable by the spectrometer.

The peak at m/z 28 can be explained by vertex 42 in the fragmentation graph. The two

peaks are generated from different M+ ionization states, both of which are included in

the fragmentation graph. While peak m/z 28 (vertex 42) is produced from M+ ionized

at the nitrogen atom, via a McLafferty-type Hydrogen-rearrangement and loss of carbon-

monoxide reaction cascade, peak m/z 18 (water, vertex 41) is generated from M+ ionized

at the oxygen atom via a reaction sequence typical for primary alcohols.

Another abundant peak in the reference spectrum, Fig. 3, is at m/z 30, a peak with

no corresponding vertex in Fig. 2. The missing vertex is a sure indication that the model

is incomplete, because it means that no predicted spectrum based on this fragmentation

graph will include the peak. This implies that chemical rules are missing. We will use

this example to illustrate how to develop a rule set. Taking a closer look at the fragments

in the fragmentation graph, note that there is a fragment, vertex 9, with m/z 31. It

is likely that the hydrogen of the hydroxyl group of this fragment will split off, leaving

the charge behind, which would leave a fragment with m/z 30. Adding a rule describing

this mechanism to the rule set would yield the missing peak in the predicted spectrum.

The rule is left out for illustration purposes. We stress that this way of improving the

model is a feature of the mechanistic approach. In contrast, the fragmentation graph
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computed by CFM-ID (depicted in App. B) also has a fragment missing compared to the

reference spectrum in Fig. 3, namely for the peak at m/z 18 (water), but the method of

CFM-ID does not facilitate an easy way to develop the fragmentation graph based on this

observation.

With a physical modeling approach of the fragmentation process, graph transforma-

tion rules may also be automatically inferred. We suggest a strategy to infer a missing

fragmentation reaction (or a missing vertex in the fragmentation network) which com-

bines Böcker’s [11] fragmentation tree approach with isomer generation [31] and reaction

perception [32]. The fragmentation tree approach [11] makes it possible at the level of

molecular formulas to determine which neutral fragment has been split off from which

vertex. While the structure of the parental compound is known, the structure of the

neutral fragment remains undetermined. However, structures may be generated from the

inferred molecular formulas for the neutral and the charged fragments using a structural

isomer generator such as MOLGEN 5.0 [31]. Finally, reaction perception is performed

for all possible one-to-two combinations of the parental structure and the inferred frag-

ment structures to perceive a possible reaction mechanism for the missing fragmentation

reaction. It is important to note that complicated rearrangement mechanisms can also be

found by this strategy. It should therefore be possible to extract specific fragmentation

mechanisms automatically from mass spectral data.

Other advantages of using graph transformation rules for computer-aided mass spec-

trometry are the various ways one can customize the rule set used. For instance, the rule

set may be altered to fit specific molecular classes and to specific experimental setups

(Electron Impact Ionization, Electrospray Ionization, positive ions, negative ions). In

contrast to methods for generation of fragmentation graphs proposed earlier, the use of

graph transformation also makes is possible to trace specific atoms through the fragment-

ations, important for instance in analysis techniques for biological networks based on

isotope-labeling.

5 Better Modeling of Fragmentation Dynamics
In line with the arguments presented by Gasteiger et al. in [16] we are convinced that only

a full mechanistic modeling of the various processes which organic molecules undergo in

the mass spectrometer will result in major advances in the computational prediction of
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mass spectra from the molecular structure. To this end, we propose to use a chemical

model also for the calculation of fragmentation probabilities in phase 2, instead of relying

on a “black box” machine learning approach. In the following we outline how this can be

achieved.

The fate of a molecular ion in the mass spectrometer is governed by two broad classes of

reactions: (i) fragmentation reactions, where the ion splits up via bond breaking processes

into two or more smaller parts, and (ii) rearrangement reactions, where the ion’s skeleton is

reconfigured to a structural isomer of the original ion. Both reaction classes are instances

of unimolecular reactions, which means that the rate of a particular reaction depends only

linearly on the reactant. The dynamics of such reaction systems is usually modeled by

systems of linear ordinary differential equations of the following form

d

dt
p(t) = R · p(t) ,

where R is an n× n rate matrix. Each entry rij represents the transition rate from state

i to state j, i.e., the rate with which compound i fragments into compound j. The vector

p(t) holds the population density in the n states of the system for time t. The formal

solution of the above matrix equation

p(t) = exp{t ·R} · p(0)

requires an efficient computation of the matrix exponential [33]. Assuming that the

topology of the fragmentation graph and the reaction rate structure on top of it correctly

represents the real situation in the mass spectrometer, then the recorded mass spectrum

is p(τ), where τ corresponds to the time available for the fragmentation reaction. In

practise, the best we can hope for is that p(τ) approximates the measured spectrum. In

order to estimate the τ , we can conveniently use the decay of the M+-peak of the original

molecular ion. That is, we ask for which value of τ the simulated value pM+(τ) agrees

with the relative intensity of the observed M+-peak.

The rate rij for the transition from state j to state i can be written according to the

quasi-equilibrium theory (QET) [34–36] as

rij = A · exp{∆G‡/Ea}

The Arrhenius-type reaction rate rij depends on the quotient between the free energy ∆G‡

of the transition state and the ionization energy Ea (A is an entropic factor which is usually
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set to 1). The abundances of fragments in the spectrum is a function of the ionization

energy. This relation between fragment abundance and ionization energy can be measured

experimentally [37] and is referred to as a breakdown graph in the mass spectrometry
literature. Breakdown graphs thus can be simulated directly with this approach.

The break tendencies of the same bond type in different molecular contexts will for

sure differ due to the impact of the specifics of the bond’s local surrounding (e.g., steric

hindrance, ring context, etc.). Instead of learning the parameters ∆G‡ directly from

measured mass spectra of known structures, the idea of local descriptors can be used

to express the ∆G‡ values in terms of sets of empirically derived additive contributions

that depend explicitly on the bonds’ local neighborhoods. We note that the matching
mechanism of graph transformation rules (the graph L, cf. Fig. 1) is an ideal vehicle for

characterizing such local neighborhoods. For example, the contributions to a single bond

between two carbon atoms may be written in the following form:

∆G‡
C C = c1 · g (C C) + c2 · g

(
C C

)
+ c3 · g

(
C C

)
+ c4 · g

(
C C

)
+ . . .

Group-contribution methods [38], which express the physicochemical property of in-

terest as a function of structure-dependent parameters, are widely used in Chemistry
because experimentally determined values only are available for a small subset of the

known compounds. Group-contribution methods make it possible to estimate values for

properties such as melting and boiling points, or standard Gibbs energies, without the

need for massive computational resources. Thus, they can be applied to process large

numbers of molecules. Parameters are usually determined by regression methods from

an empirical data set. To achieve higher accuracy, the data set used for learning can be
restricted to a particular class of molecules such as fatty acids. Recently this approach

has been applied to estimate standard Gibbs energies of biochemical reactions [39] and

to evaluate the thermodynamic and kinetic quality of different pathway chemistries that

produce the same molecules [40].

Missing lines in a predicted mass spectrum can have two causes: (i) the fragment-

ation chemistry does not generate a corresponding charged fragment at all, or (ii) the
rate for the reaction channel producing the unobserved charged fragments is to small.

While the first cause is a missing reaction mechanism, i.e., a missing graph transforma-

tion rule, as described in Sec. 4, the latter is due to incorrect parameters inferred in the

machine learning step. The underlying assumption is that if the fragmentation network is
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mechanistically correct, it must be possible to infer correct reaction rates for the different

reaction channels from mass spectral data. For a single mass spectrum, the inference of

reaction rates is usually under-specified. However, for a series of mass spectra, where

the same fragmentation reactions occur in different molecular contexts, there are enough

constraints from the peak intensities to make the inference of reaction rates a well-defined

problem. Furthermore, the field of machine learning has recently experienced a tremend-

ous advance with the development of deep learning approaches [41], which has yet to be

applied in the context of mass spectrometry.

In addition to providing a chemical description of the various intensities in a pre-

dicted spectrum, the model naturally includes and clearly separates spectrometer-specific

parameters such as Ea and A from parameters referring to molecular structures. This

makes it possible to train a model on one spectrometer and transfer it to another. For

instance, the explicit representation of the ionization energy Ea renders training for mul-

tiple energy levels unnecessary. A model may be trained for one value for Ea and used to

predict spectra for a different energy level, or used to learn the energy level for a different

spectrometer.

6 Conclusion
We have described a road map for improving the current computational methods for

prediction of mass spectra to a chemically more realistic model of the fragmentation

process. The overall model has three phases: (1) generation of the fragmentation graph,

(2) estimation of probabilities of the fragmentations, and (3) construction of a spectrum.

For phase one, graph transformation strikes a useful balance between chemical ex-

pressiveness and computational efficiency. We have demonstrated how to model indi-

vidual ionization- and fragmentation reactions as graph transformation rules, which may

be used both to specify the possible core fragmentation reactions, and to characterize

the reaction sites when learning values for the rates. We have also described how to

use the strategy framework for systematically building fragmentation graphs, ensuring

computational efficiency by limiting the combinatorial explosion of the chemical space of

candidate fragments. The mechanistically more explicit model of the underlying chemical

reality not only holds more explanatory power but also promises substantial practical

improvements for the prediction of mass spectra. Missing lines in predicted spectra, for
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instance, are directly indicative of an incomplete model, which the mechanistic nature of

our approach makes much easier to identify and correct, by adding rules to the rule set or

adjusting the strategy. The rule set may also be altered to fit specific machines, facilitate

both Electron Impact Ionization and Electrospray Ionization, and positive and negative

charges. In contrast to the previously proposed methods for generation of fragmentation

graphs, the use of graph transformation also makes is possible to trace specific atoms

through the fragmentations.

For phase two, we proposed using a chemical model inspired by the physical processes

of fragmentation for learning rates, because we believe that black box machine learn-

ing approaches will not be key in major advances of computational prediction of mass

spectra. The model is based on QET and parametrized using an empirical increment

system on graph descriptors, and in contrast to previous models it has a clear separation

of spectrometer-dependent and -independent parameters. This makes it possible to use

the same mechanistic model in multiple labs—trained to fit each specific spectrometer.

It also renders training for multiple energy levels unnecessary. Furthermore, the natural

inclusion of the ionization energy makes it possible to simulate breakdown graphs.

The work presented here is one step towards improving the prediction of mass spec-

tra. Our emphasis is not only to compute accurate spectra, but also to infer meaningful

descriptions of the chemical processes taking place in a mass spectrometer.
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A Rules Used for Fig. 2

A.1 r0, N-ionization

N

L

N

K

N+

R

A.2 r1, O-ionization

O

L

O

K

O+

R

A.3 r4, σ-ionization

CC

L

CC

K

CC+

R

A.4 r10, π-ionization

NC

L

NC

K

N+C

R

A.5 r14, α-cleavage, CO, Single

O+

C

C

L

O+

C

C

K

O+

C

C

R

A.6 r28, α-cleavage, CO, Double

O+

C

C

L

O+

C

C

K

O+

C

C

R

A.7 r34, α-cleavage, CH

H

C

C

L

H

C

C

K

H

C

C

R
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A.8 r35, α-cleavage, OH

H

O

C

L

H

O

C

K

H

O

C

R

A.9 r38, Inductive Cleavage, CC, 1

CC+

L

CC

K

C+C

R

A.10 r40, Inductive Cleavage, CO, 1

CO+

L

CO

K

C+O

R

A.11 r43, Inductive Cleavage, CC, 2

CC+

L

CC+

K

CC+

R

A.12 r45, Inductive Cleavage, CO, 2

CO+

L

CO+

K

CO+

R

A.13 r52, Inductive Cleavage, Heterolytic

C+C

L

CC

K

CC+

R

A.14 r59, Inductive Cleavage, Homolytic

O+C

L

O+C

K

O+C

R
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A.15 r71, H2-elimination

O+

C

H

H

L

O+

C

H

H
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O+

C

H

H

R

A.16 r75, CO-elimination

C

C

O

H

L

C

C

O

H

K

C

C

O

H

R

A.17 r77, H2O-elimination

OH+

C

H

L

OH

C

H

K

OH

C+

H

R

A.18 r88, 1,2 H-shift

O+

C

H

L

O+

C

H

K

O+

C

H

R

A.19 r96, H-rearrangement

N+

C C

H

L

N+

C C

H

K

N+

C C

H

R
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B Fragmentation Graph by CFM-ID

N+

OH

id: 0, m: 57.0215

N+

O
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CH2 OH+

id: 6, m: 31.0184

CH2 O+

id: 3, m: 30.0106

C+ OH

id: 2, m: 41.0027

C+ O

id: 1, m: 39.9949

N+H

O

id: 14, m: 56.0136

CH2 NH+

id: 10, m: 29.0265

C+H2 N

id: 11, m: 40.0187

N O+

id: 13, m: 53.9980

C O+

id: 4, m: 27.9949

CH O+

id: 5, m: 29.0027

CH N+

id: 9, m: 27.0109

CH NH+

id: 8, m: 28.0187

C+ N

id: 7, m: 26.0031

This fragmentation graph for glycolonitrile was produced by the module fraggraph-gen
of CFM-ID [28] with the arguments SMILES: N#CCO, depth 4, ionization mode: positive
EI, and Graph: fullgraph. It illustrates the propagation of errors from the fragmentation
process to the predicted spectrum: Of the two most abundant peaks (m/z 28 and m/z 18)
in the measured spectrum of glycolonitrile, Figure 3, only m/z 28 (id 8) is present in
the fragmentation graph produced by fraggraph-gen. If the mass spectrum is now
simulated based on this fragmentation graph using the module cfm-predict in CFM-ID,
only 6 fragments survive and accumulate intensity. The three most abundant peaks in the
predicted spectrum are located at m/z 57, 40, and 31 with relative intensities 0.59, 0.13,
and 0.09. The fragment m/z 28 does not accumulate any intensity. Hence the predicted
spectrum completely lacks the two peaks that are most abundant in the experiment.

C Example Strategies for Fragmentation Graphs

Continuing from Sec. 4, we give some more examples of strategies for creation of frag-
mentation graphs.

The following is an example strategy for the case where molecules including a ring
structure have one set of valid fragmentation rules and molecules without any rings have
another. This is modeled by a parallel strategy in each iteration:
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parallel[Rionization]→ filter[Pcharge]→ repeat[4,

parallel[

filter[Pring]→ parallel[Rfragmentation,ring]→ filter[Pcharge],

filter[Ptree]→ parallel[Rfragmentation,tree]→ filter[Pcharge],

]

]

where Pring and Ptree are predicates that decide if a graph has respectively at least one
ring and no rings.

A variation of this scenario is when all compounds must be fragmented with one
set of rules, but compounds with ring structures are subjected to an additional set of
fragmentation rules:

parallel[Rionization]→ filter[Pcharge]→ repeat[4,

parallel[

filter[Pring]→ parallel[Rfragmentation,ring]→ filter[Pcharge],

parallel[Rfragmentation,tree]→ filter[Pcharge],

]

]

In the final example we introduce a general hooking mechanism for constraining frag-
mentation. It may, for instance, be used when we have additional knowledge from external
sources or programs that some types of fragmentation do not occur in practice, but in a
way that cannot be translated into extensions of the graph transformation rules.

derivationPredicate[PcheckIonization,

parallel[Rionization]

]→ filter[Pcharge]

→ derivationPredicate[PcheckFragmentation,

repeat[4,

parallel[

filter[Pring]→ parallel[Rfragmentation,ring]→ filter[Pcharge],

parallel[Rfragmentation,tree]→ filter[Pcharge],

]

]

]
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Using MØD [23, 25] this can be written in the following way:
targetCompounds = [ smiles ("N#CCO")]

def checkIonization (d):
# do checks
# if checks fail: return False
# else
return True

def checkFragmentation (d):
# do checks
# if checks fail: return False
# else
return True

def hasCharge (g, gs , first ):
return sum(v. charge for v in g. vertices ) != 0

def hasRing (g, gs , first ):
return g. numEdges >= g. numVertices

strat = rightPredicate [ checkIonization ](
ionizationRules
>> filterSubset ( hasCharge )
>> rightPredicate [ checkFragmentation ](

repeat [4]( [
filterSubset ( hasRing ) >> ringFragmentationRules >> filterSubset ( hasCharge ),
treeFragmentationRules >> filterSubset ( hasCharge )

] )
) )
dg = dgRuleComp ( inputGraphs , addSubset ( targetCompounds ) >> strat )
dg.calc ()
dg. print ()
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