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Abstract 

Substructural analysis provides a simple and effective way of ranking the 2D fingerprints representing 
the molecules in a database upon the basis of weights that denote a substructural fragment’s contribution 
to the overall activity or inactivity of a molecule.  A substructural analysis method has been described 
recently that is based on the use of a genetic algorithm (GA), with the resulting sets of weights proving 
to be more effective for ligand-based virtual screening than existing approaches.  However, the 
inherently non-deterministic nature of a GA means that different runs are likely to result in different 
sets of weights and hence in variations in the effectiveness of screening.  This paper describes the use 
of data fusion to combine the rankings generated in multiple GA runs, and demonstrates that the 
resulting fused rankings are markedly superior to GA runs on average, and in some cases can even 
exceed the performance of the very best individual GA run. 

 

Introduction 

Virtual screening methods play an important role in the discovery of novel bioactive molecules, 

such as pharmaceuticals or agrochemicals, and involve the use of computational techniques to 

score the molecules in a database in descending order of probability of exhibiting the desired 

activity. High-ranked molecules can then undergo high-throughput or in vitro biological testing 

to ascertain whether they are, in fact, active.  Here, we consider ligand-based virtual screening 

(LBVS) methods, where the only information available for the discovery process are sets of 
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molecules that have been tested previously and that are hence known to be either active or 

inactive.  Specifically, we focus on substructural analysis, which was pioneered by Cramer et 

al. in the early 1970s [1, 2] and subsequently developed by Hodes et al. [3, 4]: it was probably 

the first LBVS method to be used on a large scale, forming an important component of a 

National Institutes of Health programme to develop novel anticancer agents [5, 6].   

 A molecule in a chemical database is often described by a fingerprint, a bit-string in 

which bits are set to on (or off) depending upon whether a substructural feature is present (or 

absent) in that molecule.  In substructural analysis, a weight is associated with each bit that is 

computed on the basis of how frequently the corresponding substructural feature occurs, or 

does not occur, in sets of molecules that have been tested previously for activity.  The weight 

hence describes the probability that a molecule with that feature will prove to be active, and a 

score is computed for a molecule by combining the weights for all of its constituent features.  

The resulting scores are used to rank a database in descending order, with those at the top of 

the ranking then being considered for biological screening since they are assumed to have the 

greatest a priori probabilities of activity.  Substructural analysis hence embodies the assu-

mption that a given substructure can influence the activity of a molecule, regardless of the 

environment in which the feature occurs: this is clearly an extremely crude assumption but the 

approach has been found to be of value for screening in drug-discovery programmes [7, 8].   

 A variety of weighting schemes have been described for use in substructural analysis, 

as reviewed by Ormerod et al. [9].  In their comparison, the most generally useful was found 

to be one that was originally developed by Robertson and Spark Jones [10] for use in text 

searching (where the aim is to rank a database of documents in order of decreasing probability 

of relevance to a query, as against decreasing probability of activity in a biological screen in 

the present context) and that is analogous to LBVS systems based on naïve Bayesian classifier 

weights such as that used in the Pipeline Pilot software [11-13].  Rather than the detailed 

probabilistic models that underlie these approaches to substructural analysis, Holliday et al. 

have recently described an approach to weighting that is based on the use of a genetic algorithm 

(or GA) [14].  The approach proved to be highly effective in operation but it was noted that the 

inherently non-deterministic nature of GAs meant that different runs could result in different 

database rankings.  This brief communication seeks to address this limitation of the previous 

work.  The GA is described in the next section, together with the use of data fusion (vide infra) 

to combine multiple runs of the algorithm.  We then report detailed experiments using three 
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large datasets for which bioactivity data are available; and compare the effectiveness of the 

basic GA with the results obtained using a range of different data fusion rules.    
 

Combining GA runs using data fusion 

A GA provides a non-deterministic way of tackling computational problems characterised by 

solution spaces that are too large for exploration using conventional, deterministic algorithms.  

The approach has been very extensively employed, not least in applications in 

chemoinformatics and drug discovery [15].  In the present context, the space is that of all the 

possible weights that could be assigned to each of the bits comprising the 2D fingerprint used 

to describe each of the molecules in a database.  The chromosome in the GA is a vector in 

which the i-th element contains the weight associated with the substructural feature denoted by 

the i-th bit in the fingerprint.  In the experiments reported here, the fingerprint encoded the 166 

MDL structural key definitions in the widely used Pipeline Pilot software, so that the 

chromosome contained 166 real values, each corresponding to one of the bits in the fingerprint.  

The score for a particular molecule was then the sum of the weights for those features that it 

contained (as denoted by the bits that were set to on), and a database was ranked in order of 

decreasing sums of scores to identify those molecules with the greatest probability of activity.  

A training-set that contains molecules of known activity and inactivity is used to derive the 

final sets of weights, with the fitness of an individual chromosome, c, being assessed by 

identifying the number of active molecules at the top of the ranked training-set when it is ranked 

using the set of weights encoded in c.  Specifically, the fitness function was the enrichment 

factor based on the top-1% of the ranked training-set (vide infra): by using conventional 

crossover and mutation operators, the fitness function hence evolves chromosomes (i.e., sets 

of weights) that are able to maximise the enrichment factor, and thus the effectiveness of LBVS 

when those weights are subsequently applied to test-set molecules for which activity data are 

unavailable.    

 The design and implementation of the GA are described in detail by Holliday et al., 

who found that it provided consistently better enrichments in simulated LBVS experiments 

than did the Robertson-Spark Jones and Pipeline Pilot weights mentioned previously [14].  That 

said, the non-deterministic nature of the GA means that different runs may converge on 

different solutions: this can be problematic if these solutions are markedly different in character 

since there will be little or no basis for deciding which of the available solutions should be 

accepted as the final output from a series of runs.  In the present context, this means that 
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different runs will result in different sets of weights and, accordingly, different rankings and 

different levels of enrichment when these weights are applied to test-set molecules.  Holliday 

et al. noted that this was an inherent limitation of the GA approach and reported experiments 

demonstrating that such variations did indeed occur in practice.  For example, in one series of 

ten runs using the cyclooxygenase inhibitors in the MDDR database, the mean correlation 

coefficient between the sets of weights, when averaged over all 45 distinct pairs of runs, was 

only 0.79 [14].  That said, it is important to note that the principal output from a substructural 

analysis is not the set of weights themselves (although these could provide valuable information 

for, e.g., suggesting a possible topological pharmacophore); instead, it is the top-ranked test-

set molecules that are identified using the weights, since it is these compounds that are being 

highlighted for further investigation. 

 In the absence of any obvious means of identifying the best from among a set of 

rankings, an alternative is to consider ways of combining them and we here draw upon the 

concept of data fusion, which is a method for combining the information gained from different 

sensors to achieve an effective or improved decision when compared to that achievable when 

only a single sensor is available [16].  Data fusion has been used in many different problem 

domains [17], including chemoinformatics, where it has been shown to enhance the 

effectiveness of similarity searching [18] and used to combine multiple runs of ligand-protein 

docking programs and multiple clusterings of a given dataset [19, 20]. When data fusion is 

used for similarity searching, the sensors that are combined are the rankings of the molecules 

in a database that result when different similarity measures are used to conduct a similarity 

search, e.g., a search might be conducted using different fingerprints or different similarity 

coefficients.  The individual rankings are then combined using a fusion rule (vide infra) to 

obtain a single, combined ranking of the molecules in the database that represents the final 

output of the search.  The obvious advantage of data fusion is that there is no need to choose 

from amongst different rankings of the same set of compounds; but there are two further 

advantages that have become apparent as the approach has become widely adopted for 

similarity searching [18].  First, use of fusion offers a much more consistent level of 

performance (as evaluated using a measure such as the enrichment factor) than when individual 

rankings are used; second, the fused level of performance is normally superior to the average 

individual similarity search, and may occasionally be superior to even the best individual 

search.  This is because, as noted by Sheridan and Kearsley, there is no single similarity 

measure that can be expected to give the best possible results in all possible circumstances [21].   
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 Similarity searching generates a ranking of the molecules in a database that is entirely 

comparable to that resulting from a substructural analysis study, and it is hence possible to 

consider applying the fusion rules used in similarity searching to the rankings resulting from 

multiple runs of the GA described above.  Hence, rather than generating, e.g., ten different sets 

of GA-based weights and the ten consequent rankings of the molecules comprising a test-set, 

and then having to choose one of these as a basis for deciding which molecules should go 

forward for biological screening, the ten rankings are here fused to give just a single ranking 

to provide the input to the screening process.  Our implementation of this combined GA/fusion 

procedure is described in the next section. 

 

Experimental details and results 

Our approach has been evaluated in simulated LBVS experiments using three common 

databases that contain both structural and bioactivity information: the MDL Drug Data Report 

database (MDDR); the World Of Molecular Bioactivity database (WOMBAT); and the 

European Bioinformatics Institute’s ChEMBL database.  The MDDR and WOMBAT datasets 

used here are described in detail by Gardiner et al. [22]: the MDDR dataset contains eleven 

activity classes and 102,514 molecules, and the WOMBAT dataset contains 14 activity classes 

and 138,127 molecules.  A total of 15 activity classes were obtained from the much larger 

ChEMBL database by choosing activities that matched one of the classes in the MDDR and 

WOMBAT datasets; and then each of the 1,352,681 molecules in version 18 of the database 

was recorded as being active in a specific class if there was a measured pIC50 for that activity 

of ≥ 5.0 and if there was an associated confidence score of 9; all other molecules were then 

assumed to be inactive for that class.  The molecules in the three datasets were characterised 

using MDL fingerprints, which encode 166 important substructural fragments and which were 

generated using Pipeline Pilot software.  The training-set for a particular activity class was 

generated by randomly selecting 10% of the actives and 10% of the inactives, with the 

remaining 90% of the database providing the test-set for which virtual screening was carried 

out.  The GA was run on the training-set, weights determined for each of the 166 fragments 

comprising a fingerprint, and then these weights used to rank the molecules in the test-set.  For 

example, there are 982 molecules noted as being renin inhibitors in the ChEMBL dataset, so 

the training-set contained 98 of these active molecules and 135,170 other, inactive molecules, 

with the resulting weights being used to score the remaining 1,217,413 test-set molecules.   
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 In their original paper, Holliday et al. reported parameterization experiments that were 

undertaken to optimize the effectiveness of the GA, and suggested the following settings: 

roulette-wheel selection; one-point crossover with a crossover rate pf 0.95; real-value mutation 

with a mutation rate of 0.01; a population of 200 chromosomes; and 500 iterations of the GA 

[14].  These parameters were used to obtain all of the rankings discussed here, with the 

effectiveness of a ranking of the test-set molecules being measured using the enrichment factor 

as follows.  Assume that a database contains A active molecules, so that selecting 1% of the 

molecules at random would yield 0.01A actives, and that the top-1% of the ranking resulting 

from some virtual screening method (such as the GA considered here) yields a actives.  Then 

the enrichment factor is a/0.01A, with a value greater than unity meaning that the virtual 

screening method has resulted in an increase in the number of actives when compared with the 

number obtained by random selection.   

 The GA was run ten times on each activity class in each dataset, and the ten resulting 

rankings in each case were then combined into a single ranking using one of the fusion rules 

listed in Table 1, where Si (mj) denotes the score for the  j-th molecule in the i-th of the n GA 

rankings.  To illustrate the operation of a fusion rule, the Sum rule simply aggregates all of the 

n scores, and then ranks the test-set molecules in decreasing order of these sums of scores; in 

like vein, the Med, Max and Min rules rank the test-set molecules on the basis of the median, 

maximum or minimum scores.  These four rules can also be applied if the scores, Si (mj), are 

converted to the corresponding ranks, Ri (mj).  Thus, if we take the Sum formulation there are 

two fusion rules: SumS and SumR for fusing the scores and the ranks, respectively; and 

similarly so for Med, Max and Min.  However, the final rule in Table 1, the RKP (from 

reciprocal rank) rule, which was first developed to rank the outputs of text search engines [23], 

is applicable only to the ranks.  Assume that a threshold – here the top 1% - is applied to each 

of the ten rankings and that a molecule mj appears in p of these: then the molecule is scored by 

adding the reciprocal of its rank positions in those p rankings.  There was thus a total of nine 

different fusion rules that could be used to combine the sets of ten GA rankings for each activity 

class.  It is worth noting in passing that the Sum (when applied to ranks) and RKP rules involve 

mathematical operations on ordinal data: this is mathematically inappropriate but has been 

found to be effective in operation in both chemical and textual applications [18, 23] and these 

rules have hence been included in the present study. 
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Table 1. Fusion rules 

Fusion Rule Formula 

Sum ���(	��)
	


��	
 

Max max��	����,…	������, …	�	
����� 

Med med��	����,…	������, …	�	
����� 

Min min ��	����, …	������,…	�	
����	� 

RKP � 1
������

�

��	
 

 

 The results that were obtained for the 15 ChEMBL activity classes are shown in Table 

2.  For each of the 15 activity classes, we list first the mean enrichment factor when averaged 

over the ten GA runs that were carried out for this activity class, with each of the nine 

subsequent columns listing the enrichment factor obtained when the fusion rule listed at the 

top of the column was used to fuse the ten GA rankings.  The comparable sets of results for the 

much smaller MDDR and WOMBAT datasets are shown in Tables 3 and 4, respectively. 
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Discussion and conclusions 

Two factors are immediately obvious from inspection of the results in Table 2.  First, the mean 

values for the ten GA runs are normally slightly less than the fused scores.  With nine fusion 

rules and 15 activity classes the mean GA run value can be compared with a fusion value 135 

times: of these comparisons, the enrichment factor for the fused run exceeded the mean-GA 

factor 99 times.  Second, while the differences between the various fusion rules are quite small 

(as illustrated for the MDDR activity classes in Figure 1) there are variations in performance 

between the rules, and it is hence reasonable to consider which is the most generally effective. 

 

   

Figure 1.  Variations in enrichment factor for the eleven activity classes in the MDDR dataset.  For 
each class (as denoted by the initial characters of the class name listed in the left-hand column 
of Table 3) the three columns denote first the mean enrichment factor for the GA, and then 
the largest and the smallest enrichment factors for that class over the complete set of fusion 
rules. 

  

The variations were analyzed using the Kendall Coefficient of Concordance, W, which 

provides a means of quantifying the degree of association between k different rankings of n 

different objects [24].  In the present context, k=15 and n=10 since each of the 15 activity 

classes enables us to rank the 9 fusion rules and the GA in decreasing order of enrichment 

factor.  The value of W lies between zero and unity, and its significance can be checked using 
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the χ2 test of statistical significance, since χ2 = k(n-1)W with n-1 degrees of freedom.  In the 

case of the ChEMBL results shown in Table 2, the computed value for W is 0.38, with an 

associated value for χ2of 51.30 that is significant (p≤0.01).  If a significant value is obtained 

then an overall ranking of the n objects is given by their mean ranks when averaged over the k 

rankings as described by Siegel and Castellan [24]. Allocating scores of 9 (for the highest 

enrichment factor for a particular activity class) down to 0 (for the lowest such factor) then the 

mean scores for the ten approaches are listed in the column headed ChEMBL in Table 5, this 

corresponding to the following ordering of fusion rules 

RKP > MaxR > SumS, MaxS > SumR > MinR > MedR > MinS > Mean GA > MedS, 

i.e., the RKP rule gave the best overall level of performance across the 15 activity class 

rankings. 

 Table 2 detailed the enrichment factors for the ChEMBL dataset, the largest of the three 

considered here.  Very similar pictures of behavior were observed with the MDDR and 

WOMBAT datasets as shown in Tables 3 and 4, with statistically significant levels of 

agreement being obtained for the comparison of the various fusion rules in both cases: the 

resulting mean ranks are included in the appropriate columns of Table 5.  The final column of 

this table gives the mean score for each of the ten types of ranking when taken across all three 

datasets, where it will be seen that the RKP rule gives the best overall results and that the mean 

GA results are inferior to those resulting from every one of the fusion rules. 

 

Table 5. Kendall W analysis using nine fusion rules and mean GA scores for the MDDR, WOMBAT 
and ChEMBL databases 

 

Fusion Database Mean 

Rule MDDR WOMBAT  ChEMBL  Score 

RKP 7.0 6.5 6.7 6.7 

MaxR 6.4 6.3 6.6 6.4 

MaxS 6.6 5.3 5.7 5.9 

SumS 5.7 5.3 5.7 5.6 

SumR 5.6 5.0 5.6 5.4 

MinR 4.0 3.8 4.7 4.2 

MedR 3.0 3.4 3.2 3.2 

MedS 3.5 3.5 1.9 3.0 

MinS 2.0 3.9 2.5 2.8 

Mean GA 1.3 2.1 2.4 1.9 
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The finding that RKP is the most effective fusion rule here is in line with a previous 

study that found it was also the best for fusing the outputs of multiple similarity searches [25].  

In fact, this fusion rule gives results that are sometimes comparable to those obtained with the 

very best individual GA run (rather than the mean-GA results considered thus far). Of the 15 

ChEMBL activity classes, the best GA enrichment factor exceeded the RKP factor for seven 

classes while the converse applied for another seven classes (and there was one class - the AT1 

antagonists - where the factors were the same).  The results are less striking for the other two 

datasets: for MDDR, the best GA factor exceeded the RKP factor for seven classes while the 

converse applied for four classes; and for WOMBAT, the corresponding figures were nine and 

three (with two classes where the factors were the same) 

 In our previous paper [14], we demonstrated that a GA was able to produce dataset 

rankings that were noticeably superior in terms of enrichment to those resulting from 

established weighting schemes for substructural analysis.  However, it was also demonstrated 

that the GA’s non-deterministic nature meant that there was some degree of variation in the 

weights generated in multiple runs and, consequently, in the effectiveness of screening that 

could be expected if the approach was to be used in practice.  In this short paper, we have 

suggested the use of data fusion as a way of combining the rankings resulting from multiple 

runs of the GA.  The resulting, fused rankings are consistently better than the average 

effectiveness of screening (as measured by the enrichment factor) and in some cases are 

comparable with the maximum GA effectiveness.  The simplicity and the effectiveness of this 

joint procedure hence suggest itself as a useful addition to existing methods for LBVS.  

 That said, there are two inherent limitations to the use of data fusion.  The first is the 

need to specify the nature of the fusion rule that is used to combine the various rankings of the 

molecules comprising a database.  The second is the identification of suitable weights and their 

assignment to each ranking as a means of specifying the relative importance or effectiveness 

of each individual measure.  It is, however, common to assign each measure the same weight, 

as was the case in the work reported here.  This uniform weighting approach can be enhanced 

by the use of machine learning techniques but these require extensive training data that is 

unlikely to be available during the early stages of a drug discovery programme when LBVS is 

most valuable [18].  An alternative approach that does not suffer from these limitations involves 

the use of partial ordering methods, as exemplified by the Hasse diagram.  This provides a 

simple way of ordering objects where multiple criteria can be used without the need to specify 

a fusion rule or to assign weights to the rankings that are being combined, and has already 

found some application in chemoinformatics [26-28].  There is, however, the problem that they 
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are only suitable for use where small numbers of objects are involved, whereas applications of 

the sort considered here involve databases containing hundreds of thousands or millions of 

molecules.  The development of efficient algorithms for the generation of Hasse diagrams 

could hence enhance still further the attractiveness of the GA approach to LBVS.   
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