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Abstract

We provide an approach for identifying molecular codes in large reaction net-

works. The method exploits particular algebraic properties of closed sets of species

forming an algebraic lattice. In a first step the network is reduced by unconnected

subnetwork removal and pair merging both preserving molecular code properties.

Then connected and closed sub-networks are sampled, each being subsequently an-

alyzed for molecular codes separately by a deterministic algorithm improved by

memoization. Thus a parallel computing environment can be easily exploited. We

apply our method to a large-scale metabolic network model of Helicobacter pylori

encompassing 485 species and 554 reactions. 421 unique molecular codes have been

found. The vast majority of these codes contain at least one ubiquitous species

like protons or water. Filtering for molecular codes without these species in key

positions like signs, meaning, or intermediate species, reduces the number of iden-

tified codes to 22 only. Whether these codes are utilized by the cell in processing

“meaningful” information is yet unknown. All presented data and source code of

the new algorithms is available for download.1

1Download data, source code and supplementary material at:
https://github.com/biosystemsanalysis/match2018
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1 Introduction

The question of how life has originated from matter is of high interest [1]. This includes, in

particular, the question how communication and the processing of semantic information

including its encoding [2] has emerged in a chemical prebiotic world [3] and subsequently

evolved [4, 2, 5].

In this context, a formal method to asses the capacity of a chemical reaction network

to process “meaningful” information has been recently suggested [6] and applied [7]. The

basic idea is to measure how easy it is to implement with this network a molecular code.

This code is a contingent (arbitrary) mapping between species, that is, a mapping that

cannot be inferred from knowing the species and the network alone. Examples for

contingent mappings are the genetic code [8], the histone codes [9], and the relation of

extracellular signaling molecules to second messengers within the cell [10]. In the genetic

code DNA triplets are mapped to amino acids [11]. Contingency refers to the fact that this

relation is not a physical consequence of the triplets and amino acids alone. The relation is

established by a contextual system, the translation machinery, in an “arbitrary” way, that

is, the mapping can be changed by changing the contextual system [12]. Given a reaction

network, we can count the number of contingent mappings among molecular species the

network can implement, which can be taken as a measure of its “semantic capacity” [6].

A preliminary computational analysis of various chemical systems revealed a quite

large spectrum of different semantic capacities [6]. Basically no semantic capacity was

found in a model of the atmosphere photochemistry of Mars (cf. Ref. [13]) and four

models of combustion chemistries, whereas biochemical systems (like translation [8, 6],

gene regulation [6], or molecular self-assembly [7, 14]) posses very high semantic capacities.

From this, the hypothesis has been derived that life over the course of evolution is gaining

access to (chemical) systems with increasing semantic capacity, that is, with an increasing

ability to implement contingent mappings.

The algorithm used so far guarantees finding all molecular codes for a given reaction

network. However, due to its high time complexity, only a limited number of networks

can be analyzed. In particular, larger networks like many large-scale metabolic networks

(> 102 species and reactions) cannot be processed. Thus a method applicable to large

networks would be desirable.

In this work, we provide a novel heuristic approach applicable to large reaction net-
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works. The first step consists of network reduction preserving molecular code properties.

Then sub-networks are sampled, which are analyzed for molecular codes separately, and

the result is collected and integrated. Thus a parallel computing environment can be

easily exploited. To exemplify our method, we have applied it to a large-scale metabolic

network model of Helicobacter pylori. In combustion chemistries, no molecular codes have

been found. [6]. Hence, it would be interesting to check if this would be true also for

metabolic networks. Furthermore, it has been hypothesized that primitive life might

have used the metabolism for processing environmental signals as in chemotaxis [15]. A

direct non-coded mapping, as in the droplet systems [16, 17, 18], might have later been

extended to include coded (i.e. contingent) mappings as well.

2 Prerequisites

We restrict ourselves to binary sets of signs and meanings, thus binary mappings and

binary molecular codes; noting that a generalization towards larger sets and mappings is

straight forward.

2.1 Binary molecular code (BMC)

Reaction network A reaction network N = 〈M,R〉 is defined by a set of molecular

species M and a set of reactions R occurring among the molecular species M. For each

reaction ρ ∈ R, let LHS(ρ) and RHS(ρ) denote the set of reacting and produced species of

reaction ρ, respectively. Note that by using LHS and RHS we abstract from more detailed

stoichiometric coefficients and enzymatic control. We simply need to know which species

are required and which species are produced by a reaction ρ.

Given a set of species A ⊆ M, we define RA = {ρ ∈ R|LHS(ρ) ⊆ A} as the set of

reactions that can “fire” in A and we define dp(A) =
⋃
ρ∈RA

RHS(ρ) as the set of species

that can be directly produced by the reactions that can fire in A (cf. Ref. [19] for relation

to point set topology, where dp(A) it is denoted by cl(A)).

Closure A subset of molecular species C ⊆M is closed, iff dp(C) ⊆ C, that is, iff the

application of all possible reactions fromR on C does only produce species from C [20, 21].

For every set of species A ⊆ M there exists a smallest closed set GCL(A) containing A

[22, 23]. We say that GCL(A) is the closure of A. Intuitively, the closure of a set of
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species contains these species and all those species that can be reached by an arbitrary

long reaction path starting with species from A [20]. From an algorithmic perspective,

we can construct the closure iteratively by GCL(A) = A ∪ dp(A) ∪ dp(dp(A)) ∪ . . . , or

recursively by A0 := A, Ai+1 := Ai ∪ dp(Ai) with GCL(A) = A∞ = limi→∞Ai [21].

Molecular mapping Given a reaction network N = 〈M,R〉 and two sets of molecular

species S,M ⊆ M, we say that f : S → M is a molecular mapping with respect to N ,

iff there exist a set of species C ⊆ M (called context), such that for each pair s, s′ ∈ S

with s 6= s′: f(s) ∈ GCL(C ∪ {s}) and f(s′) /∈ GCL(C ∪ {s}). If there exists a molecular

mapping f with respect to N , we also say that N can implement the molecular mapping

f .

Note that in a reaction network there is usually more than one molecular context C

that implements a particular molecular mapping f . Intuitively, in order to “compute”

f(s) with the reaction network N , we put all molecules from the context C together with

s in a reaction vessel. Then we repeatedly apply all applicable reaction rules and add the

products to the reaction vessel until no novel molecular species can be added anymore.

Then we check which molecular species from M is present, which must be – according to

our definition – only one species from M and the result of f(s).

Contingent mapping and binary molecular code (BMC) Given a reaction net-

work N = 〈M,R〉 and two binary sets of molecular species S = {s1, s2} ⊆ M and

M = {m1,m2} ⊆ M. The mapping f : S → M with f(s1) = m1, f(s2) = m2 is called a

contingent mapping and binary molecular code (BMC), iff the mapping f and an alterna-

tive mapping g : S →M with g(s1) = m2 g(s2) = m1 can be implemented by the reaction

network N [6]. This implies that there exist (at least) two sets C,C ′ ⊆ M, such that

the following BMC condition holds:

f(s1) ∈ GCL({s1} ∪ C), and f(s2) /∈ GCL({s1} ∪ C), and

f(s2) ∈ GCL({s2} ∪ C), and f(s1) /∈ GCL({s2} ∪ C), and

f(s2) ∈ GCL({s1} ∪ C ′), and f(s1) /∈ GCL({s1} ∪ C ′), and

f(s1) ∈ GCL({s2} ∪ C ′), and f(s2) /∈ GCL({s2} ∪ C ′).

The definition catches the notion of contingency as mentioned above, i.e., the elements
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of the domain can be mapped to the elements of the codomain in a contingent way by

changing the molecular context (cf. [8, 10]). In a semiotic interpretation we can also

say domain and codomain contain the signs and meanings, respectively. The molecular

context thus becomes the “codemaker” [8], i.e. it is necessary to implement the code.

In general, the definition given above allows for codes of arbitrary size. In order to

keep our study tractable, we will focus on molecular codes that are binary, i.e. where

S as well as M contain exactly two molecular species [6], as in the example depicted by

Figure 1.

Note that for each BMC there is a second alternative code implementing the mapping

g with g(s1) = f(s2) and g(s2) = f(s1). 〈f, g〉 is called a code pair (BMCp). In following

we count the code pairs.

sign1                                     meaning1

sign2                                     meaning2

context1

context1

context2

Figure 1. Example of a reaction network (with six species and four reac-
tions) containing four binary molecular codes (BMCs) or two code
pairs (BMCps). The reactions are: R = {sign1 + context1 →
meaning1, sign1 + context2 → meaning2, sign2 + context1 →
meaning2, sign2 + context2 → meaning1}. The codes are: {sign1 7→
meaning1, sign2 7→ meaning2} with context C = {context1},
{sign2 7→ meaning1, sign1 7→ meaning2}with context C = {context2},
{context1 7→ meaning1, context2 7→ meaning2} with context C =
{sign1}, and {context2 7→ meaning1, context1 7→ meaning2} with con-
text C = {sign2}. Note that in general a context can contain many
molecular species and that a context cannot always be a sign like in the
example. Signs and meanings are always single molecular species.

3 Method and algorithms

We developed a set of algorithms making up a pipeline that searches heuristically for

molecular codes in large reaction networks. In an initial step that network is read (SBML

input file format) and preprocessed by applying two model reduction rules according to

Algorithm 1. In a second step, small connected subnetworks are sampled by Algorithm
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2. Subsequently, the subnetworks are filtered by Algorithm 3 to avoid duplicates. In Step

4, each subnetwork is analyzed independently (e.g. in parallel) by an improved exact

deterministic molecular code analysis (improved version of rea2bmc from [6]). Finally,

all found molecular codes are collected and duplicates removed. With the information

from Step 1, the codes lost due to network preprocessing could be reconstructed (straight

forward algorithm not implemented). The following describes the algorithms in more

detail.

3.1 Network preprocessing (SBML2rea)

The initial network processing step reads the input network (SBML format) and applies

two network reduction rules, ensuring that we do not loose information about the net-

work’s ability to implement molecular codes.

Firstly, small subnetworks that have less than six species and that are not connected to

the remaining network are removed. Obviously, we need at least two signs, two meanings,

and two contexts to implement a code, and all of those have to be represented by different

molecular species. Thus removing the unconnected small subnetwork does not change the

codes the network can implement.

Secondly, groups of species always occurring together on the left hand side or right

hand side of any reaction can be replaced by a new pseudo species representing all of

them. We do so in Algorithm 1 (pair merging) by successive pairwise merging until no

pairs can be merged anymore.

Reducing the network by pair merging can reduce the number of molecular codes, but

will not remove a code generating mechanism. That means that codes will always remain

in the resulting reduced network allowing to reconstruct the removed codes in a straight

forward way. This is expressed by the following lemmata:

Lemma 1 (pair merging 1) Given a pair of species x, y meeting the condition for pair

merging of Algorithm 1, let nx, ny be the number of codes where x, y is a sign, respectively,

let mx,my be the number of codes where x, y is a meaning, respectively, then nx = ny and

mx = my.

Proof: Given a code with context C in which x is a sign, due to the “pair condition”

(Algorithm 1, Line 11) the single molecular closure dp({x}) contains only x, because
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there is no y it can react with. Furthermore y must be contained in the context C,

otherwise x would not react with molecules from the context C (Algorithm 1, condition

of line 11). There is another (different) code with x and y being exchanged, that is, in

which y is a sign and the context C ′ = C/{y}∪{x}. Therefore, nx = ny. Analog argument

for mx = my.

Lemma 2 (pair merging 2) Reducing the network by merging the pair (x, y), the num-

ber of molecular codes is reduced by nx +mx = ny +my.

Proof: Due to the “pair condition” (Algorithm 1, Line 11), there are no codes in which x

and y appear at the same time as signs or meanings. Nor is it possible that x and y are

two different signs in the same code, since one of them must be in the context. Therefore,

each of the dual codes (when exchanging x by y) are different and thus we remove half of

the codes in which x or y act as a sign or meaning.

Since the other half is left and uses the same reaction mechanism to implement the

code, we do not loose information about the coding abilities of our network by pair

merging.

Algorithm 1 Network Preprocessing

Input: Reaction network (M,R) (SBML format)
Output: Reduced reaction network (internal .rea format)

Unconnected Subnetworks Removal
1: Remove all subnetworks (reactions and species) that have less than six species and

that are not connected to the remaining network.

Pair Merging
2: repeat
3: Create List of pairs (x, y) of species x ∈ M, y ∈ M occurring only together as

reactants or products, that is, for each reaction ρ ∈ R: if x ∈ LHS(ρ) (x ∈ RHS(ρ))
then y ∈ LHS(ρ) (y ∈ RHS(ρ)).

4: Remove trivial duplicate (y, x), if (x, y) is contained in the list.
5: for all Remaining pairs (x, y) of the list do
6: for all Reactions ρ do
7: Replace Species x and y in reaction ρ by a new species x and y.
8: end for
9: end for

10: until No pair has been found

Technically, we use the python library libSBML [24] for reading and generate an

internal data format (rea format).
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3.2 Subnetwork sampling (rea2reas)

Because the reduced network is usually still too large for a complete molecular code

analysis by a tool like rea2bmc, we create subnetworks such that a code in a subnetwork

is also a code in the full network. The subnetwork generation ensures that all species are

connected and that the subnetwork is a closed set of the original one. The basic idea of

Algorithm 2 (implemented by the tool rea2reas) is to start with a random species and

then to randomly follow reactions backward and forward from the species visited. This

should also lead to many reaction pathways within the set of species, which is beneficial

for obtaining a molecular code [6].

Algorithm 2 Subnetwork Sampling

Input: Reaction network: (M,R); Number of subnetworks to generate: n; target
maximal subnetwork size: s (in this study s = 16)
Output: Set of subnetworks

1: repeat n times
2: Choose a random species i := randomSpecies(M) (called “seed”)
3: Generate a set C with that species: C := {i}.
4: repeat
5: Choose randomly from the current set C a species i := randomSpecies(C).
6: Remember C: C ′ := C (“previous closure”)
7: Choose randomly a reaction ρ in which species i participates (i.e. i ∈ LHS(ρ)

or i ∈ RHS(ρ)) and add its reactants to the set, C := C ∪ LHS(ρ).
8: Generate the closure of the set: C := GCL(C)
9: if |C| > s and previous closure |C ′| ≥ 6 then

10: Save previous closure C ′ as a subnetwork.
11: else if |C| > s and previous closure |C ′| < 6 then
12: Choose(a) reaction ρ with respect to C ′ as in Step 7 that generates the

smallest closure greater s and save that closure as a subnetwork GCL(C ′ ∪ LHS(ρ)).
13: end if
14: until Subnetwork successfully generated
15: until

3.3 Subnetwork filtering (rea2reas)

The network sampling algorithm can produce network duplicates or a subnetwork con-

tained in another subnetwork. Therefore we apply a network filtering according to Algo-

rithm 3 (implemented as part of rea2reas), removing subnetworks that can only contain

possible BMCs that are already part of a different subnetwork. Further networks that

cannot contain a BMC according to the following Lemma 3 are removed. The result is a
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list of individual subnetworks (rea files) sorted by size.

Lemma 3 (BMC requirement) A reaction network able to implement a BMC must

contain at least four reactions each with at least two reactants and one product.

Proof: For the BMC condition, four different conditions must be distinguished, each

being a conjunction of the presence of at least two different species (sign and context). A

conjunction can only be implemented by a reaction with at least two molecular species.

.

Algorithm 3 Subnetwork Filtering

Input: Set of subnetworks (generated by Algorithm 2)
Output: Reduced set of subnetworks
Duplicates

1: One of two subnetworks that are identical will be removed.

Content by Species
2: A subnetwork that includes only species that are part of a bigger subnetwork is re-

moved.

Minimal Structure
3: A subnetwork that does not contain at least 4 reactions each with at least 2 reactants

and 1 product is removed.

3.4 Improved molecular code analysis (rea2bmc)

Each subnetwork is analyzed for molecular codes by an improved deterministic code anal-

ysis described below in more detail. This algorithm requires to generate all n closed sets

of the subnetwork, consisting of m species, and has a time complexity of O(n2m4). Thus,

if the number of closed sets exceeds a certain limit (here, 20 000), the computation is

stopped and the subnetwork discarded.

The molecular code analysis is improved by hashing and memorization techniques. In

particular, we pre-calculate the lattice of closed sets, the contains-relation of all closed

sets, the closure-union of a closed set with a single-molecule-closure (a closed set generated

by a single molecule), and whether there is a path from a species i to a species i′. Then

we check every combination of two signs, two meanings, and two contexts for the BMC

condition described above. Due to memorization, the computation of unions and contains-

relations during each of these checks is a fast index-set look up. Furthermore, only those
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signs and meanings are checked for which there is a path from each sign to each meaning,

which is again a quick look up due to memorization.

Note that, in the worst-case the time-complexity is exponential with respect to the

network size, because there can be an exponential amount of closed sets.

4 Results - application to a metabolic network model

of Helicobacter pylori 26695

We applied our algorithms to the expanded metabolic network of Helicobacter pylori

(iIT341 GSM/GPR 2 , strain 26695) [25] from the BiGG Models Database [26]. The

network contains 485 metabolites and 554 reactions.

4.1 Evaluation of original iIT341 network

We performed six identical analysis runs including network preprocessing (Algorithm

1), subnetwork sampling with n = 20 000 seeds and a threshold s = 16 (Algorithm 2)

and subnetwork filtering (Algorithm 3). The remaining subnetworks where subsequently

analyzed by the improved rea2bmc algorithm.

Table 1. BMC analysis of six identical evaluations of the iIT341 network, with a
seed of n = 20 000 and a threshold s of 16 for the subnetwork sampling
(Algorithm 2).

Subnetwork # 1 2 3 4 5 6 1-6

Total Number of Subnetworks 7981 8088 7966 8000 8070 7985 48090
Subnetworks without a BMC 6720 6820 6728 6613 6774 6675 40330
Runs canceled due to closure size 1152 1163 1154 1272 1212 1220 7173
Subnetworks with BMCs 109 105 84 115 84 90 587
Total Number of found BMCps 340 297 239 362 266 332 1836
Total Number of BMCps
After Duplication-removal

174 155 137 169 126 165 421

2GSM refers to genome-scale model, and GPR refers to gene-protein-reaction associations where the
letter i stands for an in silico strain, IT is the initial of the principal author of the reconstruction, and
341 is the number of genes included in the reconstruction.
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Figure 2. Number of unique BMCps versus the number of analyzed iIT341
metabolic subnetworks. Every combination of six subnetworks have been
analyzed, each generated with a seed of n = 20 000 and a threshold s of
16 for the subnetwork sampling (Algorithm 2).

In each run between 126 to 174 unique BMCps have been found (see Table 1). Joing

the results of all six runs and removing duplicates, 421 unique BMCps could be identified.

Figure 2 shows how the number of unique BMCps found increases and slowly converges

with each run, and that we can expect to find more unique BMCps when conducting more

runs.

A typical molecular code found can be seen in Figure 3. Observing this BMC in

greater detail one can see, that the code is implemented via important reactions of the

tyrosin and phenylalanine biosynthesis and tyrosin degradation. Infect, if the mapping

from tyrosin to 3-(4-Hydroxyphenyl)pyruvate is deficient it can cause tyrosinemia type II

in humans [27].

What is also apparent is that the mapping from prephenate and L-tyrosin to carbonic

acid is implemented by H2O and H+ respectively. Infect, the overwhelming amount of

BMCs contain ubiquitous species like water or protons as key components. Although this

does not invalidate the mapping from the sign to the meaning, it is questionable whether

this code can be used to transduct information. This can be seen in the shown example.

There, a given context will be sufficient to produce carbonic acid whether prephenate is

present or not, since water, as the intermediate, is ubiquitous.
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Figure 3. Representative example for a common BMC found in the unmodified
metabolic network iIT341. Prephenate and extracellular L-tyrosine are
the signs and 3-(4-hydroxyphenyl)pyruvate and carbonic acid are the
meaning. All species react in the cytosol except for species indexed with
(e) which are present in the extracellular space. All shown molecules
of all figures are protonated as represented in the KEGG Database
[28, 29, 30]. Abbreviations: Nicotinamide adenine dinucleotide (NAD+).
Parameter: s = 16.

4.2 Evaluation of iIT341 network with ubiquitous species as in-

flow

To skip molecular codes with ubiquitous species, we have added to the reaction network

a reaction with no reactants and the ubiquitous species H20, H+,CO2, H2CO3 and HCO−3

as its products. This spontaneous inflow ensures that these species are contained in any

closed set and thus can neither be a sign nor a meaning nor an intermediate reactant

necessary for implementing a code.

To reduce computational time, all species contained in the smallest closed set (i.e.,

the closure of the empty set) are removed from the reaction network. This deletion does

not change the molecular codes, because the smallest closed set is contained in any other

closed set. Note that a resulting code with context C is also a code of the unmodified

network, for example by using a context C ∪ { H20, H+,CO2, H2CO3 and HCO−3 }.

Again we analyze the “modified”-iIT341 six times like described previously. As
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expected a smaller amount of BMCps were found, namely 22 only (see Table 2 and

Figure 4 for how these are distributed over the six runs). Typical examples are shown by

Figures 5 and 6).

Table 2. BMC analysis of six identical evaluations of the “modified”-iIT341
metabolic network (ubiquitous species removed), with a seed of n = 20 000
and a threshold s = 16 for the subnetwork sampling (Algorithm 2).

Subnetwork # 1 2 3 4 5 6 1-6

Total Number of Subnetworks 5803 5705 5752 5771 5845 5837 34713
Subnetworks without a BMC 5705 5599 5660 5682 5750 5732 34128
Runs canceled due to closure size 97 98 87 84 91 103 560
Subnetworks with BMCs 1 8 5 5 4 2 25
Total Number of found BMCps 2 14 8 11 8 7 50
Total Number of BMCps
After Duplication-removal

1 10 7 9 7 4 22
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Figure 4. Number of unique BMCps versus the number of analyzed “modified”
iIT341 metabolic subnetworks (ubiquitous species removed). Every com-
bination of six subnetworks have been analyzed, each generated with a
seed of n = 20 000 and a threshold s = 16 for subnetwork sampling
(Algorithm 2).
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Figure 5. A schematic representation of one BMCp found in the “modified”-iIT341
metabolic network. ATP and Erythrose 4-phosphate are the signs and D-
Fructose-6-phosphate and Phosphate are the meanings. Abbreviations:
Adenosine diphosphate (ADP). Parameter: s = 16.

ATP

ADP

H2O

NADH

NADPH

NAD+

NADP+

O

N

NH2

N
H

H
N

N
H

N
H

O

N
H

OH

O

OH

O

O

N

NH2

H
N

N
H

H
N N

O

O

H
N

OH

O

O

OH

ONNH2

NH
N
+

N
NH

O

H
N

OH

O

O

OH

ONNH2

NH
N

N
NH

O

H
N

OH

O

O

OH

N

N
H

N

NH2

N
H

O

N
H

O

N
H

OH

O

O

OH

O

P

OH

O− O

OH
OH

O N+ NH2

O

H+
(e)

H+ H2O

ADP

H+

H2O

H+

H+

Phosphate

Nicotinamide mononucleotide

Formate

Diphosphate

10-Formyl
tetrahydrofolate

5-Methyl
tetrahydrofolate5,10-Methylene

tetrahydrofolate

5,10-Methenyl
tetrahydrofolate

5,6,7,8-Tetrahydrofolate

Diphosphate

Phosphate

H+
(c)

HO

P
O

OH
OH

HO

P
O

OH
OH

HO
P

O
OH

O
P

O

OH

OH

HO
P

O
OH

O
P

O

OH

OH

O OH

Figure 6. A schematic representation of three BMCps found in the “modified”-
iIT341 metabolic network. All three BMCps consist of 5,10-
Methylenetetrahydrofolate as a sign and 10-Formyltetrahydrofolate as
well as NAD+ as the meanings. The second sign could either be ATP,
ADP or Diphosphate. Parameter: s = 16.
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Although the reactions of all BMCps of the “modified”-iIT341 participate in various

pathways, 50% of the found BMCps include Adenosine triphosphate (ATP) as a sign.

Furthermore in the BMC of Figure 6 ATP enables 3 different BMCs with one code making

mechanism. Note that ATP has been identified to have a pivotal role in the formation

of autocatalytic sets in metabolic networks [31, 32]. However, if this is related to ATP’s

role in the molecular codes found here remains unclear.

When we compare the BMCps of the modified network with the ones found in the

original, we do only see one duplication (see last entries in supplementary Table 2 and

3). This indicates that our procedure allows to identify more complex codes in a given

subnetwork. This complexity could additionally be changed by adjusting the threshold

for the size of a subnetwork s. While a reduction of s would lead to many missed BMCs,

an increase would cause more subnetworks to exceed the limit of closed sets and thus the

complete subnetwork would be discarded.

5 Conclusion

The new approach introduced here can be applied to large-scale reaction networks to

identify molecular codes. In the metabolic network model of Helicobacter pylori, consisting

of 485 molecules and 554 reactions, 421 molecular codes have been identified using the full

metabolic network. Although the total number of molecular codes remains unknown,

Figure 2 indicates that a considerable portion of BMCs requiring small subnetworks have

been found.

Basically all molecular codes found when analyzing the full network by sampling small

subnetworks contained an ubiquitous species like H20, H+,CO2, H2CO3 and HCO−3 as a

sign, meaning, or within the reaction path from sign to meaning. Thus they appear

to be unlikely candidates for a coded mapping actually being used [33] in processing

“meaningful” information.

When adding an inflow of the ubiquitous species, which effectively eliminates codes

with ubiquitous species, more complex codes were found. Note that by removing the

closure of the ubiquitous species from the network allowed us to use the same targeted

maximal subnetwork size s as for the unmodified network.

However even in those codes there is often one sign and one meaning molecule having

a similar chemical structure, for example, ATP and phosphate (as seen in Fig. 5), where
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phosphate is a substructure of ATP. This opposes the demand that sign and meaning

should come from “two different worlds” [8]. Nevertheless, the context is not always

ubiquitous, e.g., the amount of D-glucose can vary. In other words, different mappings

can be active at different points in time, which reflects the contingent character of the

relation between sign and meaning molecules.

Analogous to removing ubiquitous species is the sampling of larger subnetworks, which

should allow the discovery of even more complex codes. These codes obtained from further

increasing the sampling size would be interesting insofar the signs and meanings could be

chemically less similar, due to a more complex reaction path.

Searching for molecular codes in large networks is computationally expensive. The

computation of the twelve runs yielding 442 unique codes required roughly seven months

CPU time. Noting that the computation can be easily executed in parallel on a compute

cluster running a conventional batch system, one run has been executed in 14 hours using

30 cores. However, further work is needed to target the more complex molecular codes

using a large number of species as a context. For this, a different strategy for finding

molecular codes that uses subgraph isomorphism [34] applied to the lattice of closed sets

(not to the reaction network) might be beneficial.

We do not dare to interpret our preliminary findings further with respect to the origin

of life, the origin of biological semantic information, or the processing of information by

a cells metabolism. A deeper study with significantly increased computational resources

and more network data especially across species would be demanded.
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