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Abstract

Evolution is viewed as a process involving population dynamics on a complex
landscape that results from a mapping of genotype space onto phenotype space.
Phenotypes are evaluated with respect to fitness, which is interpreted here as the
number of offspring. Evolutionary dynamics combines two features: (i) the dynam-
ics of genotype distributions on the population level and (ii) interspecies dynamics
on the level of ecosystems. A formal mathematical model of evolution based on
three fundamental processes – competition through reproduction, symbiontic coop-
eration through catalyzed reproduction, and variation through mutation – is intro-
duced here. The intensity parameters of the three processes are plotted along the
coordinate axes of a Cartesian coordinate system and the dynamics on the three
faces of the Cartesian space is presented, analyzed, and discussed on the determin-
istic as well as stochastic level. The dynamics in the interior of the parameter space
is briefly mentioned.

1 Introduction

Biological evolution is commonly seen in its historical dimension as expressed by the fa-

mous quotation of Theodosius Dobzhansky: ”Nothing in biology makes sense except in

the light of evolution” [1]. Alternatively there is the mechanistic aspect of evolutionary

processes considering population dynamics on complex fitness landscapes [2]. Here we

shall focus on the dynamical aspect and describe biological evolution by a kind of min-

imal model that is thought to represent a core that can be extended by the currently

understood processes of epigenetic inheritance without becoming too sophisticated for
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straightforward analysis. Evolution is seen as a special case of chemical reaction net-

works, which contain either single autocatalytic reaction steps or subsets of reactions

forming together an autocatalytic network. In the simplest case the autocatalytic steps

are tantamount to reproduction of DNA or RNA molecules. Reproduction in this case

is replication, an enzyme-catalyzed template-induced process that copies a nucleic acid

molecule nucleotide per nucleotide and hence comprises a large number of reaction steps.

Under suitable conditions this multi-step process can be approximated by an overall single

step autocatalytic reaction, A + Xi
fi−→ 2Xi, giving rise to exponential growth of RNA

concentrations [3, 4]. On the population level with several different reproducing variants

called replicators, Xi (i = 1 . . . , n), competition for resources A leads to natural selection

of the fittest genotype Xm with m : fm = max{fi; i = 1, . . . , n}. In such simple systems,

which nevertheless enable evolution, the mean fitness, f(t) =
∑n

i=1 fini(t)
/ ∑n

i=1 ni(t)

with ni(t) being the number of replicators Xi in the population, is optimized during the

evolutionary process.

Apart from simple reproduction that leads to competition of we shall also consider

catalyzed replication,which leads to cooperation among replicators [5, 6]. Experimental

examples of cooperative autocatalytic reaction networks built from RNA molecules that

are collectively capable of reproduction have been described in the literature [7–9]. Other

cooperative systems constitute the basis of various forms of symbiosis [10–12] and coop-

erativity is also thought to have played a decisive role in the RNA world [6]. In this

contribution molecular symbiotic cooperation is introduced through catalyzed replication

in its – mathematically – simplest form:

A + Xi + Xj
hij−→ 2Xi + Xj with i, j = 1, . . . , n ,

where Xi represents the template and Xj is the catalyst. In the most general form –

every molecule Xj has the potential to act as a catalyst for the replication of every other

molecular species Xi including itself – the number of catalytic terms is n2. Considering

the fact that efficient and specific catalysis is a rare property the number n2 becomes

unrealistically large even for fairly small n. It is possible to reduce straightforwardly the

number of catalytic reactions. The simplest example, so far known and analyzed, is the

catalytic hypercycle [5, 13–15]: The catalyzed reactions 2Xi + Xi+1
hi←− A + Xi + Xi+1

(i = 1, . . . , n, i modn) involving n replicators are thought to build a one-dimensional

closed cyclic array of mutual dependence,
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. . .← Xn ← X1 ← X2 ← . . .← Xn−1 ← Xn ← . . . .

The dynamics of hypercycles has been studied in great detail [16–18]. The long-time

solutions are asymptotically stable points for n = 2, 3, 4 or oscillations resulting from an

asymptotically stable closed orbit for n ≥ 5.

Genetic variation occurs at the level of DNA or RNA genotypes. In nature two forms

of variation are observed: mutation and recombination. The simplest form of variation is

the point mutation that consists of an exchange of a single nucleotide in the sequence. In

the mutation model applied here point mutations arise through incorporation of wrong

nucleotides during the replication process. Correct and error-prone replication are consid-

ered as parallel reaction channels of one and the same replication mechanism [13]. RNA

replication and mutation kinetics under suitable conditions gives rise to simple over-all

reaction mechanism:

A + Xi + E
Qji·ki[A]
→→→ Xj + Xi + E ,

The resolved replication process is initiated through binding of the RNA template molecule

to a specific RNA replicase, Xi + E
Ki


 Xi · E. Starting from the 3’-end of the template

Xi the new RNA molecule Xj is synthesized nucleotide by nucleotide along the sequence.

The dimensionless factors Qji with i, j = 1, . . . , n provide the probabilities to obtain Xj as

an (error) copy of the template Xi. Conservation of probabilities requires:
∑n

j=1Qji = 1

– a copy has to be either correct, Qii, or incorrect,
∑n

j=1,j 6=iQji = 1−Qii. A very useful

approximation is made by the uniform error rate assumption: The error per nucleotide

and replication event, p, is assumed to be independent of the position and the nature of

the nucleotide to be complemented. All elements of the mutation matrix can be expressed

then by a simple formula,

Q : Qji = pdij (1− p)l−dij = plεdij with ε =
p

1− p
, (1)

with only three parameters: (i) the sequence length l of the RNA molecule, (ii) the

mutation parameter p, and (iii) the Hamming distance [19, 20] between the sequences

interrelated by the mutation process, dij = dH(Xi, Xj). Without changing the results that

will turn out being important for the purpose pursued here, the analysis of the model is

substantially simplified by the assumption of constant chain lengths l. This assumption

is also consistent with the restriction to point mutations since point mutations do not

change chain lengths by definition.
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Aa an alternative to the Eigen model mutation can be seen, for example, as the

result of DNA damage and imperfect damage repair during the whole life time of an

organism, which is the idea in the Crow-Kimura mutation model [21, p. 264-266]. Then

reproduction and mutation are completely independent processes and appear as additive

terms in the kinetic differential equations. Interestingly, the Eigen and the Crow-Kimura

model although different with respect to the underlying physics give rise to identical

mathematical problems [2, pp.76-78]

Figure 1. A minimal model for modeling evolution. Evolution is considered
as an interplay of three processes: (i) competition through reproduction,
(ii) cooperation through symbiosis, and (iii) mutation through error-
prone replication. In parameter space the intensity parameters of all
three processes, (i) fitness parameters f corresponding to reaction rates
for competition, (ii) reaction rates h for catalyzed reproduction, and (iii)
an error rate p for mutation are plotted on the axes of a Cartesian co-
ordinate system. On the three two-dimensional faces of the coordinate
system we are dealing with the three fundamental evolutionary processes:
(A) competitive reproduction and mutation are the basis of Darwinian
optimization through natural selection and give rise to the formation of
quasispecies and eventually to the occurrence of error thresholds [13,14];
(B) the interplay of competition and cooperation allows for the descrip-
tion of major transitions [22, 23]; (C) the combination of cooperation
and mutation enables reintroduction of extinguished species provided
the error rate is sufficiently large [24].
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2 The evolution model

Evolution is properly illustrated as process in genotype or sequence space. Sequence space

is a point space – every point is assigned uniquely to one sequence and mutations are moves

in sequence space. A population consists of one or more sequences Xi (i = 1, . . . , n), which

are present in [Xi] = ni(t) copies at time t. When the sequences are related by mutation

we shall denote them as subspecies and call the set of subspecies a (molecular) species.

The population size is N =
∑n

i=1 ni(t) = N(t). Evolutionary dynamics can be visualized

as a superposition of two different processes: (I) an internal dynamics within the popula-

tion leading to a quasi-stationary state or oscillations of the population variables and (II)

the migration of the population in sequence space. In the strong selection - weak mutation

scenario mutation is a rare event and the two processes I and II are well separated on the

time scale. A useful diagnostic of the two processes considers the consensus sequence of

the population.1 Internal dynamics does not necessarily change the consensus sequence

and it stays essentially constant at some point in sequence space. Migration of the consen-

sus sequence is just a simplified version of process II replacing the population by its center

of gravity. Here we are interested in a common mutation scenario that works equally well

for weak and strong mutation and in the general case we cannot assume separability of

selection and mutation on the time scale. In addition cooperative dynamics complicates

the situation and obscures separability. As a result we are dealing with only one popula-

tion dynamics, which describes simultaneously equilibration of genotype distribution and

migration of the population in sequence space.

In the model the three processes constituting evolutionary dynamics are determined

by a single intensity parameter each: (i) The fitness parameters f determine selection

in form of fitness differences ∆f , (ii) the cooperation parameter h controls the catalytic

efficiency of the catalytic molecule, and (iii) the mutation parameter p determines the

frequency of point mutations. Figure 1 sketches the three-dimensional parameter space.

Neutral evolution with no mutation in sense of Motoo Kimura [25] is situated at the

origin of the coordinate system. The question of independence of the three parameters

is worth being discussed. It may be doubtful from the point of view of a structural

biologist that catalyzed replication is independent of the uncatalyzed process but sequence

1The consensus sequence considers a given positions in all sequences of the population and assigns the
most frequent nucleotide – A, U(T), G or C – to this position.
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space is so large – it contains κl points with κ = 2 for binary or {G,C} and κ = 4 for

natural {A,U,G,C} sequences – that independent examples can be found for almost every

combination of f and h. Independence of mutation is relatively easy to imagine when,

for example, action of antiviral drugs is taken into account.

Figure 2. The continuous-flow stirred-tank reactor (CSTR). The figure
sketches a device for controlling the environmental condition of evolu-
tion experiments. The material needed for reproduction is subsumed
by A, it flows into the reactor with a (volumetric) flow rate r [V/t]≡
[volume/time] in form of a solution with concentration [A] = a0. In the
reactor molecules Xi (i = 1, . . . , n) are reproduced and A is consumed.
The volume V of the reactor is constant and hence reaction mixture
compensating the volume increase through influx of stock solution has
to flow out of the reactor. The mean residence time of a volume element
in the CSTR is τR = V/r [t].

2.1 Evolution in the flow reactor

Environmental influence on the outcome of evolution is commonplace. Consistent with

a simple model are constant and controllable conditions, which can be realized in flow

reactors (Figure 2; see also [26]). The reactor shown in the figure has the advantage of
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being relatively unsophisticated for both, kinetic modeling and experimental investiga-

tions, and we shall apply it here. More elaborate reactors, which keep, for example, the

numbers of bacterial cells constant have been designed and implemented [27–29]. De-

pending on the specific design and the concentration monitoring system the reactors are

called, for example, chemostat, cellstat or turbidostat. More recently flow reactors and

other experimental devices for monitoring and controlling evolution in the laboratory were

introduced [30–34].

Next a reaction mechanism is conceived and implemented in the flow reactor. In

addition to conventional chemical reactions we require n + 2 pseudo-reactions, which

describe inflow and outflow of material into and from the reactor. The inflow is modeled

by a zero-order reaction, ∗ a0 r−→ A, and outflow S
r−→ ∅ with S ∈ {A,Xi(i = 1, . . . , n)}

corresponds to a first-order reaction. Together with the remaining n2 replication-mutation

and n2 catalyzed replication-mutation reactions we are dealing with the following set of

2n2 + n+ 2 reactions in the flow reactor:

∗
a0 r

−−−→ A , (2a)

A + Xi

kiQji

−−−→ Xi + Xj , (2b)

A + Xi + Xi+1

liQji

−−−→ Xi + Xj + Xi+1 , (2c)

A
r

−−−→ ∅ , and (2d)

Xi

r

−−−→ ∅ ; i, j = 1, . . . , n; i mod n . (2e)

Reaction (2a) supplies the material required for reproduction. A solution with A at

concentration a0 flows into a continuously stirred tank reactor (CSTR) with a flow rate

r [26, p. 87ff.].2 The reactor operates at constant volume and this implies that the volume

per time unit [t] of solution flowing into the reactor is compensated exactly by an outflow,

which is described by the equations (2d) and (2e) and concerns all (n+1) molecular species,

A and Xi (i = 1, . . . , n). We remark that all chemical reactions come to a standstill when

the flow rate r exceeds a certain critical value, r > rcr. Then the mean residence time τR

is too short for the completion of a single reactions event.

Pseudoreaction (2a) is a zeroth order reaction because there are no reactants, reac-

tions (2d) and (2e) are first order pseudoreactions, reactions (2b) represent second order

2We remark that the deterministic kinetic equations (9) were extensively studied under the simplifying
assumption of constant population size

∑n
i=1 xi = c0 = const [5,13,35]. The solution curves formulated in

relative concentrations ξi(t) = xi(t)
/∑n

i=1 xi(t) are identical for the CSTR and for constant population
size but the stochastic system is unstable in the latter case [36].
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reactions and finally reactions (2c) is of order three. Third order reaction are often ignored

in elementary step reaction kinetics, because simultaneous collision of three or more atoms

in the vapor phase are highly improbable and the same is true for ternary or higher en-

counters in solutions. Here we are not dealing with elementary steps and in overall kinetics

the consideration of collision probabilities does not apply. In this contribution we shall

classify reactions also according to the nature of the autocatalytic process: Reactions (2b)

comprise simple copying processes – producing correct copies or error copies – and will

be characterized as autocatalytic processes of first order, whereas reactions (2c) involve

two replicator molecules acting as template and catalyst, and hence will be classified as

second order autocatalysis. Such a distinction is meaningful because these processes dif-

fer with respect to the dynamical phenomena observed (section 3). The characteristic

features of first order autocatalysis that are otherwise uncommon in chemistry include

selection and optimization. The dynamic repertoire of second order autocatalysis is much

richer and covers also oscillations, deterministic chaos, and spontaneous pattern forma-

tion in spatially resolved systems. In addition second order autocatalytic processes show

much higher sensitivity than their first order counterparts with respect to stochastic phe-

nomena caused by small particle numbers. Projected onto the problems discussed here,

competitive reproduction gives rise to selection but catalyzed reproduction is needed for

cooperation of competitors.

2.2 Deterministic kinetic equations

The kinetic differential equations of the model mechanism (2) are of the form:

da

dt
= − a

n∑
i=1

(
ki + lixi+1

)
xi + r (a0 − a) and (3a)

dxi
dt

= a

(
n∑
j=1

Qij

(
kj + ljxj+1

)
xj

)
− xi r ; (3b)

i, j = 1, 2, . . . , n; i mod n .

In equation (3a) we made use of the conservation relation
∑n

i=1Qij = 1. No analytical

solutions are available for equation (3) in general but numerical integration is straight-

forward as long as n is not too large. In absence of cooperation terms equation (3) can

be transformed into an eigenvalue problem of a symmetric matrix, which is readily diago-

nalized provided n is not very large (n < 106; section 4). In mutation-free systems, p = 0
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(section 5), qualitative analysis and determination of stationary states is straightforward,

and the dynamics of the complete system can be derived by extrapolation from the error-

free results to finite mutations rates. The cooperation system with mutation (section 6)

is used here as an example for the study of unconventional consequences of frequent repli-

cation errors. In stochastic modeling particle numbers are integers by definition whereas

concentrations can adopt arbitrarily small values. Deterministic references are created in

these cases by equating some initial variable to zero.

Extensive work related to the evolution model reported here was performed with

replicator [37, 38] and Lotka-Volterra equations [39–42], which are equivalent from the

mathematical point of view [43]. Indeed if the finiteness constraint providing a limitation

for the population size is changed from the flow reactor to constant population size [44]

the kinetic ODEs become identical and for vanishing mutation rates, lim p→ 0, we obtain

an inhomogeneous replicator equation for nonzero parameters f and h. In the limit h→ 0

the replicator equation is of first and for f → 0 of second order.

2.3 Stochastic modeling

In principle the reaction equations (2) can be cast into a chemical master equation. The

particle numbers of the molecular species, [A] = A(t) and [Xi] = Xi(t) with i = 1, . . . , n,

are integers and fulfil the conventional conservation relations, C(t) = A(t)+
∑n

i=1Xi(t) =

const in absence of flows. The variables of the master equation are the probabilities

Pm(t) = Prob
(
A(t) = m

)
and Psi(t) = Prob

(
Xi(t) = si

)
, (4)

and the indices are subsumed in an index vector, m = (m, s1, . . . , sn), which characterizes

the state Sm of the system. The chemical master equation is based on the assumption

that chemical processes occur one at a time, all jumps involve single steps and the particle

numbers change by ±1. The jumps Sm ′ → Sm or Sm → Sm ′ in the entire population are

denoted by the shorthand notation

m ′ = (m± 1, s1, . . . , sn) ≡ (m;m± 1) or

m ′ = (m, s1, . . . , sk ± 1, . . . , sn) ≡ (m; sk ± 1) .
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Then the master equation of mechanism (2) takes on the form

dPm

dt
= a0r

(
P(m;m−1) − Pm

)
+ r

(
(m+ 1)P(m;m+1) −mPm

)
+

+ r

n∑
i=1

(
(si + 1)P(m;si+1) − siPm

)
+

+
n∑
i=1

Qii(ki + lisi+1)
(

(m+ 1)(si − 1)P(m;m+1,si−1) −msiPm

)
+

+
n∑
i=1

n∑
j=1,j 6=i

Qij(kj + ljsj+1)sj

(
(m+ 1)P(m;m+1,si−1) −mPm

)
.

(5)

Each reaction step changes the probability to be in state m, Pm, in two ways: It in-

creases the probability through reactions or pseudoreactions Sm ′ → Sm and decreases the

probability through the reaction steps Sm → Sm ′ . The two terms in the first line, for

example, describe the two pseudoreactions modeling inflow and outflow of the material A,

and each reaction is represented by two steps. It is also worth noticing that stoichiometry

requires two slightly different replication terms depending on whether the copy is correct

or incorrect.

Although it is not difficult to write down a multivariate master equation, the deriva-

tion of analytical solutions is successful only in exceptional cases, for example for networks

of monomolecular reactions [45,46]. An alternative strategy for studying chemical master

equations is computer simulation through sampling of trajectories. The theoretical back-

ground for trajectory harvesting has been laid down by Andrey Kolmogorov [47], Willy

Feller [48], and Joe Doob [49, 50]. With electronic computers now being generally avail-

able simulations of stochastic processes became possible. The conception, analysis, and

implementation of a simple and highly efficient algorithm by Daniel Gillespie [51–53] pro-

vided a very useful tool for investigations of stochastic effects in chemical kinetics. Here

we present results, which illustrate the differences between deterministic and stochastic

solutions of the evolution model and use the deterministic solution as reference wherever

this is meaningful.

3 First and second order autocatalysis

In the introduction we distinguished simple and catalyzed reproduction, which differed

among other things in the formal order of the reaction. First order autocatalysis – re-

action (2b) in the model mechanism – is a second order chemical reaction. A reaction
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Figure 3. Comparison of fluctuations in the reversible first order auto-
catalytic reaction A + X 
 2X. Computations leading to the three
figures are described in the caption of figure 4. Choice of parameters:
k = g = 0.01 [M−1 t−1], N = 1000 with a0 = 999 and x0 = 1 (upper
part), a0 = 990 and x0 = 10 (middle part), a0 = 950 and x0 = 50 (lower
part).
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Figure 4. Comparison of fluctuations in the reversible second order au-
tocatalytic reaction A + 2X 
 3X. The reaction is monitored in the
closed system: A(t) + X(t) = a0 + x0 = N = 1000 where A(0) = a0
and X(0) = x0 serve as initial conditions. The figures present the
results of statistical evaluation of 1 000 trajectories obtained by com-
puter simulations with Gillespie’s method [45]. Choice of parameters:
l = 0.001 [M−2 t−1], q = 0.001 [M−2 t−1], a0 = 990 and x0 = 10 (upper
part), a0 = 950 and x0 = 50 (lower part); color code: E

(
A(t)

)
: black,

E
(
A(t)

)
±σA(t): gray; E

(
X(t)

)
: red, E

(
X(t)

)
±σX(t): pink; determin-

istic solutions are given as dotted lines, a(t): black and x(t): red. The
case with the smallest possible number of x0, a0 = 998 and x0 = 2 is
not shown because of very large computer time required for a converged
simulation (see text).

event requires an encounter of individuals from two species, A and X. Autocatalysis

in the single step reaction A + X → 2X shows characteristic features when compared

to non-autocatalytic bimolecular reactions, for example A + B → 2C: (i) The proba-

bility distributions of A(t) are broader than with non-autocatalytic processes and (ii)

the rate is accelerated during the reaction giving rise to a solution curve with sigmoid
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shape [54, pp.477-485]. In single step second order catalysis A+2X→ 3X two particles X

have to meet one particle A. In the reverse reaction even three particles X are required in

an encounter. Any nucleation of a process requiring three partners shows strong stochas-

tic effects at low particle numbers or concentrations. Both above mentioned features of

first order autocatalysis are not only observed with second order autocatalytic processes

as well but they are much stronger and become fully dominant at low concentrations. In

particular an extremely strong dependence on the initial condition, X(0) = x0, is found

with small x0-values.

Table 1. Fluctuations in the autocatalytic reactions A+X
2X and
A+2X
3X. The table presents the σ(tc)-values and the equilibrium fluc-
tuations calculated from sampling of 1 000 trajectories. The standard
deviation of the non-autocatalytic reaction A+B
2C, σC(t) starts from
σC(0) = 0 and increases monotonously to the equilibrium value. Choice
of parameters see figures 3 and 4. For the non-autocatalytic reaction the
rate constant k = l = 0.001 [M−1 t−1] were chosen. Initial conditions,
A(0) = B(0) = 750 and C(0) = 0 were chosen

autocatalysis reaction initial conditions

order x0 = 1 x0 = 2 x0 = 10 x0 = 50 t→∞

zero A+B
2C – – – – 18.4

first A+X
2X 112 46 21 19 15.6

second A+2X
3X – 244 206 52 15.4

For the purpose of illustration two reversible autocatalytic reactions were chosen, one

of first order and the other one of second order:

A+X
k



g

2X and A+2X
l



q

3X , respectively.

In order to be able to compare fluctuations we choose equal rate parameters k = g

and l = q and accordingly the equilibrium constants and concentrations are the same,

K = k/g = l/q = 1 and A = X = N/2. In both autocatalytic reactions the two species

are strongly correlated by the conservation relation A(t)+X(t) = a0 +x0 = N , and hence

variances and standard deviations are the same: var
(
A(t)

)
= var

(
X(t)

)
= var(t) and

σ
(
A(t)

)
= σ

(
X(t)

)
= σ(t). For the purpose of comparison a simple measure for scatter
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is used: For a0 > x0 the width of the band

∆(t) = E
(
A(t)

)
+ σ(t)−

(
E
(
X(t)

)
− σ(t)

)
= E

(
A(t)

)
− E

(
X(t)

)
+ 2σ(t)

is recorded. It starts from ∆(0) = a0 − x0, broadens in the intermediated range and

eventually converges to the equilibrium value ∆ = 2σ. The standard deviation at the

crossing point of the other two limits of the ±σ-band at time t = tc fulfils E
(
A(tc)

)
−

σ(tc) = E
(
X(tc)

)
+σ(tc) and we calculate σ(tc) = ∆(tc)/4 as a simple measure for the size

of fluctuations. Table 1 presents some values obtained from simulations, which illustrate

the dramatic differences between the different forms of autocatalysis at small initial values

X(0). Typical examples of trajectories are collected in figures 3 and 4. Figure 3 shows

three different cases: (i) the largest possible scatter calculated with the initial conditions

a0 = 999 and x0 = 1, (ii) an intermediate case with a0 = 990 and x0 = 10, and (iii)

a0 = 950 and x0 = 50. As expected the difference in fluctuations concerns only the initial

part of the curves and all curves look the same in the approach towards equilibrium.

Analogous simulations were recorded for the second order case. The simulation with the

smallest initial value of the autocatalyst, a0 = 998 and x0 = 2,3 is not shown, because the

enormous size of the fluctuations would require larger computer resources than available

when the simulation is extended to near-equilibrium conditions.

In order to compare the fluctuations with a non-autocatalytic process we consider also

the inversion of the bimolecular disproportionation reaction4

A+B
k



l

2C ,

which has the closest possible stoichiometry to the first-order autocatalytic reaction. Con-

ditions were chosen such that the equilibrium concentrations are the same, [X] = [C],

and the equilibrium fluctuations of all three reactions are very close with the value for

the uncatalyzed reaction being a little larger (table 1). The time courses of the standard

deviations of both reactions σX(t) and σC(t) are shown in figure 5. Since we are using

sharp initial conditions the standard deviation are zero at the beginning of the reaction:

σX(0) = σC(0) = 0. In conventional chemical reactions σ(t) approaches the equilibrium

value either monotonously or goes through a flat maximum [54, pp. 447-449] whereas it

passes a pronounced peak in autocatalytic reactions.

3The initial conditions a0 = 999 and x0 = 1 cannot ignite the reaction because two molecules X to
convert A into X.

4An example of a disproportionation reaction in organic chemistry is the Cannizzaro reaction: 2C 

A + B, where C, A and B are formaldehyde, formic acid and methanol, respectively.
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Figure 5. Comparison of the standard deviation in the reversible first or-
der autocatalytic reaction A + X 
 2X and uncatalyzed inverse
disproportionation reaction A + B 
 2C. The reaction is moni-
tored in the closed system, which implies: A(t) + X(t) = a0 + x0 =
const = N where A(0) = a0 and X(0) = x0 for the first reaction
and A(t) + B(t) + C(t) = const = a0 + b0 + c0 = N . The figures
present the results of statistical evaluation of 1 000 trajectories obtained
by computer simulations with Gillespie’s method [45]. Choice of param-
eters: N = 1000, k = g = 0.01 [M−1 t−1] for the autocatalytic reaction
(σX(t) = σ(t), black) and k = l = 0.0003 [M−1 t−1] for the inverse dispro-
portionation reaction (σC(t), red) and hence we have K = k/g = k/l = 1
for the equilibrium parameters; initial conditions: x0 = 1, a0 = 999 and
c0 = 0, a0 = b0 = 750 yielding the same equilibrium values A = X = 500
or A = B = C = 500.

The difference between first and second order autocatalysis is the basis of the differ-

ent dynamics observed with competitive and cooperative systems. At the same time it

provides the explanation of the different size of fluctuations that we shall encounter in

sections 5 and 6.

4 Competition, mutation and quasispecies

The bottom face of the three-dimensional parameter space – A in figure 1 – is dealing with

the combination of competitive selection and mutation. Natural selection and mutation

are sufficient for a Darwinian scenario of competitive evolution that consists in selection

of a fittest distribution of subspecies characterized as quasispecies. In vitro evolution

has been verified experimentally in a great number of investigations (For an overview of
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early works on this subject see [3, 55], as a recent review we mention [56]). The kinetic

equations describing replication and replication induced mutation were introduced 1971

by Manfred Eigen in his scholarly written paper [13]. Eigen’s selection equations describe

the evolution of the distribution of asexually reproducing genotypes in a population of

constant size N . Correct replication and mutation are seen as parallel chemical reactions

and replication independent mutations are neglected. The selection-mutation scenario was

found to provide the molecular basis for an understanding of virus evolution (A recent

survey is found in the contributed volume [57]).

A population consists of several genotypes that are present in time dependent concen-

trations,

Υ(t) = x1(t)X1 ⊕ x2(t)X2 ⊕ . . .⊕ xn(t)Xn (6)

and the stationary solution, limt→∞Υ(t) = Υ = x1X1 ⊕ x2X2 ⊕ . . .⊕ xnXn, is called the

quasispecies [14]. The quasispecies Υ is the unique deterministic long-time solution of the

replication mutation problem for infinite population size. In the continuous description

the quasispecies contains all species at finite positive concentrations, although they may

be unrealistically small since numbers of molecules are positive integers and can’t be less

than one. In reality we are dealing therefore with a truncated distribution denoted as

discrete quasispecies :

Υ̃ = η1Y1 ⊕ η2Y2 ⊕ . . .⊕ ηnYn with ηi =

{
bxic if xi ≥ 1

0 if xi < 1
. (7)

The major influence of the mutation parameter p concerns the width of the quasispecies

distribution. In the mutation-free system, p = 0, survival of the fittest in its pure form

is observed and the quasispecies is of the form: Υ = xmXm with m being defined by

fm = max{fi; i = 1, . . . , n}. Nonzero mutation rates have a distinct influence on the

stationary state of the mutation-selection problem: Not a single genotype is selected but

a family of genotypes Υ̃, which consist of a most frequent sequence, the master sequence,

together with a distribution of mutants that have sufficiently high fitness and are situated

close by the master in sequence space. The quasispecies becomes broader with increasing

mutation parameter p until a threshold value pcr is reached above which error propagation

is too strong for sustaining a stationary state. Interestingly, the critical mutation rate

can be derived from the continuous quasispecies theory.

The replication-mutation mechanism follows from equation (2) by elimination of (2c).
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Then the kinetic differential equations are obtained from equation (3) by setting li =

0 ∀ i = 1, . . . , n:

da

dt
= −a

n∑
i=1

kixi + r(a0 − a) (8a)

dxi
dt

= a

n∑
j=1

Qijkj xj − r xi , i = 1, . . . , n . (8b)

Equation (8) describes the formation of quasispecies in the flow reactor. Solutions can

be expressed in terms of eigenvectors of the value matrix W(t) = {Wij = Qijkja(t) −

rδij; i, j = 1, . . . , n}5 and are essentially the same as obtained for constant population

size:
∑n

i=1 xi(t) = c = const with a(t) = a0 = const and fi = kia0 [44].

Depending on the distribution of fitness values fi in sequence space quasispecies may

show a sharp transition in plots of Υ(p) against p. From p = 0 to p = pcr the distribution

changes smoothly from a single sequence to a broad mutant cloud around the master

sequence. At the critical mutation parameter p = pcr the distribution shows a transition

to the uniform distribution U : {x̃1 = x̃2 = . . . = x̃κl = 1/κl}. Above the critical

error rate mutations occur too often to allow for a faithful reproduction of the template

sequence and the result is random replication – in the long run every sequence is obtained

with the same probability. The transition has been characterized as error threshold since

evolutionary dynamics does not sustain a structured long-time population at higher error

rates, p > pcr. On typical fitness landscapes the error threshold sharpens with increasing

chain length l and becomes a first order phase transition in the limit l →∞ [58, 59]. We

mention that certain unrealistically smooth landscapes do not show error thresholds [60].

Darwinian evolution is modified in the strong mutation scenario.6 Not a single fittest

genotype is selected but a uniquely defined distribution of genotypes, which is determined

by the largest eigenvector of the value matrix W that represents the long-time or station-

ary solution of equation (8). The mean fitness of populations is not always optimized

since situations can be constructed in which the fitness is decreasing during the approach

towards the stationary state. Such situations, however, are rather rare and Darwinian

optimization still remains a powerful heuristic that applies to almost all scenarios. For

5By δij with i, j ∈ N we denote Kronecker’s δ: δij = 1 for i = j and δij = 0 otherwise.
6Biologists [61, 62] and computer scientists commonly distinguish strong and weak mutation. The

weak mutation scenario assumes that adaptive mutations are sufficiently rare and do not interfere with
the selection process but initiate replacements of currently fittest genotypes by still fitter variants. The
strong mutation scenario is characterized by sufficiently large values of p that give rise to quasispecies
dynamics mentioned here (for details see [63]) and to mutation induced cooperative dynamics (section 6).
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error rate parameters exceeding a critical value pcr the largest eigenvector approaches the

uniform distribution over the entire sequence space, which is the exact solution for the

value p = pu leading to incorporations of correct and incorrect nucleotides with equal

probabilities – for binary sequences this happens at pu = 1 − pu = 1
2 . In realistic popu-

lations the uniform distribution is incompatible with a discrete quasispecies (7). Instead

randomly migrating populations are observed.

5 Competition and cooperation

Face B contains the combinations of parameters f and h, which determine competition and

cooperation. In the flow reactor they can be expressed through kinetic rate parameters

multiplied by the time dependent concentration of material A: fi = kia(t) and hi = lia(t).

The reaction mechanism is obtained from (2) through neglecting mutation or formally

setting Qij = δij.

5.1 Deterministic solutions

The differential equations are of the form

da

dt
= −a

n∑
i=1

xi
(
ki + lixi+1

)
+ r (a0 − a) and (9a)

dxi
dt

= xi

(
a(ki + lixi+1) − r

)
; i = 1, 2, . . . ; i mod n . (9b)

Inspection of the terms that are critical for reproduction, ki+ lixi+1 (imodn), allows for a

straightforward explanation of the concentration dependence. In the small concentration

limit we have ki � lix̄ with x̄ =
∑n

i=1 xi/n and the system shows competition selecting for

the species with largest fitness. In the opposite situation, in the high concentration limit,

ki � lix̄, cooperative dynamics – here pure hypercycle dynamics [16, 44] – is observed.

Hypercycle dynamics shows an interesting dependence on the number of cooperating

species: (i) asymptotically stable stationary states are found for n = 2 and n = 3, (ii) the

concentrations of four species oscillate with very slow convergence to the stable steady

state, and (iii) for n ≥ 5 the systems oscillate. The existence of a stable closed orbit

has been proven for n = 5 [18]. With increasing number of subspecies, n, the shape of

the oscillations approaches the form of a rectangular pulse [64] and the concentrations at

the minima becomes smaller and smaller. This fact becomes particularly relevant in the
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stochastic description, because subspecies are more and more likely to die out when the

concentration come close to one molecule or less in the reaction volume. Since mutations

play an important role in preventing systems from extinction, oscillating systems with

n = 4 and n = 5 will be discussed in section 6.

Equating (9a) and (9b) to zero yields equations for the positions of the potentially

stable stationary states in concentration space that can be solved analytically [24, 65].

Stability analysis of the maximal 2n stationary states can be carried out straightforwardly:

As simple examples we consider the positions of the stationary states as functions of the

two external parameters a0 and r. Results for the cases n = 2 and n = 3 are shown

in figures 6 and 7. In case of n = 2 four states are possible: (i) the state of extinction

S0 where both species are extinct(x1 = x2 = 0), (ii) the state of selection of X1, S
(1)
1

(x1 6= 0, x2 = 0), (iii) the state of selection of X2, S
(2)
1 (x1 = 0, x2 6= 0), (iv) the cooperative

state S2 where both species are present (x1 6= 0, x2 6= 0). Only one of the selection states

is asymptotically stable, and according to what had been said before this is the state

S
(m)
1 with m : km = max{ki; i = 1, . . . , n}. Here we were choosing k2 > k1 and S

(2)
1 is

asymptotically stable in the range r/k2 < a0 < r/k2 + (k2 − k1)/l1. The coordinates of

the stationary states S0, S
(1)
1 , and S

(2)
1 are constants or linear functions of a0. In case of

S2 the concentration of A is obtained as one root of the quadratic equation [24]:

a = 1
2

(
a0 + ψ −

√
(a0 + ψ)2 − 4rφ

)
with ψ = k1/l1 + k2/l2, φ = l−11 + l−12 .

From the square root follows that a flow rate r < (a0 + ψ)2/(4φ) is required for the

existence of the state S2. There is a second solution of the quadratic equation,

a∗ = 1
2

(
a0 + ψ +

√
(a0 + ψ)2 − 4rφ

)
,

which corresponds to an unstable stationary state S∗2 that separates the basins of at-

traction between S2 and S0. The sequence of stable stationary states as a function of

increasing a0 – representing the availability of resources – is

extinction → selection → cooperation .

The relative size of the reproduction parameters k1 and k2 determines the species which

is selected, and k1 < k2 leads to a state with A and X2 present and X1 absent. It is

worth noticing that the initiation of cooperation requires more resources than natural

selection [66].

In the three species system we are dealing with 23 = 8 stationary states, twice as many
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Figure 6. Sequence of bifurcations in the competition-cooperation system
with two subspecies n = 2. The plot shows the stationary concen-
trations as functions of the input concentration: a(a0) (black), x1(a0)

(red), and x2(a0) (yellow). Two transcritical bifurcations S0 ↔ S
(2)
1 and

S
(2)
1 ↔ S2 occur at a0 = 100/11 ≈ 9.091 and a0 = 300/11 ≈ 27.273,

respectively. Full lines refer to the asymptotically stable states, bro-
ken lines to unstable states. Choice of parameters: k1 = 0.09, k2 =
0.11 [M−1t−1]; 11 = 0.0011, l2 = 0.0009 [M−2t−1]

states as in case n = 2, but the repertoire of asymptotically stable states is enlarged only

by one, by a state where two species are present and one is eliminated or excluded – it is

called the state of exclusion therefore:

extinction → selection → exclusion → cooperation .

As in the previous case, n = 2, the sequence of stable states depends on the relative size

of the rate parameters k1, k2, k3, l1, l2, and l3. In figure 7 we sketch the transcritical

bifurcation for special values of the parameters with relative sizes k1 < k2 < k3 and

l1 > l2 > l3. Then the selection leads to a state with only A and X3 present and in

the exclusion state X1 is absent. Calculation of the transcritical bifurcations yields the

analogous results for the stability range as given above for n = 2:
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Figure 7. The bifurcations in the competition-cooperation system with
n = 2 and n = 3. The top row shows the states of extinction on the
complete concentration spaces for three (A, X1, X2) and four (A, X1, X2,
X3 species). All other diagrams refer to projections onto reduced spaces

containing only the reproductive species, the unit simplices S(1)n : Ξn =
(ξi; i = 1, . . . , n) with ξi = xi/

∑n
j=1 xj , 0 ≤ ξi ≤ 1, and

∑n
i=1 ξi = 1.

The sketch on the left hand side shows the concentration space for n=2

with two transcritical bifurcations S0 ↔ S
(2)
1 and S

(2)
1 ↔ S2 constituting

the sequence extinction→selection→cooperation with increasing values
of a0 (figure 6). The right hand side shows the analogous diagrams for

n = 3 with three transcritical bifurcations: S0 ↔ S
(2)
1 , S

(2)
1 ↔ S

(1)
2 , and

S
(1)
2 ↔ S3 giving rise to extinction→selection→exclusion→cooperation.

Choice of parameters: k1 = 0.09, k2 = 0.11 (n = 2) and k2 = 0.10 (n =
3), k3 = 0.11 [M−1t−1]; 11 = 0.0011, l2 = 0.0009 (n = 2) and l2 =
0.0010 (n = 3), l3 = 0.0009 [M−2t−1].
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Table 2. Probabilities to reach quasi-stationary states in the cooperative
regime with n = 2 and different initial conditions. The table pro-
vides probabilities of occurrence for all four possible long-term states:

extinction S0, selection of X1 in S
(1)
1 , selection of X2 in S

(2)
1 , or coopera-

tion S2. The counted numbers of events are sample means and unbiased
standard deviations calculated from ten packages, each of them containing
10 000 trajectories computed with identical parameters and initial condi-
tions, and differing only in the sequence of random events determined by
the seeds of the pseudorandom number generator (Extended CA, Mathe-
matica). Choice of parameters: k1 = 0.09 [M−1t−1], k2 = 0.11 [M−1t−1],
l1 = 0.0011 [M−2t−1], l2 = 0.0009 [M−2t−1], a0 = 200, r = 0.5 [V t−1].
Initial value A(0) = 0. Probabilities are obtained by multiplication by
10−4.

Initial values Counted numbers of states in final outcomes

X1(0) X2(0) NS0 N
S
(1)
1

N
S
(2)
1

NS2

1 1 385.1± 23.6 1481.0± 36.8 1719.6± 37.8 6414.3± 53.8

2 1 77.4± 9.1 1822.6± 41.6 367.6± 17.0 7733.3± 38.3

1 2 71.6± 8.5 280.6± 20.0 2075.8± 28.9 7572.0± 39.2

3 1 15.0± 2.9 1900.4± 30.9 74.6± 10.0 8009.0± 35.3

1 3 14.0± 3.7 53.1± 4.8 2180.5± 48.4 7752.3± 53.8

2 2 14.9± 2.6 303.7± 16.0 354.5± 23.8 9326.8± 44.9

3 3 0 70.2± 10.0 106.2± 10.9 9823.4± 15.7

4 4 0 12.1± 2.6 28.0± 5.0 9959.9± 6.4

5 5 0 2.5± 1.1 6.3± 2.6 9991.2± 3.0

stability range

extinction 0 < a0 <
r
k3

,

selection of X3
r
k3
< a0 <

r
k3

+ k3−k2
l2

,

exclusion of X1
r
k3

+ k3−k2
l2

< a0 <
r
k3

+ k3−k2
l2

+ k3−k1
l1

,

cooperation r
k3

+ k3−k2
l2

+ k3−k1
l1

< a0 .

A more detailed discussion of the bifurcation pattern can be found in [24, pp. 8-10].

5.2 Stochastic solutions

The stochastic system describing competition and cooperation, equations (2) with Qij =

δij, sustains one asymptotically stable stationary state corresponding to an absorbing

boundary, the state of extinction S0 defined by limt→∞A(t) = a0, and limt→∞X1(t) = 0,

and limt→∞X2(t) = 0. For n = 2 we are dealing in addition with three quasi-stationary
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states:7

(i) selection of X1 denoted by S
(1)
1 with limt→∞A(t) = r/k1,

limt→∞X1(t) = a0 − r/k1, and limt→∞X2(t) = 0,

(ii) selection of X2 denoted by S
(2)
1 with limt→∞A(t) = r/k2,

limt→∞X1(t) = 0, and limt→∞X2(t) = a0 − r/k2,

(iii) cooperation denoted by S2 with limt→∞A(t) = α,

limt→∞X1(t) = (r − k2α)/(l2α), and limt→∞X2(t) = (r − k2α)/(l2α),

where α = 1
2

(
a0 + ψ −

√
(a0 + ψ)2 − 4rφ

)
as before.

The stochastic system with n = 3 has an absorbing boundary at the state of extinction,

A = a0, X1 = X2 = X3 = 0, which is the only asymptotically stable stationary state,

three selection states, S
(1)
1 , S

(2)
1 and S

(3)
1 , three exclusion states S

(1)
2 , S

(2)
2 and S

(3)
2 , and

one cooperative state S3. It is worth noticing that all stationary states of the determin-

istic system show up as stochastic quasi-stationary states, no matter whether they are

asymptotically stable or not in the deterministic approach.

The rate parameters, which determine the stability in the deterministic case, pro-

vide the basis for probabilities of occurrence in the stochastic system. In table 2 we

present the probabilities for the case n = 2 with a set of parameters belonging to the

cooperative regime in the deterministic case. As expected we observe very strong de-

pendence on initial conditions. Since the state of extinction is an absorbing boundary

initial conditions X(0) = 1 require only a single death event in order to eliminate the

corresponding subspecies irreversibly. The results shown by the table are remarkable

in two aspects: (i) initially five copies of each subspecies are sufficient for reducing the

probability of not ending up in the cooperative state S2 to a few thousandth and (ii)

the probability of going extinct, PS0 , is essentially determined by the sum of the initially

present particles, X1(0) +X2(0), and not by the distribution. Stochastic solutions of the

competition-cooperation system were derived through simulation of individual trajecto-

ries [53]. Examples of trajectories for n = 2 and n = 3 are shown in figures 8 and 9. A

typical trajectory allows for the distinction of different phases in the approach towards a

long-time state (figures 8): (i) an initial phase I during which the stationary concentration

of A is established, (ii) a stochastic phase II during which the system is canalized towards

7A stochastic quasi-stationary state is a state towards which the system converges stochastically in the
long-time limit and around which it fluctuates. It is not an absorbing state, and if true asymptotically
stable stationary states exist the system converges to one of them it in the limit t→∞.
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Figure 8. Sequence of phases in the approach towards a quasi-stationary
state for n = 2. A stochastic trajectory simulating competition and
cooperation of two species in a flow reactor is shown in the plot above.
The stochastic process is assumed to start with an empty reactor ex-
cept seeds for the two autocatalysts and can be partitioned into four
phases: (I) fast raise in the concentration of A, (II) a random phase

where the decision is made into which final state – S0, S
(1)
1 , S

(2)
1 or

S2 – the trajectory progresses, (III) the approach towards the final
state, and (IV) fluctuations around the values of the (quasi)stationary
state. Parameter values: k1 = 0.099, k2 = 0.101 [M−1t−1], l1 = 0.0050,
l2 = 0.0045 [M−2t−1], a0 = 200, r = 4.0 [V t−1], pseudorandom number
generator: ExtendedCA, Mathematica, seeds s = 631. Initial conditions:
A(0) = 0, X1(0) = X2(0) = 1. Color code: A(t) black, X1(t) red, and
X2(t) yellow.

one of the quasi-stationary states, (iii) phase III dealing with the statistical convergence

to the quasi-stationary state and (iv) phase IV describing random fluctuations around the

steady state. Phase I is determined by the initial conditions for material A and for the

initially empty reactor, which are A(0) = 0 and seeding quantities for Xi (i = 1, . . . , n),

in particular Xi(0) ≤ 10, and consists of overshooting of A(t) followed by the decrease

to the stationary value. Phase II contains the various extinction patterns of subspecies

from extinction of all of them to cooperation of all of them. Phase I and phase II can

show substantial overlap or may even coincide on the time axis. Figure 9 presents tra-

jectories for the system with three subspecies (n = 3). Parameters for the upper plot

were chosen to lie in the cooperative regime and extension of the computations to longer
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times did not lead to extinction of subspecies. Calculation of the position of bifurcations

yields (a0)cr = 46.4 and with a0 = 400 the point in parameter space is well situated in

the interior of the cooperative regime. For the parameters of the lower plot we calculate

(a0)cr1 = 351.5 and (a0)cr2 = 957.6 and a0 = 400 falls in the exclusion regime with X1 = 0.

Indeed this variable stays at low values and vanishes around t = 8 [t] and we may think

we are dealing with the stochastic analogue of the stable deterministic state S
(1)
2 . After

some time at t ≈ 100 [t], however, X2 dies out as well and the long-time result is selection

of X3. Without mutation subspecies that have died out cannot be reintroduced into the

system and therefore every quasi-stationary state can be transformed into another one

only through extinction of a subspecies by a sequence of death events or a sufficiently

large fluctuation.

Comparing stochasticity in the selection system and the cooperation systems we ob-

serve a striking difference that boils down to the impact of catalysis in replication dy-

namics, which manifests itself in the difference between first and second order catalysis

and is already evident from the deterministic systems (see, for example, [67, pp.18-27 and

pp.70-75], figures 3 and 4). Fluctuations along the transients in the first order autocat-

alytic reaction A+X→ 2X are larger than with non-autocatalytic reactions (see figure 5

and [54, pp.477-485]) but the difference between first order and second order autocatal-

ysis shown, for example, by the reaction A + 2X → 3X is much more dramatic. This is

already seen in the approach towards equilibrium of the two autocatalytic processes and

has the ultimate consequence that second order autocatalysis leads to complex dynamical

phenomena like oscillations, deterministic chaos and spontaneous pattern formation in

homogeneous solutions. Indeed oscillations and deterministic chaos were also found with

generalized hypercycles [68]. The molecularity of the process provides a strong hint for

the dependence on the resource parameter a0. Catalyzed replication is – at least – ter-

molecular, and termolecularity implies an encounter of three agents, template, replicase

and catalyst that has very low probability at low concentrations and accordingly is highly

sensitive to fluctuations.

The scenario leading from competition to cooperation is induced by increasing the

cooperation parameter h = l · a0 and can be studied, for example, through variation of h

at constant a0 or variation of a0 at constant h. We chose here the former strategy and

progress from symbiosis to selection. At sufficiently large values of h the system follows
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Figure 9. Sequence of phases in the approach towards a quasi-stationary
state for n = 3. Two stochastic trajectories simulating competition
and cooperation of three species in a flow reactor are shown in the
plots above. The stochastic process is assumed to start with an empty
reactor except seeds for the three autocatalysts. Parameter values:
k1 = 0.09 , k2 = 0.10, k3 = 0.11 [M−1t−1], l1 = 0.0011, l2 = 0.0010,
l3 = 0.0009 [M−2t−1] (upper plot), l1 = 0.000033, l2 = 0.000030,
l3 = 0.000027 [M−2t−1] (lower plot), a0 = 800, r = 4.0 [V t−1], pseu-
dorandom number generator: ExtendedCA, Mathematica, seeds s = 491.
Initial conditions: A(0) = 0, X1(0) = X2(0) = X3(0) = 5. Color code:
A(t) black, X1(t) red, X2(t) yellow, and X3(t) green.
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hypercycle dynamics of dimension n with the characteristically large fluctuations because

of second order self-enhancement. Reducing the parameter h increases the fluctuations

and then the stochastic systems with n = 2 and n = 3 pass a series of quasi-stationary

states with decreasing number of non-vanishing subspecies: n→ n−1→ n−2→ . . .→ 1.

At h = l = 0 simple selection behavior of the fittest subspecies is observed, increasing h

leads to longer and longer survival times of the variant with lowest fitness until a quasi-

stationary state with n = 2 is obtained. This is the cooperative state for n = 2 and the

state of exclusion of the least fit subspecies in case of n = 3. Further increase in h for

n = 3 results in the state of cooperation (figure 9). The concentrations in systems with

n ≥ 4 oscillate and will be discussed in the next section 6. In essence, the scenario is

the same as in the deterministic case with the already mentioned change that all quasi-

stationary states are possible as long time solutions and instability of the corresponding

deterministic states results only in a smaller probability of occurrence.

6 Cooperation and mutation

The third coordinate face of the parameter space (C) contains symbiotic or hypercyclic

systems with mutation. The major role of mutation is the reintroduction of subspecies

that had died out previously into the system that is particularly important for hypercycles

with n ≥ 4, which sustain oscillations. The model is obtained through elimination of

reaction (2b) from the mechanism (2) and the kinetic differential equations are of the

form:

da

dt
= −a

n∑
i=1

li xixi+1 + r (a0 − a) and (10a)

dxi
dt

= a

n∑
j=1

Qij lj xjxj+1 − xi r; i = 1, 2, . . . ; i, j mod n , (10b)

where the mutation rate is given by equation (1). Equation (10) cannot be solved an-

alytically but numerical integration is straightforward. In a way the dynamical system

is simpler than the competition-cooperation case because it sustains only two asymptot-

ically stable stationary states, which are easily obtained from the conditions da/ dt = 0

and dxi/ dt = 0 for i = 1, . . . , n. One state is the state of extinction S0 with a = a0 and

xi = 0 (i = 1, . . . , n) and the second state Sn is the cooperative state with xi = r/(li−1a)
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Table 3. Long-time behavior in the cooperation-mutation system with
n = 3 and different initial conditions. The table provides expectation
values at the time of the end of the simulation (t = 30) for different
mutation rate parameters p and different initial conditions. Choice of
parameters: l1 = 0.011, l2 = 0.010, l3 = 0.009 [M−2t−1], a0 = 400, r =
0.5 [V t−1]. Initial value A(0) = 0.

Mutation Initial values Expectation values at t = 30 Counts

p X1(0) X2(0) X3(0) E(A) E(X1) E(X2) E(X3) P (S3)

0 1 1 1 279.3 44.56 36.06 39.58 0.301

0 2 2 2 81.53 117.7 94.9 105.4 0.814

0 3 3 3 14.56 142.5 115.5 128.3 0.971

0 4 4 4 2.023 146.1 119.6 132.2 0.996

0 5 5 5 1.153 146.0 120.2 132.8 1.0

0 10 10 10 0.376 147.0 120.0 132.6 1.0

0 deterministic 0.377 147.0 120.3 132.3 1

0.05 1 1 1 177.2 81.66 68.16 72.64 0.432

0.05 2 2 2 28.57 136.1 113.8 121.5 0.937

0.05 3 3 3 0.782 147.1 121.9 130.5 0.999

0.05 4 4 4 0.383 147.0 122.2 130.4 1.0

0.05 5 5 5 0.382 146.8 122.2 130.4 1.0

0.05 10 10 10 0.379 147.0 122.6 130.3 1.0

0.05 deterministic 0.377 146.7 122.3 130.5 1

where a is a root of a quadratic equation

(
a
)(2)
1,2

=
1

2

(
a0 ∓

√
a20 − 4φ r

)
with φ =

n∑
i=1

l−1i . (11)

The root
(
a
)(2)
1

with the minus sign corresponds to the asymptotically stable state Sn

whereas the second root belongs to a saddle point S∗n separating the basins of attraction

of S0 and Sn. For 0 < r < a20/4φ we have two asymptotically stable states whereas Sn

and S∗n do not exist at higher values of r (see also section5.1). Then, the only long-time

solution of the system is extinction.

Stochastic systems modeling competition and cooperation with n = 2, 3 have the se-

lection possibility to choose between 2n stationary states, one absorbing boundary and

2n−1 quasi-stationary states corresponding to n deterministic states, out of which one or

two can be stable for a given set of parameters. In the cooperation-mutation system the
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Figure 10. Extinction of oscillating hypercycles with n = 4 and n = 5.
The figures show single stochastic trajectories computed by means of
the Gillespie algorithm [53] for mechanism (2) in the flow reactor with
k1 = k2 = k3 = k4 = (k5 =) 0, n = 4 (upper plot) and n = 5 (lower
plot). In both cases the oscillations grow until one species dies out,
then the hypercycle is extinguished by the ratchet mechanism and only
compound A remains. Choice of parameters, upper plot: a0 = 200,
r = 0.5 [V−1t−1], l1 = l2 = l3 = l4 = 0.1 [M−2t−1] and p = 0.001; lower
plot: a0 = 400, r = 0.5 [V−1t−1], l1 = l2 = l3 = l4 = l5 = 0.01 [M−2t−1]
and p = 0.002. Pseudorandom number generator: Extended CA (Math-
ematica 10), seed: s = 089 (upper plot) and s = 919 (lower plot). Ini-
tial conditions: A(0) = 0, X1(0) = X2(0) = X3(0) = X4(0) = 4 (upper
plot) and A(0) = 0, X1(0) = X2(0) = X3(0) = X4(0) = X5(0) = 5
(lower plot). Color code: A(t) black, X1(t) red, X2(t) yellow, X3(t)
green, X4(t) blue, and X5(t) cyan.
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stochastic trajectories can only choose between two alternatives: the state of extinction

S0 and the state of cooperation Sn. The system with three-subspecies (n = 3) is easier

to interpret and we start with it therefore. Considering the regime where the cooperative

state Sn exists, r < a20/4φ, the decision whether a trajectory approaches S0 or Sn in the

long run falls in phase II (figure 8) and is determined by the initial conditions, X1(0),

X2(0), and X3(0), as well as the sequence of random events – as controlled in the simu-

lation by the seeds of the pseudorandom number generator. In table 3 we illustrate the

long-time behavior of the non-oscillating cooperation-mutation system by the long-time

expectation values of the variables A(t) and Xi(t) with i = 1, 2, 3 taken at a predefined

time (t = 30) as well as the counted ratios of final states. The stochastic results calcu-

lated by Gillespie simulations are compared with the deterministic values obtained from

integration of the kinetic ODEs. The mutation-free system (p = 0) shows significant

differences only for the initial conditions X1(0) = X2(0) = X3(0) = X(0) = 1, 2, 3. Inter-

estingly, the approximate stationary resource concentration, E
(
A(30)

)
, is more sensitive

to the initial conditions than the other three expectation values. The probability to end

up in the state of cooperation, P (S3), shows precisely the same trend as the expectation

values: for X(0) = 1 only 30 % of the trajectories go into S3, for X(0) = 2 the percentage

has increased to 91 %, for X(0) = 3 to 97 %, for X(0) = 4 it reaches almost 100 % and

for X(0) > 4 we find that practically all trajectories converge to the state of cooperation

S3. The numerical values for the expectation values calculated with X(0) = 10 and the

results of ODE-integration are almost the same. All values calculated for a mutation rate

parameter p = 0.05 show an increases propensity to end up in the cooperative state. Al-

ready at X(0) = 3 we calculated almost exclusive convergence to S3. The interpretation

is straightforward: All systems escape from dying out when during the time necessary

for hypercycle extinction the missing subspecies is reintroduced by mutation. The more

members the hypercycle has the longer is time span that allows for a successful repair of

the system. In the two-membered cooperative system the effect of mutation on survival of

the system is very small or not detectable. This can be made plausible by recalling that

for n = 2 the other subspecies of the system is simultaneously the previous and the next

member in the cycle. In summary we have two stochastic effects in the small cooperative

systems with mutation: (i) initial conditions with very small particle numbers have very

strong influence on the solution curves and are the cause of very large fluctuations as we
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Figure 11. Time to extinction T0 of oscillating hypercycles with n = 5 and
mutation rates p. The plot shows times to hypercycle extinction
as a function of available resources, T0(a0) calculated by means of the
Gillespie algorithms. Individual points coarse grained to ∆a0 = 10 are
connected by straight lines. Choice of parameters: r = 0.5 [V−1t−1],
l1 = l2 = l3 = l4 = l5 = 0.01 [M−2t−1]. Pseudorandom number genera-
tor: Extended CA (Mathematica 10), seed: s = 491. Initial conditions:
A(0) = 0, X1(0) = X2(0) = X3(0) = X4(0) = X5(0) = 5. Color code:
p = 0.0 red, p = 0.0005 yellow, p = 0.0010 green, and p = 0.0020 blue.

observed in case of second order autocatalysis (section 3), and (ii) mutation can partially

compensate for the extinction of subspecies.

In the stochastic approach the oscillating systems are particularly sensitive to fluc-

tuation when one or more components adopt very small values of concentrations in the

low tide phase of the period and sufficiently large values of the mutation rate parame-

ter p may substantially increase the lifetime of the system. For n = 4 sufficiently large

populations sizes N can prevent the system from extinction but for n ≥ 5 the relaxation

oscillations [64] lead sooner or later to the elimination of one species, say Xk. After Xk

has vanished the whole mutation-free system dies out stepwise like driven by a ratchet as

can be easily verified from equation (10) by putting Qij = δij for error-free reproduction:

xk = 0 → dxk−1
dt

= −xk−1 r → xk−1 = 0 ,

xk−1 = 0 → dxk−2
dt

= −xk−2 r → xk−2 = 0 , etc.,

until all subspecies have disappeared. Figure 10 illustrates extinction for two examples

with small p-values and n = 4 and n = 5. In the former case the oscillations show an
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interesting kind of beat.

The role of mutation is to replace extinguished subspecies Xk sufficiently fast in order

to prevent the onset of the ratchet. We consider the time of extinction of the system,

T0, for n ≥ 5. Without mutation the T0-values show large random scatter but as a func-

tion of the resource concentration a0 they are confined to values below a certain limit

that corresponds to a fairly short lift time of the hypercycles. Despite enormous random

scatter the extinction times show an interesting regularity (figure 11). On introduction

of mutation the time of extinction of the hypercycle, T0, becomes longer with increasing

mutation rate parameter p. Large scatter is to be expected since we are dealing with

second order autocatalysis (section 3). In addition the dependence on a0 indicates some

threshold behavior: With increasing a0 the extinction time T0(a0) stays little higher than

the values for p = 0.0 but above some critical resource concentration (a0)cr(p) the hy-

percycle lifetime shows fast increase with a0 and above a certain a0 value the hypercycle

survives to long time. The critical resource concentration becomes smaller with increasing

p. The behavior of the extinction times T0(a0) is similar in the cases with n = 4 but the

critical concentrations (a0)cr(p) for the different p-values lie much closer together.

7 The complete model

Completion of the model requires bringing together the three faces of the coordinate

system in figure 1 and analysing the interior. An appropriate strategy consists in choosing

certain type of behavior on one of the three faces and increasing the third parameter from

zero to the value of interest. An example is the influence of mutation, which is commonly

negligible for small value of p, and to raise the mutation rate until the effect of the

third parameter, reintroduction of already extinguished subspecies becomes evident. The

complete collection of scenarios observed in the full three-dimensional parameter space

is very rich and describing all features would go beyond the scope of this contribution.

Therefore we shall postpone the complete description to a forthcoming publication [69]

and illustrate here by one example, the transition from competition to cooperation with

increasing rate parameters h = l · a only. For p = 0 and small numbers of subspecies

(n = 2, 3) the transition has been discussed in section 5 and leads from selection of the

fittest to a cooperative state with all subspecies present. For oscillating systems (n > 4)

the hypercycles are unstable in the stochastic approach and raising the rate parameter h
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leads from selection to extinction. In the intermediate parameter range where exclusion

occurs in the deterministic system we find highly irregular oscillation of different numbers

of subspecies whereby the number of species present increases with increasing h-values.

Nonzero mutation rates p stabilize the hypercycles and at sufficiently frequent mutations

the vanished subspecies are reintroduced as mutants of other subspecies fast enough so

that a kind of mutation supported hypercycle dynamics originates. Then the scenario

of a transition from low to high h-values leads from selection of the fittest to oscillating

hypercycles. Similar procedures are suitable for variation of p at constant f and h or

variation of f at constant p and h.

The model has been presented here in its most simple form. The three modules,

competition, cooperation and variation, can be made arbitrarily complex. Variation, for

example, can be extended to include more elaborate mutations, recombination, and envi-

ronmental influences. In case of viruses the reproduction mechanism might consider also

the defense system of the host, epigenetic phenomena may be taken into account through

considering several generations at a time, and for higher organism the real challenge is

to deal in simple form with the enormous complexity of development. Cooperation at

the molecular level may also include reproductive autocatalytic networks whereas social

phenomena in reproductive groups or societies represent the currently highest step in the

open ended complexity of biological evolution. There is no limitation to make the model

more complex, the problem evidently is to include the desired phenomenon but to keep

the model simple enough for mathematical analysis.

At the end we present a few examples, which show that experimental implementa-

tions of the evolution model are quite straightforward in certain cases. The flow reactor

introduced here has the advantage to be a suitable device for both theoretical computa-

tions and evolution experiments. Other setups were also successfully applied to evolution

experiments based on competition and mutation, for example, reaction diffusion systems

in capillaries [70, 71] or rather sophisticated machines [72]. Quasispecies formation and

evolution have been extensively studied and in this case predictions by theory can be

readily checked by proper experiments [73]. Application of the theory to virus evolution

gave important insights into virus population dynamics in vitro and in vivo and provided

important hints for the development of novel antiviral strategies [63, 74]. Although sym-

biosis and its negative counterpart in form of predator-prey systems are common in field
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biology and in bacterial communities, easy to analyse molecular systems showing cooper-

ation through second order autocatalysis are not at hand despite an impressive number

of designing attempts. The systems coming closest to the ideal kinetics are described in

publications representative for others [7, 8, 75,76].

Acknowledgements: The authors wishes to acknowledge fruitful discussions with Profes-

sors Ivo L. Hofacker and Christoph Flamm.
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