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Abstract

A tenth algebraic order P-stable symmetric three-stages two-step finite difference pair with
vanished phase-lag and its derivatives up to order four is built, for the first time in the literature,
in this paper. The methodology for the building of the new finite difference pair is based on the
following steps:

e Satisfaction of the necessary and sufficient conditions for P—stability.
o Satisfaction of the condition of the vanishing of the phase-lag.

e Satisfaction of the conditions of the vanishing of the derivatives of the phase-lag up to
order four.

The solution of the resulting system of equations, produced based on the above methodology,
leads to the determination of the coefficients of the new proposed method.

As a result of the above procedure we obtain, for the first time in the literature, a three—
stages P—stable tenth algebraic order symmetric two—step finite difference pair with vanished
phase—lag and its first, second, third and fourth derivatives.
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We will also present a detailed theoretical and numerical analysis of the new obtained scheme,
as follows:

e the building of the new proposed finite difference pair,
e the computation of its local truncation error (LTE),

e the denotation of the asymptotic form of the LTE, applying the new scheme to scalar
problem of the radial Schrédinger equation,

e the stability analysis with the computation of the stability domain and the interval of
periodicity,

e the denotation of an embedded pair for the LTE control procedure and the determination
of variable step procedure for the change of the step length of the integration,

e the evaluation of the computational efficiency of the new built finite difference pair with
application on:

1. the resonance problem of the radial Schréodinger equation and on

2. the coupled differential equations arising form the Schrodinger equation.

The above obtained results leads to the conclusion that the new obtained three-stages P-
stable tenth algebraic order finite difference pair with vanished phase—lag and its derivatives up
to order four is more efficient method than the existed ones.

1 Introduction

A new three stages P-stable symmetric two-step method with eliminated phase-lag and
its derivatives up to order four is built, for the first time in the literature, in this paper.

The building of the new finite difference method is based on the following steps:

e The conditions for the P—stability are satisfied.
e The conditions for the elimination of the phase—lag are satisfied.

e The conditions for the elimination of the derivatives of the phase-lag up to order

four are satisfied.

The effectiveness of the new built finite difference pair is evaluated applying it to the

following problems:

e the radial time independent Schrodinger equation and

e the coupled differential equations arising from the Schrodinger equation.
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The efficient numerical solution of the above described problems is very important
in Computational Chemistry (see [8] and references therein) since a critical part of the
quantum chemical computations contains the Schrodinger equation (see [8] and references
therein). We note also that in problems with more than one particle the approximate
solution of the Schrodinger equation is necessary. The efficient approximate solution of
the Schrédinger’s equation (using numerical methods) gives us the following important

information:

e numerical computations of molecular properties (vibrational energy levels and wave

functions of systems) and

e numerical presentation of the electronic structure of the molecule (see for more

details in [9-12]).

In this paper, and based on the new built finite difference pair, we also develop an
embedded numerical pair which is based on an local truncation error control procedure
and a variable—step algorithm.

The problems investigated in the present paper belong to the category of special

problems which can be written as:
¢"(@) = f(x,9), ¢(xo) =0 and ¢'(z0) = . (1)

and which they have periodical and/or oscillating solutions.
Below we give the main categories of numerical methods and their bibliography which

was developed during the large research which has been done the last decades:

e Exponentially, trigonometrically and phase fitted Runge-Kutta and Runge-Kutta
Nystrom methods: [46], [49], [58], [61] — [66], [55], [77]. In this category of methods,
Runge-Kutta and Runge-Kutta Nystrom schemes are built. This category can be

divided into two subcategories:

— Numerical methods which have the property of exact integration of sets of

functions of the form:
2’ cos(we),i=0,1,2,...0r 2’ sin(wx),i=0,1,2,...
or 2t exp(wa),i=0,1,2,... (2)

or sets of functions which are combination of the above functions.
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— Numerical methods which have the property of elimination (or vanishing) of

the phase-lag.

Remark 1. The quantity w in (2) determines the frequency of the problem.

Multistep exponentially, trigonometrically and phase fitted methods and multistep
methods with minimal phase-lag: [1] — [7], [17] — [20], [24] — [27], [33], [37], [39], [43],
[47] — [48], [52], [57], [59] — [60], [70] — [72], [78] — [81]. In this category of methods,

multistep schemes are built. This category can be divided into two subcategories:

— Multistep methods which have the property of exact integration of sets of
functions of the form (2) or sets of functions which are combination of the

functions mentioned in (2).

— Multistep methods which have the property of elimination (or vanishing) of

the phase-lag.

Symplectic integrators: [41] — [42], [50], [53], [56], [66] — [69], [75]. In this category
of numerical methods, algorithms for which the Hamiltonian energy of the system

remains almost constant during the integration procedure, are built.

Nonlinear methods: [51]. In this category of numerical methods, the schemes have
nonlinear form (i.e. the relation between several approximations of the function on
several points of the integration domain (i.e. ¥4, 7 = 0,1,2,...) is nonlinear) are

built.

General methods: [13] - [16], [21] - [23], [34] — [36], [40]. In the category of numerical

methods, numerical pairs with constant coefficients are built.

2 General theory for the building of symmetric mul-
tistep finite difference pairs

In this section we describe the general theory for the building of the symmetric multistep
methods. We focus our interest on these methods since the new proposed method belongs

to this category.
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Problems of the general form (1) can be numerically solved by discretization proce-

dure. The integration domain [a, ] is discretized using the 2m-step method (i.e. a finite

difference method) presented below (3). In this type of discretization the quantity m

determines the number of the discretization points.

In this section we will use the following symbols:

e /1 determines the stepsize of the integration which is the same with the step length

of the discretization. It is defined as h = |z;41 — 23], ¢ =1—m(1)m — 1 (i.e. the

parameter ¢ is moved between 1 —m and m — 1 with step 1) where

e 1, denotes the n-th point on the discretized area.

e ¢, denotes the approximated value of the function ¢(z) at the point z,,. We note

here that the approximated value is computed using a numerical method and in our

investigation we will use as numerical method, the 2m-step method (3) presented

below

Let us consider the family of 2 m-step methods:

A(m): Z i oy = Z Bi f(@nis Pnvi)

i=—m i=—m

3)

The above family of finite difference pairs will used for the numerical solution of the

initial value problem (1) on the in integration domain [a,b]. It is noted that «; and

Bi i = —m(1)m are the coefficients of the 2 m-step method.

Definition 1.

A(m) — { Bm # 0 implicit;

B =0 explicit.
Definition 2.
A (m) with qi—m = Om—i, Biem = Bm—i, t = 0(1)m — symmetric

Remark 2. The method A (m) is associated with the linear operator

m m

L(z) = > aiplw+ih) —h* Y B¢ (@ +ih)

i=—m i=—m

where p € C? (i.e. C* = CzC).
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Definition 3. [13] The multistep method (3) is called of algebraic order T, if the linear
operator L (6) vanishes for any linear combination of the linearly independent functions

P 2 T4+1
1,2z, 2%, ..., 27

Applying the symmetric 2 m-step method A (m) to the scalar test problem

we obtain the difference equation:

Tm(v) Pn4+m + ...+ Tl(U) Pn+1 + YO(U) Pn

+T1(,U) Pn-1+ ...+ Tm(v) Prn—m = 0 (8)

and its associated characteristic equation:

Tm(v) A™ + ...+ Tl(’U) A + To(l})
T ) AT L T (v) AT = 0. (9)

where
e v=20h,
e h is the stepsize or step length of the integration and
e T;(v), j = 0(1)m are the stability polynomials.

Definition 4. [14] We call that a symmetric 2 m-step method has an non zero interval of
periodicity (0,v3), if its characteristic equation (9), for all v € (0,v), has the following
T00ts :

A =™ Ny = e ™0 and [N <1,i=3(1)2m (10)

where ¥(v) is a real function of v.

Definition 5. (see [14]) We call a symmetric multistep method P-stable it its interval of

periodicity is equal to (0,00).
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Remark 3. We call a symmetric multistep method P-stable if the following necessary and
sufficient conditions are hold:

M| =]l =1 (11)

[Nl < 1,5 =3(1)2m, Yo. (12)

Definition 6. We call a symmetric multistep method singularly P-stable if its interval of

periodicity is equal to (0,00)\S, where S is a finite set of points.

Definition 7. [15], [16] The symmetric multistep method with associated characteristic
equation given by (9), has phase-lag which is defined as the leading term in the ezpansion
of

t=v—1(v). (13)

Ift = O(v"*Y) as v — oo then we call that the phase-lag order is equal to .

Definition 8. [17] We call a symmetric multistep method phase-fitted if its phase-lag
is equal to zero.

Theorem 1. [15] For a symmetric 2m-step method with characteristic equation given
by (9) a direct formula for the computation of the phase-lag order v and the phase-lag

constant w is given by

27, (v) cos(mv) + ... +27;(v) cos(jv) + ... + To(v)
2m2 Y, (v) + ...+ 252 T(v) + ... 2711 (v)

—wV T2 4+ O(vV ) = (14)

Remark 4. For the symmetric two—step methods the phase-lag order v and the phase-lag
constant w are computed using the formula:

271 (v) cos(v) + Yo(v)
27 (v)

*W’UU+2 + O(/Uv+4) —
where T;(v)j = 0,1 are the stability polynomials.
3 A new P-stable three—stages symmetric two—step

finite difference pair with vanished phase—lag and
its first, second, third and fourth derivatives

We consider the following family of methods

@n-%—l = Pnt1 — h? (Cl fov1—cofot+a fn—l)
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Gl = Pur1 — B (03 for1—c2fatcs fn—l)

(16)

nt1 + a1 Pn + Ppo1 = h? |:bl (fn+1 + fn—l) +bo fn

where fn+i = ‘/10” (InJri:SOnJri):Z‘ = 71(1)17 fn+1 = (10” (In+1;(/]\n+1)7 fn+l = QOH (xn+17¢n+1)

and ay, b;, 1 = 0,1 and ¢;, i = 0(1) 3 are parameters.

Remark 5. The new proposed finite difference pair is a nonlinear pair of three—stages.
We note here that all the stages of the new scheme are based on approximations on the

point Tp41-

We will study the following specific case:

5 1
== —— 1
bo=5bh=15 (17)

Remark 6. We determine the above mentioned constant values of the coefficients of the

family of finite difference pairs (16) requesting the mazimum possible algebraic order.
Application of the scheme (16) with the constant coefficients given by (17) to the scalar

model problem (7), leads to the difference equation (8) with m = 1 and the corresponding

characteristic equation (9) with m = 1 where:

1

Ti(v) = 1+ E?)Z (1 + ez + vt (d)
1 . .

To(v) = a1+ EF v? (10 —v?ey — e 03) (18)

The methodology of the building of the proposed finite difference pair is described in

the flowchart of Figure 1 (for developing flowcharts in LaTeX one can see [89]):

3.1 Satisfaction of the P—stability properties

The procedure first introduced by Lambert and Watson [14] and Wang [82] is used in

order to satisfy the P—stability properties for the new proposed method:

o Satisfaction of the characteristic equation given by (9) with m = 1 for A = ¥,

where I = y/—1, leads to the following equation:

(e1")* Yo (0) 4 ¢! T (v) + To (v) = 0 (19)
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Building of the New
Finite Difference Pair

l

Satisfaction of the P—
stability Properties
Satisfaction of the Vanishing
of the Phase-Lag and its
Derivatives up to Order Four

]

Solution of the Result- ‘

ing System of Equations

]

Computation of the Local Trun-

cation Error (LTE) of the Builded
New Finite Difference Pair

Figure 1. Flowchart for the methodology of the building of the new proposed P—
stable three stages symmetric two—step scheme with vanished phase-lag
and its derivatives up to order four

o Satisfaction of characteristic equation given by (9) with m = 1 for A = e~T¥, where

I = +/—1, leads to the following equation:
()" To(v) + 7" T (0) + Lo (1) = 0 (20)

Remark 7. The above built conditions of P-stability are obtained based on the Definition
4 and taking into account that the new proposed new method has the characteristic equation

gwen by (9) with m =1, where Y;, j =0, 1 are given by (18).

3.2 Satisfaction of vanishing of the phase—lag of the pair and its
derivatives up to order four

The requirement of satisfaction of the vanishing of the phase-lag and its derivatives up
to order four for the new proposed scheme (16) with the coefficients given by (17) leads
to the following system of equations:

1 TQ (’U) 7
2 v8¢ics + vieg + 02+ 12

s (v)
. " 5 5 =0 (22)
(v8¢ye3 + vies + 02 + 12)

Phase — Lag(PL) = 0 (21)

First Derivative of the Phase — Lag =
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T
Second Derivative of the Phase — Lag = 1(v) =0 (23)
(vS¢ic5 + vics +v2 4 12)
T
Third Derivative of the Phase — Lag = 5 (v) = (24)
(v8eres + vies + 02 + 12)
o T (v)
Fourth Derivative of the Phase — Lag = =0 (25)

(vScicy + vics + 02 +12)°
where T; (v), j = 2(1)6 are given in the Appendix A.

3.3 Solution of the obtained system of equations

In order to obtain the determination of the coefficients of the new finite difference pair

(16), the system of equations (19), (20), (21)—(25) is solved:

1 T7 (1})
@ = ———————
18 Udenom, (v)
o= LT
07 73 Udenoms (v)
1 Tg (1})
¢ =—z—"
2 Udenoms (v)
e = — TIO (/U)
2 vt Udenom; (v)
3 = 2#(”) (26)

" vt Udenomy (v)

where T; (v), j = 6(1)9 and Udenomy, (v), j = 1,2 are given in the Appendix B.

Since there is the possibility to face cancellations or impossibility of determination
of the coefficients (26), during computations (Example of a possible cancellation: Some
of the denominators of the coefficients (26) lead to zero for some values of |v]), in the
Appendix C, we give the truncated Taylor series expansions of the coefficients built in
(26).

In Figure 1 we present the behavior of the coefficients.

Based on the methodology for the building of the new scheme, the last stage of the
development consists the determination of its local truncation error (LTE), which is given

by:

1
LT Enyasesiov = ~ g7 " (5 U2 424 82 o110 4 45 ¢t o
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Figure 2. Plot of the behavior of the coefficients of the new proposed symmetric
finite difference pair (16) given by (26) for several values of v = ¢ h.

+40 65 ® + 15¢% M) — $12 w) +0 (k). (27)

We symbolized the new built method as NM3SPS4DV. The explanation of the abbrevia-
tion NM3SPS4DV is: New Method of Three-Stages P—Stable with Vanished Phase-Lag

and its Derivatives up to Order Four.
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Remark 8. The computation of the formula of the local truncation error (27) is important
for the determination of the algebraic order of the new proposed finite difference scheme.
The formula of the LTE is also important for the computation of the asymptotic form of
the local truncation error which is important for the local truncation error analysis and

comparative error analysis.

4 Local truncation error and stability analysis of the
new proposed pair

4.1 Comparative error analysis

In the Section we will study the local truncation error of some finite difference pairs of

similar form. The error analysis is based on the following scalar model problem:
@) = (V(z) = Ve+ T) ola) (28)
where

e V(z) denotes the potential function,

e V. denotes a constant approximation of the potential on the specific point z,
e I'=V,—F

e Z(z) =V(z) — V. and

e F denotes the energy.

Remark 9. The scalar model problem for the error analysis is the radial Schrédinger

equation with potential V(x).
We will study the following methods:

4.1.1 Classical method (i.e., method (16) with constant coefficients)

1

ITEyp = ———
L™ 793950080

pi2 995112) +0 (hM) ) (29)

4.1.2 P-stable linear six—step method of Wang [82]

81

LT Ew ancpsies = ————
WANGPSL6S 44800

0o (W +10% go) +0 (h?). (30)
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4.1.5
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P-stable method with vanished phase-lag and its first and second
derivatives developed in [6]

1
LTENmsspsepy = ~ 47900160 h'? (2 %95112) -9 ¢4 905?)
—8 ¢6 ,*9516) _ ¢12 LPn) +0 (h14) ) (31)

P—stable scheme with vanished phase—lag and its first, second and third
derivatives developed in [7]

1
LTE - . N — (12) _ g ¢t ,(®)
NM3SPS3DV 93950080 (9% (Ot
—16¢° 0@ — 9% W 4 @12 99") +0 (k). (32)

P-—stable scheme with vanished phase—lag and its first, second, third
and fourth derivatives developed in section 3

The formula of the Local Truncation Error for this method is given by (27)

The methodology for the comparative local truncation error analysis is the following:

Computation of the new expressions for the LTE formulae given by (29), (30), (31),
(32) and (27) applying the model problem (28) (radial time independent Schrodinger
equation). The new expressions are derived by substituting the derivatives of the
function ¢ (which are produced based on the the test problem (28)) in the formulae
given by (29), (30), (31), (32) and (27). We mention here the some expressions of

the derivatives of the function ¢ are presented in the Appendix D.

The above step leads to the new formulae of LTE for the methods under evaluation.
The characteristic of these new formulae is the inclusion of the parameter I' and the
energy E.

The general form of the new formulae of LTE is given by:

k
LTE =h" Y &1 (33)
j=0
with ®; are: 1) real numbers (frequency independent cases i.e. the classical case)

or 2) formulae of v and ' (frequency dependent cases), p is the algebraic order of
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the specific finite difference pair and k is the maximum possible power of I' in the

formulae of LTE.

e Two cases for the parameter I' will be studied:

1. The Energy is closed to the Potential.

Consequently:
F~0=0"=~0i=12,.... (34)
which leads to the form for the formula (33:

Remark 10.
LTEr—_o = h* Ay (35)

We note here that the quantity Ag is the same for all the finite difference pairs
of the same family, i.e. LTEcp = LTENysspsepv = LT Enysspsspy =

LTEnsspsapy = h'% Ao, where Ag is given in the Appendiz E.

Theorem 2. The formula (34) leads us to the conclusion that for T' =V, —
E =~ 0 the local truncation error of the classical method (constant coefficients -
(29)), the local truncation error of the scheme with vanished phase-lag and its
first and second derivatives developed in [6] (with LTE given by (31), the local
truncation error for the algorithm with vanished phase—lag and its first, second
and third derivatives developed in [7] (with LTE given by (32) and the local
truncation error for the numerical pair with vanished phase-lag and its first,
second, third and fourth derivatives developed in Section 3 (with LTE given by
(27), are the same and equal to h'? Ao, where Ay is given in the Appendiz E.

2. The Potential and the Energy are far from each other. Therefore,
I' > 0VTI << 0 = |I'| >> 0. Consequently, the most accurate finite
difference pair is the finite difference pair with formula of asymptotic form of
LTE, given by (33), which contains the minimum power of I and the maximum

value of p.

e The above analysis leads to the following asymptotic forms of the LTE formulae for

the schemes which are under evaluation.
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4.1.6 Classical method

The Classical Method is the method (16) with constant coefficients.

1 .
ITEo, = ——— 112 4 ... iy
L = 733950080 <“° (z) "+ > +0 (n") (36)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for I'V j = 0 (1) 5.
4.1.7 P-stable linear six—step method of Wang [82]

This is the method presented in Linear Six-step Method presented in [82] (see in [82]
equations (23)-(27). We note also here that there is a missprint in the paper [82]. In
formula (25) 2 Cs ¢y, must be replaced by the correct: 2Cs0 ), 5.

81
LTEwancpsLes = ~ 3960 h' <E () ¢ (x) T+ - ) +0(n'?). (37)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for IV j = 0 (1) 3.

4.1.8 P-stable method with vanished phase-lag and its first and second
derivatives developed in [6]

This is the P-stable method which we developed in [6].

1 d
LTEn: = - h? | —E r
NM3SPS2DV 997920 (dx‘* (x) ¢ (2)

+~-~>+O(hl4)< (38)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for IV j = 0 (1) 3.

4.1.9 P-stable scheme with vanished phase—lag and its first, second and third
derivatives developed in [7]

This is the P-stable method which we developed in [7].

1 a2 d*
LT Exuaspsapy = — M2 42 ( z) —Z(z o(z) —E(z
NM3SPS3DV 997920 H (z) () 12 (z) + T () 1t ()
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3

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for IV j = 0 (1) 2.

4.1.10 P-stable scheme with vanished phase—lag and its first, second, third
and fourth derivatives developed in section 3

This is the P—stable method which we developed in Section 3.

4. | +0(h). (40)

1 d4
LTEN =—— 2 —Z=(
NM3SPS4DV 1247400 h H@ (z) dzt (z)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for [V j = 0 (1) 2.
The above achievements lead to the following theorem:

Theorem 3.

e (lassical Method (i.e., the method (16) with constant coefficients): For this method

the error increases as the sizth power of I.

e P-stable Linear Siz—step Method of Wang [82]: For this method the error increases
as the fourth power of I'.

o P-Stable Tenth Algebraic Order Method with Vanished Phase—Lag and Its First and
Second Derivatives Developed in [6]: For this method the error increases as the

fourth power of T'.

o P-Stable Tenth Algebraic Order Method with Vanished Phase—Lag and Its First,
Second and Third Derivatives Developed in [7]: For this method the error increases

as the third power of T'.

o P-Stable Tenth Algebraic Order Method with Vanished Phase—Lag and Its First,
Second, Third and Fourth Derivatives Developed in Section 3: For this method the
error increases as the third power of T', but the coefficient of the fourth power of T'

is much lower.
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Therefore, for the numerical solution of the time independent radial Schrédinger equation,
which is the scalar model problem for the error analysis, the new P-stable tenth algebraic
order method with vanished phase-lag and its derivatives up to order four is the most

accurate one.

4.2 Stability analysis

For the stability and interval of periodicity analysis the following scalar model problem
is used:
¢'=—wle (41)
where w # ¢, where ¢ is the frequency of the test problem (7) (phase-lag analysis) and
w is the frequency of the test problem (41) (stability analysis).

Application of the new built finite difference pair (16) to the scalar model problem
(41) leads to the difference equation:

Q1 (5,0) (nt1 + On-1) + Qo (5,0) 9, =0 (42)

and the corresponding characteristic equation:

Qi (s,0) (N +1)+Q(s,0) A =0 (43)

where the stability polynomials ©; (s,v), j = 0,1 are given by:

Q] (S, ’U) = 1+ b] 82 “+c3 b] 84 +cic3 b] 86

Qo (s,v) = ay+bys* —caby s —cyezby s° (44)
where s = wh and v = ¢ h.

Remark 11. Observing that some of the coefficients of (44) are dependent on v, we
conclude that the formulae (44) have dependence on s and v, while the formulae (18)

have dependence only on v.
if we substitute the coefficients b;, j = 0,1 from (17) and the coefficients a;, ¢;7 =
0(1)3 from (26) into the above stability polynomials, we obtain:

1 le (S,U)

Q = ————"
1(s:0) 12 v6 Yy (s,0)
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L Ti3(s,0)

Q — 1 Ty
0(s,v) 18 v8 Y14 (s, v)

where T; (s,v), j = 12(1)14 are given in the Appendix F.

Remark 12. We note here that the definitions of P—stability and singularly almost P—
stability, which are given in Section 2, are corresponded with problems having frequency

which satisfied the condition w = ¢@.

The finite difference pair (16) has a non zero interval of periodicity if the roots of its

characteristic equation (43) satisfy the following condition:
[Mpl <1 (46)

4.2.1 Methodology of the building of s—v domain for the new finite difference
pair
The development of the s — v domain for the new scheme is based on the flowchart of
Figure 3.
The methodology which is described in the flowchart of Figure 3 leads to the devel-

opment of the s — v domain plotted in Figure 4.

Remark 13. Observing the s — v domain plotted in Figure 4 we arrive to the following
remarks:
1. The new proposed finite difference pair is stable within the shadowed area of the

domain.

2. The new proposed finite difference pair is unstable within the white area of the do-

main.

Remark 14. The stability area on s — v domain of the finite difference pair specifies the
kind of problems for which the specific method is appropriate:

1. Categories of problems for which w # ¢. For these problems we have to study
all the area of the s —v domain excluding the area around the first diagonal of the

domain.

2. Categories of problems for which w = ¢ (see the Schridinger equation and
related problems). For these problems we have to study the area around the first

diagonal of the figure of the s — v domain.
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Building of s — v Domain for
the New Finite Difference Pair

|

Specification of the char-
acteristic equation (43)

l

The equation (43) is solved
for several values of s and v

l

Evaluation of the solution of the
equation (43) - examination of the
satisfaction of the condition (46)

l

The cases where the values of s and

v produce an equation (43) which its
solutions satisfy the condition (46) lead to
the plot of the corresponding point (s, v)

l

The cases where the values of s and
v produce an equation (43) which
its solutions do not satisfy the con-
dition (46) lead to the selection for
examination of another point (s, v)

Figure 3. Flowchart for the methodology of the building of s — v domain for the
new finite difference pair

The methodology for the determination of the interval of periodicity of the new de-

veloped finite difference pair is as follows:

1. Substitution s = v in the stability polynomials €;, i = 0,1 given by (45).

2. Investigation of the area around the first diagonal of the s —v domain which is given

in Figure 4.

Based on the above described methodology, the interval of periodicity of the new built
method is found to be equal to (0, c0).
Remark 15. The interval of periodicity is a property corresponding to categories of prob-
lems for which s = v.

The above analysis leads to the following theorem:
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Stability Region for the Family of Three Stages Two-Step P-stable Tenth Algebraic Order Methods with Vanished Phase-Lag and its First, Second, Third and Fourth Derivatives
— I T T

v (method)

s (test problem)

Figure 4. The plot of s —v domain of the new developed P-stable two—stages pair
with vanished phase-lag and its derivatives up to order three.

Theorem 4. The method obtained in Section 3:

o s of three stages

e is of tenth algebraic order,

e has vanished the phase-lag and its derivatives up to order four and

e is P-stable i.e. has an interval of periodicity equals to: (0,00).

5 Numerical results

The evaluation of the efficiency of the new built finite difference pair is achieved via its

application to the numerical solution of:

1. The radial time-independent Schrodinger equation and

2. The systems of coupled differential equations of the Schrodinger type.
5.1 Radial time—independent Schrédinger equation

The mathematical model of the radial time-independent Schrodinger equation is given
by:
¢"(r) =L+ 1)/r* + V(r) = K o(r), (47)
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where

1. The function ©(r) = I(I + 1)/r? + V(r) determines the effective potential which

satisfies the following property : ©(r) — 0 as r — oo.
2. k% € R determines the energy.
3. | € Z determines the angular momentum.

4. The function V' determines the potential.

We note that the problem (47) is a boundary value one and therefore, the boundary

conditions must be determined. These conditions are given by:

©(0)=0

and another boundary condition at the end point of integration domain which is denoted
for large values of r from the physical considerations of the specific problem.

The new built finite difference pair is belonged to the frequency dependent methods
(all or some of its coefficients are dependent from the v = ¢ h), and consequently, the
definition of the frequency ¢ is necessary, in order all or some coefficients of the new
developed method to be computed and therefore to be possible the new finite difference

pair to be applied on the numerical solution of the problem (47). In our numerical

experiments and for (47) and [ = 0 we have:

o=VIV(r) =k =V ()~ El|
where V (r) determines the potential and E = k? determines the energy.

5.1.1 Woods—Saxon potential

Since the mathematical model of the problem (47) consists the potential V (r), it is
necessary its determination the mathematical form of the potential function before the
numerical solution of the problem (47). In our numerical tests we will use the Wood-Saxon

potential which is given by:

Vo Yo WE
1+& a(1+¢)?
with € = exp [=X0] | Wy = —50, a = 0.6, and X, = 7.0.

a
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The Woods-Saxon Potential

H 10 15

504

Figure 5. Behavior of the Woods—Saxon potential.

The plot of the Wood—Saxon potential for several values of r is presented in Figure 5.
The necessary values of the frequency ¢ are determined as follows (see for details [19]

and [20]):
V=E0+E for rel0,6.5—2h

vV=375+F for r=65—h
p=<¢ v=25+FE for r=6.5
vV—125+F for r=65+h

VvE for r € [6.5+ 2h,15].
For the definition of the above values of the frequency ¢, the methodology introduced

by Ixaru et al. ( [18] and [20]) is used. The specific methodology requests discrete
approximations of the continuous function V' (r) by constant values on some critical points
within the integration domain. Examples for the determination of the values of ¢ are given

below:

1. On r = 6.5 — h, the value of ¢ is equal to: v/—37.5+ E. Consequently, v = ¢ h =
V=375+ Eh.

2. On r = 6.5 — 3 h, the value of ¢ is equal to: +/—50+ E. Consequently, v = ¢ h =
V=504 E h.

It is noted that the potential V' (r) is defined by the user. Many potentials are of great
interest in several scientific disciplines of Chemistry. Very few of them have known their
eigenenergies. The selection of the Woods—Saxon potential was done based on the fact

that for this potential the eigenenergies are known.
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5.1.2 The resonance problem of the radial Schréodinger equation

We will solve numerically the problem (47):

e with [ =0 and

e using the Woods-Saxon potential (48)

By theory, the interval of integration for the problem described above is equal to
(0,00). Therefore and in order the above mentioned problem to be solved numerically,
an approximation of the infinite interval of integration (0, c0) by a finite one is necessary.
For our numerical tests we approximate the infinite interval of integration by r € [0, 15].
For our numerical experiments we also apply the finite difference methods to be examined
on a wide range of energies: £ € [1,1000].

The radial Schrédinger equation (47) can be written as:

o+ (- 100) o =0 (19)

when r — 0o, because in these cases, for positive energies the potential V' (r) vanished
faster than the term 1(1%1) We note also that in (49) the linearly independent solutions
of the above model are given by krj; (kr) and krny (kr), with j; (kr) and n; (kr) are
the spherical Bessel and Neumann functions respectively (see [83]).

Therefore, the asymptotic form of the solution of equation (47) (when r — o) is given

by:

Akrj (kr) — B krng (kr)

AC {sin (kr — %r) + tan §; cos (kr — %r):|

where ¢; is the phase shift and A, B, AC € R. The direct formula for the computation

Q

w(r)

Q

of the phase shift is given by:

@ (1r2) S (r1) — ¢ (1) S (r2)
@ (r) C(r1) — ¢ (r2) C (r2)

where 7 and ro are distinct points in the asymptotic region (we chosen r; = 15 and

ro =1 — h) with S(r) = krj (kr) and C(r) = —krmn; (kr). The above mentioned

tand; =

problem is an initial-value one and consequently, the values of ¢;, 7 = 0,1 must be
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computed in order a two—step scheme to be applied. The value ¢ is defined by the initial
condition of the problem. The value ¢; is computed using the high order Runge-Kutta—
Nystrom methods (see [21] and [22]). The computation of the values ¢;, ¢ = 0,1 leads to
the computation of the phase shift §; at the point ry of the asymptotic region. It is noted
that ¢; is the approximation of the function ¢ at the point ;.

The above mentioned problem is solved for positive energies and therefore, two are

the possible results of the solution:

e the phase-shift §; or
e The energies £, for £ € [1,1000], for which 6 = 3.

For our numerical experiments the second problem is solved, which is known as the
resonance problem.

The boundary conditions are:
©(0) =0, (r)=cos (\/Er) for large r.

The following methods are evaluated for the computation of the the positive eigenen-

ergies of the resonance problem described above:

e Method QTS8: the eighth order multi-step method developed by Quinlan and

Tremaine [23];

e Method QT10: the tenth order multi-step method developed by Quinlan and

Tremaine [23];

e Method QT12: the twelfth order multi—step method developed by Quinlan and

Tremaine [23];

e Method MCRA4: the fourth algebraic order method of Chawla and Rao with

minimal phase-lag [24];
e Method RA: the exponentiallyfitted method of Raptis and Allison [25];

e Method MCRS6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase-lag [26];

e Method NMPF1: the Phase-Fitted Method (Case 1) developed in [13];
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e Method NMPF2: the Phase-Fitted Method (Case 2) developed in [13];
e Method NMC2: the Method developed in [27] (Case 2);

e Method NMC1: the method developed in [27] (Case 1);

e Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];
o Method WPS2S: the Two-Step P-stable Method developed in [82];

e Method WPS4S: the Four-Step P-stable Method developed in [82];

e Method WPS6S: the Six-Step P—stable Method developed in [82];

e Method NM3SPS2DV: the Three Stages Tenth Algebraic Order P—stable Sym-
metric Two—-Step method with vanished phase-lag and its first and second derivatives

developed in [6];

e Method NM3SPS3DV: the Three Stages Tenth Algebraic Order P-stable Sym-
metric Two—Step method with vanished phase-lag and its first, second and third

derivatives developed in [7].

o Method NM3SPS4DV: the Three Stages Tenth Algebraic Order P—stable Sym-
metric Two—Step method with vanished phase-lag and its first, second, third and

fourth derivatives developed in Section 3.

In Figures 6 and 7 we present the maximum absolute error Err,,,;, which is defined

by: Errme. = max|log,, (Err)| where
Err = ‘E(;aluuluted - Eaccurate|

In order to compute the absolute error Err two values of the specific eigenenergy are

used:

1. The computed eigenenergies. The computed eigenenergies are determined as
FEeateulatea and are computed using each of the 17 numerical methods mentioned

above.

2. The accurate eigenenergies (the reference values for the eigenenergies). The accurate
eigenenergies are determined as F,.curate and are computed using the well known

two-step method of Chawla and Rao [26]. .
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Figure 6. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue Fy = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.
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Figure 7. Accuracy (Digits) for several values of C PU Time (in Seconds) for the
eigenvalue F3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.
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In Figures 6 and 7 we present the maximum absolute errors Err,,, for the eigenen-
ergies Fyp = 341.495874 and E3 = 989.701916, respectively, and for the 17 numerical
methods mentioned above for several values of CPU time (in seconds). The symboliza-
tions Ey and Ej for the computed eigenenergies in our numerical experiments are given
since it is known that the Woods—Saxon potential has also the eigenenergies Fy and Fj.
The choice of the eigenenergies Es and F3 was done because for these eigenenergies the
solution has stiffer behavior and therefore the new built method can show effectively its

efficiency.

5.1.3 Conclusions on the obtained numerical results for the radial Schrédinger
equation

Our numerical experiments presented in Figures 6 and 7 lead to the following conclusions:
e Method QT10 is more efficient than Method MCR4 and Method QTS8.

e Method QT10 is more efficient than Method MCRS6 for large CPU time and
less efficient than Method MCRS6 for small CPU time.

e Method QT12 is more efficient than Method QT10

e Method NMPF1 is more efficient than Method RA, Method NMPF2 and
Method WPS2S

e Method WPSA4S is more efficient than Method MCR4, Method NMPF1 and
Method NMC2.

e Method WPS6S is more efficient than Method WPS4S.
e Method NMC1, is more efficient than all the other methods mentioned above.

e Method NM2SH2DYV, is more efficient than all the other methods mentioned

above.

e Method NM3SPS2DV, is more efficient than all the other methods mentioned

above.

e Method NM3SPS3DV, is more efficient than all the other methods mentioned

above.

e Method NM3SPS4DV, is the most efficient one.
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5.2 FError estimation

The second problem which we will solve in our numerical experiments, is the numerical
solution of the coupled differential equations arising from the Schrédinger equation.

We will solve the above problem using a so called variable-step pair.

Definition 9. We denote a numerical pair as variable-step numerical pair if the stepsize

of integration is changed during the integration process.

Definition 10. We call Local truncation error estimation procedure(LTEEPR), the pro-
cess which is used in order a variable-step pair to change the stepsize during the integra-

tion.

We note that during the last decades much research has been done on the building of
numerical schemes of constant or variable stepsize for the numerical solution of problems
of the form of the Schrodinger equation (see for example [13]- [82]).

As we mentioned previously, we solve numerically the systems of coupled differential
equations arising from the Schrédinger equation using the variable-step pairs determined
above. We also mentioned above that the variable-step pairs are based on the LTEEPR
procedure determined above. The categories of the LTEEPR procedures are shown in

Figure 8.

ods - Embedded Fi-

‘ Viariable-Step Meth- ‘
nite Difference Pairs

LTEEPR Procedure
Based on the the Order

of Derivatives of the Phase-Lag

/
LTEEPR Procedure Based
on the Algebraic Order

Figure 8. Categories of LTEEPR Procedures used for Building Embedded Finite
Difference Pairs for Problems with Oscillatory and/or Periodical solu-
tions

The following formula for the estimation of the local truncation error (LTE) in the

lower order solution ¢, is used:
LTE =| 8054-1 - 90£+1 ‘ (50)

L H
where ¢,/ and ¢, | are
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e LTEEPR Procedure based on the algebraic order of the pairs. For this
procedure, % | determines the finite difference pair with the lower algebraic order
solution and ¢, | determines the finite difference pair with the higher algebraic

order solution.

e LTEE Procedure based on the order of the derivatives of the phase-lag.
Let us consider that the higher order of the derivatives of the phase-lag which are
eliminated for the finite difference pairs which participate in this procedure are p and
s respectively, where p < s. For this procedure +1 determines the finite difference
pair with eliminated higher order derivative of the phase-lag equal to p and ¢/,
determines the finite difference pair with eliminated higher order derivative of the

phase-lag equal to s .

For our numerical experiments we use the first LTEEPR procedure for the estimation
of the local truncation error. Consequently, we use:

As ¢k, we use the eighth algebraic order method developed in [81] and as ¢, | we
use the tenth algebraic order method developed in Section 3.

In Figure 9 we present the variable-step procedure via the Local Truncation Error
Control Procedure LTEEPR. This is the procedure which we use in our numerical

experiments. We note that:
e h, is denoted the stepsize which is used for the n® step of the integration and

e acc is denoted the accuracy of the local truncation error LT E which is determined

by the user.

Remark 16. In our numerical tests the known as local extrapolation technique is
used. Based on this technique for the approximation of the solution at each point of
the integration domain we use the higher order solution X, although the local error

estimation is based on the lower order solution L. ;.

5.3 Coupled differential equations arising from the Schrédinger
equation

Systems of coupled differential equations of the Schrédinger type are appeared in mathe-

matical models of problems in many scientific disciplines like:
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Error Control Pro-
cedure LTEEPR

]

hn+1 = 2hn

no

acc < LTEEPR <

hpe1 = hy
t+l 100 acc

Ppt1 = %hn and
the step is repeated

Figure 9. Flowchart for the Local Truncation Error Control Procedure LT EEPR.
The parameter acc is defined by the user

quantum chemistry,
material science,
theoretical physics,
quantum physics,
atomic physics,
physical chemistry
chemical physics,
quantum chemistry,

electronics,
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e ctc.
The formula of the close-coupling Schrodinger equations is given by:

& o L(li+1) N
pr L e _VM} 0= Vim Pmj
m=1
for 1 <i < N and m # 4. This problem is a boundary value problem.

The boundary conditions are given by (see for details [28]):

pij =0atz=0
e\ M2
i ~ ki gy, (kiw)dy; + (]j) K by xny; (ki) (51)
J
Remark 17. The finite difference pair built in this paper and the resulting embedded pair

can be applied effectively to both open and close channels problem.

The analysis fully described in [28] leads to the new formulae of the asymptotic con-

dition (51):

¢ ~ M+ NK'.

where the matrix K’ and diagonal matrices M, N are give by :

kM2
Kl = (7) K,
] kj

My = kg, (kix)d;
N.

ij

= kizny, (kix)dy;

We will investigate the rotational excitation of a diatomic molecule by neutral parti-
cle impact. We can meet this problem in many scientific disciplines like quantum chem-
istry, theoretical chemistry, theoretical physics, quantum physics, material science, atomic
physics, molecular physics, in technical applications in the analysis of gas dynamics and
stratification of chemically reacting flows, dispersed flows, including with nano-sized parti-
cles etc. The form of the above presented problem contains the close-coupling Schrodinger

equations (see [8], [9-12], [84] - [88]). We use the determinations:

e quantum numbers (j,) which denote the entrance channel (see for details in [28]),

e quantum numbers (', 1) which denote the exit channels and
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e J=j+1=j +1 which denote the total angular momentum.

and we obtain:

d? i+t

I

dz?

where

ki =72 {E+ 7+ =56+ 1)}}
and E determines the kinetic energy of the incident particle in the center-of-mass system,
I determines the moment of inertia of the rotator, p determines the reduced mass of
the system, Jjl is angular momentum of the quantum numbers (j,1) and j” and I” are
quantum numbers.

For our numerical experiments, we use the following potential V' (see [28]):

V(. Jyski;) = V() Pokyskis) + Val) Pa(ky k)
and consequently, the coupling matrix contains elements of the form:
< U T\ V| 35 T >= 8 V() + fo(5'T, 5"1"; T)Va(x)

where f5 coefficients are determined from formulae presented by Bernstein et al. [29]
and ﬁjrj is a unit vector parallel to the wave vector kj; and F;, ¢ = 0,2 are Legendre
polynomials (see for details [30]). We note also that Vp(z) and V5(z) are potential functions
defined by the user. The above analysis leads to the following new expressions of the
boundary conditions:

saj/lf( )=0atz=0 (52)

' i\ 2 /
QOJJ,]lf( x) ~ 0,50 exp|—i(kj;x — 1/2lm)] — (k—) ST(51; 1) expli(kjjz — 1/20'))
j

where S matrix. For K matrix of (51) we use the following formula:
S=(I+iK)(I-iK)!

The methodology fully described in [28] is used for the numerical solution of the above
presented problem. The methodology contains the numerical method built in this paper

for the integration from the initial value point to the matching points.
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For our numerical tests the following parameters for the S matrix are used:

2u 0
— =10000 ; ==2351 ; FE=11
72 000.0 Vi 351
1 1
Volz) = 22 Va(x) = 0.2283V, ().

In our numerical tests we chose (see for full details in [28]) J = 6 and for the excitation
of the rotator the value j = 0 state to levels up to j* = 2,4 and 6. The above values
leads to systems of four, nine and sixteen coupled differential equations arising
from the Schrodinger equation, respectively. Following the theory fully described
in [30] and [28], the potential is considered infinite for z less than zy. Consequently, the

boundary condition (52) can be written now as
Tjl
gaj?,,(xg) =0.

For the approximate solution of the above presented problem, we use the following

methods:

o the Iterative Numerov method of Allison [28] which is indicated as Method I?,

e the variable-step method of Raptis and Cash [31] which is indicated as Method
II

)

e the embedded Runge-Kutta Dormand and Prince method 5(4) (5(4) means: Runge—
Kutta method of variable step which uses the fourth algebraic order part in order
to control the error of the the fifth algebraic order part) which is developed in [22]
which is indicated as Method 111,

o the embedded Runge-Kutta method ERK4(2) developed in Simos [32] which is
indicated as Method IV,

e the embedded two-step method developed in [1] which is indicated as Method V,
e the embedded two-step method developed in [2] which is indicated as Method VI.

e the embedded two-step method developed in [3] which is indicated as Method
VIL

2We note here that Iterative Numerov method developed by Allison [28] is one of the most well-known
methods for the numerical solution of the coupled differential equations arising from the Schrédinger
equation
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e the new developed embedded two-step method with error control based on the

algebraic order of the method developed in [6] which is indicated as Method VIIL

e the new developed embedded two-step method with error control based on the

algebraic order of the method developed in [7] which is indicated as Method IX.

e the new developed embedded two—step method with error control based on the
algebraic order of the method developed in this paper which is indicated as Method
X.

The real time of computation required by the numerical methods I-X presented above
in order to calculate the square of the modulus of the S matrix for the sets of 4, 9 and 16
coupled differential equations respectively, is presented in Table 2. The maximum error
in the computation of the square of the modulus of the S matrix is also presented in the
same table.

All computations were carried out on a x86-64 compatible PC using double-precision

arithmetic data type (64 bits) according to IEEE® Standard 754 for double precision.
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Table 1. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|? for
the variable-step methods Method I - Method VIIL acc=10"°. Note that
hmax is the maximum stepsize. N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr
Method I 4 0014 325 12x1073
9 0.014 2351 5.7x1072
16 0.014 99.15> 6.8 x 107!
Method II 4 0.056 155 89x10~*
9 0.056 843 7.4x1073
16 0.056 43.32 8.6 x 1072
Method IIT 4 0.007 45.15 9.0 x 10°

Method IV 4 0.112 039 1.1x107°

9 0.112 348 28x107*

16 0.112 1931 1.3x 1073

Method V. 4 0448 020 1.1x10°®

9 0448 207 57x10°°

16 0.448 11.18 8.7x10°°

Method VI 4 0448 0.15 3.2x 1077

9 0448 140 43x1077

16 0.448 10.13 5.6 x 1077

Method VII 4 0.448 0.10 2.5x 1077
9 0448 1.10 39x 107"

16 0.448 943 42x 1077

Method VIII 4 0.896 0.04 3.8x1078
9 089 055 5.6x1078

16 0.896 845 6.5x 1078

Method IX 4 0.896 0.03 3.2x10°%

9 0896 050 4.1x10°8

16 0.896 835 5.0x10°8

0.896 0.02 2.7x10°8
9 0896 044 33x10°8
16 0.896 801 4.2x1078

Method X

o~
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6 Conclusions

In the present paper a new P—stable symmetric two—step finite difference pair with elim-
inated phase-lag and its derivatives up to order four was built. The three stages of the

building of the new proposed scheme are as follows:

1. In the first stage the P—stability conditions introduced by Lambert and Watson [14]
and Wang [82] are satisfied.

2. In the second stage, the condition for the elimination of the phase-lag is satisfied.

3. In the third stage, the conditions for the elimination of the derivatives of the phase

lag up to order four are satisfied.

The above methodology for the building of P—stable symmetric finite difference pairs
was first introduced in the paper of Medvedev and Simos [6].

The analysis of the new built scheme consisted from the following parts:

e The determination of the local truncation error (LTE) was done.

e The asymptotic form of the LTE was computed and the asymptotic form of the
LTE of new built scheme was compared with the asymptotic forms of the LTE of

similar methods.

e The stability and the interval of periodicity properties of the new built finite differ-

ence method was investigated.

e The computational effectiveness of the new built pair was also investigated.

Based on the above studies we conclude that the theoretical, computational and nu-
merical results presented in this paper, proved the effectiveness of the new built method
compared with other well known and recently obtained methods of the literature for
the numerical solution of the radial Schrodinger equation and of the systems of coupled

differential equations arising from the Schrodinger equation.
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Appendix A: Formulae for the Y; (v), i = 2(1)6

2 cos (v) v0¢yes — vOcoes + 2 cos (v) vies — vicy

2 cos (v) v? + 10v% + 24 cos (v) + 124y

—sin (v) v12e12e3? — 2 sin (v) 1% ¢5% — vOcges?

8

v0eicacs — 2 sin (v) vieeg — sin (v) v8es? — 24 sin (v) v0eics

207 coes — 20w cres — 2 sin (v) v0es — 36 v5aycics

36 v°coes — 24 sin (v) v'es — vPey — 100Pcs — sin (v) V! — 24 v3a1¢5
24 vy — 24 sin (v) v — 12va; — 144 sin (v) + 1200

1440 — 204 v0cocs + 120 5¢oc5 — 432 cos (v) v'es

12 10, 2

108 v'ascs — 864 v2aycs — cos (v) v'%es® — 3 cos (v) v'%s

8 2

3 cos (v) v3cs — 36 cos (v) viez® — 72 cos (v) v0es — 3v'0¢cy
3vlte2eaes? + 100 %cpcic3? + v'2eieacs?
252 0% ¢12¢5% + 2520101052 + 12010 o4

1 3

324 v8a1c1¢3% + 318cac5 — 6v3¢oes — v12¢0cs’
120v%a;c3% — 432 cos (v) v* — 10v5¢5 — 3 cos (v) v'eies®
1440 v'e; — 864 v%cy — 36 vies — cos (v) % — 72 cos (v) vdeies

10

3 cos (v) v'%;c3 — T2 cos (v) V!0 c5% — 6 cos (v) v12e1c5”

cos (v) v'8¢;3es® — 2160 v1aycic3 + 96 v%arcics

324 v8¢1coc3 + 3vMcperes® — 3 cos (v) vMer2es?

432 cos (v) vOeres — 3 cos (v) v'%¢i%e3® + 36 v2ay

36 cos (v) ! — v8¢y — 2160 vl coes — 3000 v8¢ies — 36 cos (v) v'2e; es?
30v8¢s® — 1728 cos (v) — 144 a1 — 360 v — 60 v8c ey + 100012y %52
90 ’Uloclcf

—17280 v + 6912 sin (v) v5¢;c3 + 2592 v7¢)cacs

13824 vaycics + 864 sin (v) v'2¢1 %5 + 1728 sin (v) v'%¢; ¢35

1728 sin (v) v8¢ies + 1728 sin (v) v8es + 6912 sin (v) v? + 1728 v¢y

5760 v c3 — 86400 v3cs + 864 sin (v) vics? + 10368 v aycs
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— 5760 coes + 864 v cpes® — 241920 v°¢ies — 20736 vaycs

— 103680 v3coe; — 103680 v3aycics — 2016 vParci3es®

— 1207¢ %005 4+ 120 pere5t — 600 T eger 2es®

+ 12093 czc; — 12 U1960612634 + 1728 va,
— 20736 vcy — 144 v3aq + 1440007 ¢52 + 120 0%¢52 — 120 vttes®

144 sin (v) v'%; ¢35 + 4 sin (v) v'2cic3 + 288 sin (v) v'2e 52

4

12 sin (v) vMeics? + 144 sin (v) v'cpes® + 144 sin (v) vMeres?

12 sin (v) v ¢5® + 6 sin (v) v'%¢;%cs® + 144 sin (v) V% %¢5®

18 1

)vt
4 sin (v) v"8¢cie3" 4 12 sin (v) v18¢1 23 + 48 sin (v) V'8¢ P cs®
)

v20¢;%¢s® + 4 sin (v) V¢ P cs?

6 sin (v) v?%¢12c3" + 4 sin (v
sin (v) vHertest + 44928 v ey — 576V areics

62208 v arc1c5% + 60480 v0coeres® — 1440 v°ar e e

+ o+ + + o+ + 4+

48 sin (v) v"%e3® 4 60480 v%arci ’cs® + 60 v ercocs
— 25920 ere9e5® + 4896 v cperes? — 2736 v ay el
— 144 v11a1012032 — 48 v130102032
+ 120083¢qeres? — 3744 v 3¢ 2eocs?
— 3744 03a,0,%¢5 — 1200 ¢, 20052
48 v¢yeres® — 2016 vMcoer es® 4 sin (v) v°
864 sin (v) v* + 48 sin (v) v° + 4 sin (v) v'%e5® + sin (v) v*%e3* — 576 v a;c3
+ 17280 0°cacs + 17280 v°ayc5” + 576 v cocs
— 8640 ajes? 4+ 17280 v cpes® — 1200°%¢1e5 4+ 120%¢0c4
— 7200%¢3% — 120%¢oc5 — 720 0%a1¢5% + 48960 v9 ¢y 52
— 120%epes® + 7200t eres? — 144 v pes®
120" ¢oes” + 50400 v ¢y ’c5® — 7200 ¢y %c5?
144 sin (v) v'%3% + 4 sin (v) v'%3 + 6912 sin (v) vies — 10368 v cocs

6 sin (v) v'%cs? — 6000 7 ¢; 35 — 480 03¢y c5®

+ o+ o+ o+

144 sin (v) v¥ez + 1200 0™ ¢ %c3? + 1440 v* + 20736 sin (v)

T (v) —207360 + 240 cos (v) v'3¢ics* + 10 cos (v) v'¥¢12cs?



+ o+ o+ o+ o+ o+
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30 cos (v) v"8¢cies® 4+ 360 cos (v) v'0¢;%e3% 4 720 cos (v) v'0¢ics
20 cos (v) v'%¢cie3? + 720 cos (v) v eres? + 5 cos (v) vMercs
240 cos (v) v*2c1e5 — 12070, %cocs + 43200 v'8a 13¢5
5880 ¢, ®cs? + 30 cos (v) v¥¢ %5 4 20 cos (v) v*0cics?
720 cos (v) v18¢i2es® + 5 cos (v) v#eres® + 240 cos (v) v20¢;3ey?
360 cos (v) v2°¢;1%c3* + 10 cos (v) v*2er1’es® + 30 cos (v) v*2ei ey
1270080 v**aic1es® + 103680 cos (v) v0eiey
780 v M egeics® + 23760 vMercacy® + 24480 vMarcrcyt
1270080 v'*cocres® — 248832 arcs + 198720 vicicacs
120 v'%; ¢35 + 60 cos (v) 08+ 12120%¢, 3005
7800 v14¢212032 + 540 vlsclzczc;;s — 1860 1)1860012033
60 v 8cocres® + 43920 v 8¢y 3eacs®
720 0" 8coer st 4 3000 v12e 5 — 12240 v 0a 13 ¢5®
600 v'cs" — 3110400 vc5 + 1036800 v c5 + 207360 v*cy
8640 v'cy + 1440 cos (v) v° — 25920 v8cycs — 7800 v ey s’
103680 cos (v) v* — 36000 vcz + 5040 v*2a;c3* 4 3000 v'0¢; c3*
2332800 c520° + 4200 v*2cy e + 46800 v %1 c1%c5*
90000 v*0¢yci?cs® + 17280 cos (v) v* 4 11249280 v'0¢; 2c5?
662400 v12¢1 5% + 720 vMepest 4+ 60 vHiesces®
60 vMeges” + 120" eacs + 1347840 v eaey
4320 cos (v) v8es + 17280 cos (v) v8es® — 18600 v'8¢;®cs®
4320 cos (v) v'%;? + cos (v) ' — 1116000 v'*¢i %3 — 2064960 v'%a;¢i%cs®
720 v c1ca0s? — 18000 v'0¢1 25 + 120 010¢;52
1200 v'%¢5® + 9763200 vicycs® — 7488 v'0cc5”
64800 v3¢3% — 120 %¢pc5 + 3600 v1*a1¢1%¢5®
129600 vSascic5 + 1347840 vtaycrcs
1440 cos (v) v*8¢;3¢3® + 4320 cos (v) v¢e;%cy®

4320 cos (v) v'¢;%cs® — 145440 v™0¢33 4 240 cos (v) v*2¢;3cs?



+ o+ o+ o+

+ o+ o+ o+
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17280 v%ay + 60 cos (v) v*ey s + 10 cos (v) v*1er%cs”
7200 v¥a1c3% + 20 cos (v) v#edes + 10 cos (v) v¥e3es?
5 cos (v) v*0¢; s 4+ 5 cos (v) Ve %es” 4 cos (v) V0, es®
3000 0¢;cac5® — 1620 v'%¢;%coc52
180 v10¢qcres® + 42480 v'%¢; % cacs®

4250880 v°¢;cacs 4+ 7050240 v0a ¢y e3>

3600 U8a161C3 + 8709120 vscoclch + 8709120 vsa1012032

777600 v'%ci®cs® + 6000 ¢1%cs 0™ + 120 coer 5’

624 v%¢coc; 25t + 18144 v¥¢qcp 35

18144 vPa; ¢, es? + 120 v22¢ 2 eyt

120 v%2chere5” 4+ 420 vP2coer’es® + 4320 08 cper et

1074816 v'0cicacs® — 43200 3¢y + 34560 v'0¢;c5”

338400 v'%¢;%c3® + 34560 cos (v) v3ecs + 4320 cos (v) v cs

20736 a; + 248832 cos (v) — 7200 v* — 248832 ¢, + 172800 v2

240 cos (v) v + 5 cos (v) v*%cs + 10 cos (v) v**es? + 4320 cos (v) v'eres®
17280 cos (v) v*2¢;%e3* + 8640 cos (v) v'2e;c5?

3732480 v2ascic3 + 34560 cos (v) v'%ics”

240 cos (v) v*es® + 360 cos (v) v'%c3? + 10 cos (v) v'¢;® — 60 v e eacy?
60 v*coci®es” + 60 cos (v) v'0est + 5 cos (v) v'8es?

cos (v) v¥0¢c3® — 28800 v ¢yercs® — 79200 v i % cocs?

1347840 vta; 5 + 3600 v8aycs + 43200 v 2cye; c5?

43200 v'%¢1 0032 + 2799360 v0coes® + 720 vtay

221184 v'%; ¢, %¢3% — 267840 v8cacs? + 1440 cos (v) v'%es®

518400 v?asc; — 112320 v'agc; — 174528 v'0¢ycs®

259200 v%a;¢52 4+ 720 v¥¢cacs — 720 v3¢oes + 7632 v10¢cs2

6480 v'%cocs® 4 14688 010  ¢1c5% — 1249344 00, ¢4 ¢5°

180 v 2¢1cocs — 1347840 0121 2¢oc5

717120 v*2¢0c1¢5% + 16560 v 2a;¢q05°
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+ 9360 v"2a;¢1%¢5? + 34560 cos (v) v8es + 190080 v3cocs®
— 267840 v®a;ics® + 103680 cos (v) vles — 17280 v0cocs
— 14515200 v*cie5 — 103680 vieoes + 1123200 08¢ c4
— 3732480 v2cocs + 7056 v10a 53 — 120 v 2epc52

120 v 2¢pes? + 5040 v12¢0c5 4+ 903744 v 0¢hcr 52

10512 v'%; coc3 — H87520 vare (:32.

Appendix B: Formulae for the Y; (v), j = 7(1)11 and Udenomy, (v), k = 1,2

Tr() = (cos (o))" e =9 (cos (v))?sin (v) o° + 5 (cos (1)) o°
+ 15 (cos (v))*v* + 45 cos (v) sin (v) v°
+ 14 cos (v) v — 486 (cos (v))?sin (v) v*
— 105 (cos (v))*v* — 36 sin (v) v® — 200°
— 1665 (cos (v))® v? + 90 cos (v) sin (v) v*
+ 462 cos (v) v* — 1080 (cos (v))?sin (v) v
— 225 (cos (v))? v® — 1836 sin (v) v*
— 2100* — 3780 (cos (v))* — 3195 cos (v) v?
+ 2160 sin (v) v + 225 0> 4 3780 cos (v)
Ts(v) = 2 (cos(v))*v® 418 (cos (v))?sin (v) v® — 5 (cos (v))*v°
+ 30 (cos (v))* v* — 105 cos (v) sin (v) v°
+ 28 cos (v) 18 + 480 (cos (v))*sin (v) v°
+ 825 (cos (v))*v* + 72 sin (v) v° + 200°
+ 450 (cos (v))* v? + 2850 cos (v) sin (v) v*
+ 1260 cos (v) v* + 8280 (cos (v))*sin (v) v
— 4275 (cos (v))? 0% + 2160 sin (v) v
450 v* — 5400 (cos (v))* — 1800 cos (v) sin (v) v
3150 cos (v) v* — 17280 sin (v) v

6075 v2 4- 5400 cos (v)
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Yo (v) = (cos(v))*v° + cos (v) sin (v) v
+ 43 (cos (v))?v* — 40°
— 110 cos (v) sin (v) v* — 40 cos (v) v! 4 555 (cos (v))* v?
— 400 sin (v) v* — 138 v*
— 3000 cos (v) sin (v) v + 600 cos (v) v*
— 1800 (cos (v))? — 600 sin (v) v + 645 v% + 1800

Y10 (v) (cos (v))* 05 + 3 (cos (v))?sin (v) v° — 5 (cos (v))? v°

63 (cos (v))* v* — 85 cos (v)sin (v) v°

14 cos (v) v° + 126 (cos (v))? sin (v) v°

465 (cos (v))> v + 12 sin (v) v° + 200°

1467 (cos (v))* v? + 510 cos (v) sin (v) v*

670 cos (v) v + 3360 (cos (v))*sin (v) v

1905 (cos (v))* v? 4 108 sin (v) v*

530v? 4 11340 (cos (v))* + 4200 cos (v) sin (v) v
3873 cos (v) v? — 5040 sin (v) v

+ o+ + + o+ o+ o+ o+t

157502 — 11340 cos (v)

T (v) (cos (v))* 0% 4+ 7 cos (v) sin (v) v°
29 (cos (v))*v! — 44°
102 cos (v) sin (v) v* — 20 cos (v) v*

+ 891 (cos (v))* v% — 360 sin (v) v* — 90 v*

— 840 cos (v) sin (v) v + 1740 cos (v) v*

+ 5670 (cos (v))* 4 2100 sin (v) v + 1779 v — 5670
Udenom, (v) = (cos (v))*v* + 13 cos (v) sin (v) v*

— 4v* — 45 (cos (v)*v?

+ 30 cos (v) sin (v) v — 900> — 105 (cos (v))? + 105
Udenoms (v) = v* <(cos ()2 0® + 7 cos (v) sin (v) v°

+ 29 (cos (v))? 0! — 40° + 102 cos (v) sin (v) v*

— 20 cos (v) v* + 891 (cos (v))* v?
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— 360 sin (v) v® — 90" — 840 cos (v) sin (v) v + 1740 cos (v) v2

+ 5670 (cos (v)) + 2100 sin (v) v + 177902 — 5670).

Appendix C: Truncated Taylor Series Expansion Formulae for the
coefficients of the new obtained method given by (26)

94 v1? N 370 N 3823 v1¢
119750400 = 74724249600 = 131813576294400

8082727 v'8 N
6470398926351360000

15 1151;24r 4183181 v* N 43290661 v°
28 4851 2796970176 = 8614668142080

26855116571749 v® n 13069268523635959 v'°
15832347239567738880  138976344068925611888640

36995398088232494879 v!?
5891942982197415705904742400

4794898835302746891443 v
11568830045544625738543961702400

44791008915154857836703317699 v16
1630056945728072380476405497279053824000

36614245294685173091989320114727 18 n
20082301571369851727469315726477943111680000

1 v? 39001 v* 8111861 v°
= —+-—

56 882 + 508540032 * 1566303298560

4995247059577 v8 n 14616813578053517 v1°
14393042945061580800 = 631710654858752781312000

36868361335551830789 v'?
23962447535252647607746560000

154491264866748824244067 v'*
1511835744588218136286994995200000

62828772349636551906828658211 v'°
9261687191636774889070485779994624000000
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205504627149665352212652766877947 v18 n
456415944803860266533393539238135070720000000

;L_+ 40? 1801 v* 52079 08
15 3465 45405360 7628100480

8651507759 v® n 199398453803 v1°
8986665175488000  2758214926938240000

5608485889441381 v1? 1572019742188578791 v14
1174668573084457651200000  6569488556629182632448000000

1378327386753952656761 v16
157273556045702632220805120000000

7994388728944332905833 v18 n
66054893539195105532738150400000000

_ i+ 22 _ 1801 v* _ 52079 v°
“ 7 30 73465 90810720 15256200960

4856586841 v® B 1143449026051 v'0
17973330350976000  71713588100394240000

1715515200063719 v!2 B 294832409423618959 v
2349337146168915302400000  13138977113258365264896000000

932778876735780883 v'°
18502771299494427320094720000000

9778995804489942605833 v'® n
132109787078390211065476300800000000

Appendix D: Expressions for the Derivatives of ¢,

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:

e? = (V(z) = V.+T) o(x)

O (iE(x))¢(x)+(5(f)+r)%“’(‘”)






We compute the j-th derivative of the function ¢ at the point z,, i.e. 995,7), substituting

in the above formulae x with x,,.

Appendix E: Formula for the quantity Ag

oo (LHE@) Lo @) 38 (FE@) e (@) (&2@) &=@)

2395008 2395008 ‘
_ M3E(@)¢(2) (4=(2)" L= (2) 5 (E@) (Ee @) (£E@) L= (2)
5987520 99792

313 (2(2)* ¢ (2) (L2 (2)) L2 (z) 2BE@) (Fe @) (%E (I)) = (@)
B 3991680 B 299376

BE@) (e @) (SH2@) &H2@) 3@ e @) (H2@) L2 @)
B 598752 B 5987520 ]

132 (z) ¢ (z) (%E (L)) %E () 31 (L£2(@) (Lo (@) <%E (.L))
B 136080 B 266112

19 (£20) (e @) $20) 7 (120) (Le@) SHE@)
B 443520 - 342144

5(E20) v (L20) el) 13 (42@) ¢ (@) L2 @)
B 177408 B 114048 B 2395008
O WE@) ' P@)SEE 1BEE) e@ (LE (2))*

4790016 1197504

Eefew (EE@)e@ 17 (HE0) e @) &2 @
B 23950080 T 23950080 1596672

(52@) (Ee@) EE20)  (L2(0) 0 @) L2 ()
- 16632 B 19008
55 (e () (A5 )’ BE@e @ (#E@)

199584 748440

C (EE@)'el) EE) (o) E2(@)

85536 798336




109 (L2 (2)° (Lo (1) L= (2) 5 (E®@) (L @) HE@)

1197504 598752

1201 E(@)) 0 (@) (BHE20) 57 (2 (@) o (@) L5E ()
B 23950080 B 2993760
O BE@e@)HE@  E@) (Ee@) HE@

11975040 187110

31 (%E(fﬂ))w(w)%ﬂw) 157 (2 (2))* (L (2)) L= (2)
- 1995840 B 11975040

239 (2 (2))" ¢ () 252 (2)

23950080

at every point © = x,,.
Appendix F: Formulae for the Y; (v), j = 12(1)14

Tip(s,0) = —1260 (cos (v))*v°® + 105 s%0°

180 s*0% — 90 s20® — 3558 s*u*

+ o+

11340 s*v? — 4 5%° + 8 s*0® — 4 52010

— 138 5% 4 645 %% + 12 (cos (v))? v™°

— 540 (cos (v))>v® — 1800 (cos (v))” s°

— 1080 v® — 3480 cos (v) s™v?

— 40 cos (v) s°v* + 43 (cos (v))” s%*

— 45 (cos (v))? s20® + cos (v) sin (v) 5%

— 14 cos (v) sin (v) s*” + 13 cos (v) sin (v) s>

— 110 cos (v) sin (v) s5° — 204 cos (v) sin (v) s*0°

+ 30 cos (v) sin (v) s%0” — 3000 cos (v) sin (v) s%v
1680 cos (v) sin (v) s*v® — 58 (cos (v))” 50"

— 400 sin (v) s%* 4 720 sin (v) s'v® — 4200 sin (v) s*v?

) s’

91)

+ 360 cos (v) sin (v) v — 600 sin (v
— 2 (cos (v))? s> — 105 (cos (v))?
+ 40 cos (v) s'0° + (cos (v))? s%°
— 1782 (cos (v))? s*v? + 555 (cos (v))? %?

— 11340 (cos (v))* s*0? + 156 cos (v) sin (v) v°
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600 cos (v) s%? + (cos (v))* s*0™°

+

126005 — 48 v'° + 1800 ¢

+

T3 (s,0) (cos (v))? 02 — 20v*2 — 3 (cos (v))® s0® — 1575 5700
— 1590 s"0® + 1350 s*0® — 4725 s*v* + 20 5%°
— 60s"® + 60 520 + 450 s50*
+ 6075 5% — 105 (cos (v))*v'°
— 225 (cos (v))? v® + 5400 cos (v) s°
— 36 sin (v) s™07 + 72 sin (v) s%° + 225 0°
— 11619 cos (v) s*v* + 1260 cos (v) s%*
825 (cos (v))? 5% + 675 (cos (v))” s%0® — 105 cos (v) sin (v) s%0°
255 cos (v) sin (v) s*0” — 195 cos (v) sin (v) s%0°
+ 2850 cos (v) sin (v) 5% — 1530 cos (v) sin (v) s'v®
— 450 cos (v) sin (v) 520" — 1800 cos (v) sin (v) s%
— 12600 cos (v) sin (v) s*v® — 1395 (cos (v))” s%°
+ 2160 sin (v) s — 324 sin (v) s"0° + 15120 sin (v) s*v®
— 17280 sin (v) s% + 15 (cos (v))? s*®
+ 1575 (cos (/u))2 5205 — 2010 cos (v) s"v8
— 5 (cos (v))? s%° — 5715 (cos (v))” stv?
— 4275 (cos (v))? %% + 90 cos (v) sin (v) v°
+ 3150 cos (U) 5% — 15 (cos (v))? s*v'°
14 cos (v) v'? — 36 sin (v) v + 462 cos (v) v'°
— 1836 sin (v) v? — 3195 cos (v) v® 4 2160 sin (v) v”
— 5400 (cos (v))* 5° 4 15 (cos (v))* 01
— 1665 (cos (v))* v® + 5v'? (cos (v))?
— 42 cos (v) s'® + 28 cos (v) s°
— 9 (cos (v))?sin (v) v* + 8280 (cos (v))*sin (v) 5%
— 10080 (cos (v))*sin (v) s'v® — 2100

— 3780 (cos (v))* v® + 3780 cos (v) v°
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+ 18 (cos (v))?sin (v) $%0° — 9 (cos (v))? sin (v) s*07
480 (cos (v))?sin (v) s%° — 378 (cos (v))” sin (v) s™v°

+ 45 cos (v) sin (v) v** — 486 (cos (v))?sin (v) v°

— 1080 (cos (v))*sin (v) v — 34020 (cos (v))* s™v?

+ 34020 cos (v) s™0? + 30 (cos (v))” %v*

— 189 (cos (v))* 5% + 450 (cos (v))® %2

— 4401 (cos () s*v? + 2 (cos (v))? %08

Ty (s,0) = (cos(v))?v? +13 cos (v)sin (v) v*
— 4w" — 45 (cos () v? + 30 cos (v) sin (v) v
— 90v® — 105 (cos (v))* + 105.
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