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Abstract

A tenth algebraic order P–stable symmetric three–stages two–step finite difference pair with
vanished phase–lag and its derivatives up to order four is built, for the first time in the literature,
in this paper. The methodology for the building of the new finite difference pair is based on the
following steps:

• Satisfaction of the necessary and sufficient conditions for P–stability.

• Satisfaction of the condition of the vanishing of the phase–lag.

• Satisfaction of the conditions of the vanishing of the derivatives of the phase–lag up to
order four.

The solution of the resulting system of equations, produced based on the above methodology,
leads to the determination of the coefficients of the new proposed method.

As a result of the above procedure we obtain, for the first time in the literature, a three–
stages P–stable tenth algebraic order symmetric two–step finite difference pair with vanished
phase–lag and its first, second, third and fourth derivatives.
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We will also present a detailed theoretical and numerical analysis of the new obtained scheme,
as follows:

• the building of the new proposed finite difference pair,

• the computation of its local truncation error (LTE),

• the denotation of the asymptotic form of the LTE, applying the new scheme to scalar
problem of the radial Schrödinger equation,

• the stability analysis with the computation of the stability domain and the interval of
periodicity,

• the denotation of an embedded pair for the LTE control procedure and the determination
of variable step procedure for the change of the step length of the integration,

• the evaluation of the computational efficiency of the new built finite difference pair with
application on:

1. the resonance problem of the radial Schrödinger equation and on
2. the coupled differential equations arising form the Schrödinger equation.

The above obtained results leads to the conclusion that the new obtained three–stages P-
stable tenth algebraic order finite difference pair with vanished phase–lag and its derivatives up
to order four is more efficient method than the existed ones.

1 Introduction

A new three stages P–stable symmetric two–step method with eliminated phase–lag and

its derivatives up to order four is built, for the first time in the literature, in this paper.

The building of the new finite difference method is based on the following steps:

• The conditions for the P–stability are satisfied.

• The conditions for the elimination of the phase–lag are satisfied.

• The conditions for the elimination of the derivatives of the phase–lag up to order

four are satisfied.

The effectiveness of the new built finite difference pair is evaluated applying it to the

following problems:

• the radial time independent Schrödinger equation and

• the coupled differential equations arising from the Schrödinger equation.
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The efficient numerical solution of the above described problems is very important

in Computational Chemistry (see [8] and references therein) since a critical part of the

quantum chemical computations contains the Schrödinger equation (see [8] and references

therein). We note also that in problems with more than one particle the approximate

solution of the Schrödinger equation is necessary. The efficient approximate solution of

the Schrödinger’s equation (using numerical methods) gives us the following important

information:

• numerical computations of molecular properties (vibrational energy levels and wave

functions of systems) and

• numerical presentation of the electronic structure of the molecule (see for more

details in [9–12]).

In this paper, and based on the new built finite difference pair, we also develop an

embedded numerical pair which is based on an local truncation error control procedure

and a variable–step algorithm.

The problems investigated in the present paper belong to the category of special

problems which can be written as:

ϕ′′(x) = f(x, ϕ), ϕ(x0) = ϕ0 and ϕ′(x0) = ϕ′
0. (1)

and which they have periodical and/or oscillating solutions.

Below we give the main categories of numerical methods and their bibliography which

was developed during the large research which has been done the last decades:

• Exponentially, trigonometrically and phase fitted Runge–Kutta and Runge–Kutta

Nyström methods: [46], [49], [58], [61] – [66], [55], [77]. In this category of methods,

Runge–Kutta and Runge–Kutta Nyström schemes are built. This category can be

divided into two subcategories:

– Numerical methods which have the property of exact integration of sets of

functions of the form:

xi cos (ω x) , i = 0, 1, 2, . . . or xi sin (ω x) , i = 0, 1, 2, . . .

or xi exp (ω x) , i = 0, 1, 2, . . . (2)

or sets of functions which are combination of the above functions.
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– Numerical methods which have the property of elimination (or vanishing) of

the phase–lag.

Remark 1. The quantity ω in (2) determines the frequency of the problem.

• Multistep exponentially, trigonometrically and phase fitted methods and multistep

methods with minimal phase–lag: [1] – [7], [17] – [20], [24] – [27], [33], [37], [39], [43],

[47] – [48], [52], [57], [59] – [60], [70] – [72], [78] – [81]. In this category of methods,

multistep schemes are built. This category can be divided into two subcategories:

– Multistep methods which have the property of exact integration of sets of

functions of the form (2) or sets of functions which are combination of the

functions mentioned in (2).

– Multistep methods which have the property of elimination (or vanishing) of

the phase–lag.

• Symplectic integrators: [41] – [42], [50], [53], [56], [66] – [69], [75]. In this category

of numerical methods, algorithms for which the Hamiltonian energy of the system

remains almost constant during the integration procedure, are built.

• Nonlinear methods: [51]. In this category of numerical methods, the schemes have

nonlinear form (i.e. the relation between several approximations of the function on

several points of the integration domain (i.e. yn+j, j = 0, 1, 2, . . .) is nonlinear) are

built.

• General methods: [13] – [16], [21] – [23], [34] – [36], [40]. In the category of numerical

methods, numerical pairs with constant coefficients are built.

2 General theory for the building of symmetric mul-
tistep finite difference pairs

In this section we describe the general theory for the building of the symmetric multistep

methods. We focus our interest on these methods since the new proposed method belongs

to this category.
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Problems of the general form (1) can be numerically solved by discretization proce-

dure. The integration domain [a, b] is discretized using the 2m-step method (i.e. a finite

difference method) presented below (3). In this type of discretization the quantity m

determines the number of the discretization points.

In this section we will use the following symbols:

• h determines the stepsize of the integration which is the same with the step length

of the discretization. It is defined as h = |xi+1 − xi|, i = 1 −m(1)m − 1 (i.e. the

parameter i is moved between 1−m and m− 1 with step 1) where

• xn denotes the n-th point on the discretized area.

• ϕn denotes the approximated value of the function ϕ(x) at the point xn. We note

here that the approximated value is computed using a numerical method and in our

investigation we will use as numerical method, the 2m-step method (3) presented

below

Let us consider the family of 2m-step methods:

∆(m) :
m∑

i=−m

αi ϕn+i = h2
m∑

i=−m

βi f(xn+i, ϕn+i) (3)

The above family of finite difference pairs will used for the numerical solution of the

initial value problem (1) on the in integration domain [a, b]. It is noted that αi and

βi i = −m(1)m are the coefficients of the 2m-step method.

Definition 1.

∆(m) →
{
βm 6= 0 implicit;
βm = 0 explicit. (4)

Definition 2.

∆(m) with αi−m = αm−i, βi−m = βm−i, i = 0(1)m→ symmetric (5)

Remark 2. The method ∆(m) is associated with the linear operator

L(x) =
m∑

i=−m

αi ϕ(x+ i h)− h2
m∑

i=−m

βi ϕ
′′(x+ ih) (6)

where ϕ ∈ C2 (i.e. C2 ≡ CxC).
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Definition 3. [13] The multistep method (3) is called of algebraic order τ , if the linear

operator L (6) vanishes for any linear combination of the linearly independent functions

1, x, x2, . . . , xτ+1.

Applying the symmetric 2m-step method ∆(m) to the scalar test problem

ϕ′′ = −φ2 ϕ (7)

we obtain the difference equation:

Υm(v)ϕn+m + ...+Υ1(v)ϕn+1 +Υ0(v)ϕn

+Υ1(v)ϕn−1 + ...+Υm(v)ϕn−m = 0 (8)

and its associated characteristic equation:

Υm(v)λ
m + ...+Υ1(v)λ+Υ0(v)

+Υ1(v)λ
−1 + ...+Υm(v)λ

−m = 0. (9)

where

• v = φh,

• h is the stepsize or step length of the integration and

• Υj(v), j = 0(1)m are the stability polynomials.

Definition 4. [14] We call that a symmetric 2m-step method has an non zero interval of

periodicity (0, v20), if its characteristic equation (9), for all v ∈ (0, v20), has the following

roots :

λ1 = eiψ(v), λ2 = e−iψ(v), and |λi| ≤ 1, i = 3(1)2m (10)

where ψ(v) is a real function of v.

Definition 5. (see [14]) We call a symmetric multistep method P-stable it its interval of

periodicity is equal to (0,∞).
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Remark 3. We call a symmetric multistep method P-stable if the following necessary and

sufficient conditions are hold:

|λ1| = |λ2| = 1 (11)

|λj| ≤ 1, j = 3(1)2m, ∀v. (12)

Definition 6. We call a symmetric multistep method singularly P-stable if its interval of

periodicity is equal to (0,∞)\S, where S is a finite set of points.

Definition 7. [15], [16] The symmetric multistep method with associated characteristic

equation given by (9), has phase-lag which is defined as the leading term in the expansion

of

t = v − ψ(v). (13)

If t = O(vγ+1) as v → ∞ then we call that the phase-lag order is equal to γ.

Definition 8. [17] We call a symmetric multistep method phase-fitted if its phase-lag

is equal to zero.

Theorem 1. [15] For a symmetric 2m-step method with characteristic equation given

by (9) a direct formula for the computation of the phase-lag order υ and the phase-lag

constant $ is given by

−$vυ+2 +O(vυ+4) =
2Υm(v) cos(mv) + ...+ 2Υj(v) cos(j v) + ...+Υ0(v)

2m2Υm(v) + ...+ 2 j2Υj(v) + ...+ 2Υ1(v)
(14)

Remark 4. For the symmetric two–step methods the phase-lag order υ and the phase-lag

constant $ are computed using the formula:

−$vυ+2 +O(vυ+4) =
2Υ1(v) cos(v) + Υ0(v)

2Υ1(v)
(15)

where Υj(v) j = 0, 1 are the stability polynomials.

3 A new P–stable three–stages symmetric two–step
finite difference pair with vanished phase–lag and
its first, second, third and fourth derivatives

We consider the following family of methods

ϕ̂n+1 = ϕn+1 − h2
(
c1 fn+1 − c0 fn + c1 fn−1

)
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ϕ̃n+1 = ϕn+1 − h2
(
c3 f̂n+1 − c2 fn + c3 fn−1

)
ϕn+1 + a1 ϕn + ϕn−1 = h2

[
b1

(
f̃n+1 + fn−1

)
+ b0 fn

]
(16)

where fn+i = ϕ′′ (xn+i, ϕn+i) , i = −1(1)1, f̂n+1 = ϕ′′ (xn+1, q̂n+1), f̃n+1 = ϕ′′ (xn+1, ϕ̃n+1)

and a1, bi, i = 0, 1 and cj, i = 0 (1) 3 are parameters.

Remark 5. The new proposed finite difference pair is a nonlinear pair of three–stages.

We note here that all the stages of the new scheme are based on approximations on the

point xn+1.

We will study the following specific case:

b0 =
5

6
, b1 =

1

12
. (17)

Remark 6. We determine the above mentioned constant values of the coefficients of the

family of finite difference pairs (16) requesting the maximum possible algebraic order.

Application of the scheme (16) with the constant coefficients given by (17) to the scalar

model problem (7), leads to the difference equation (8) with m = 1 and the corresponding

characteristic equation (9) with m = 1 where:

Υ1 (v) = 1 +
1

12
v2
(
1 + v2 c3 + v4 c1 c3

)
Υ0 (v) = a1 +

1

12
v2
(
10− v2 c2 − v4 c0 c3

)
(18)

The methodology of the building of the proposed finite difference pair is described in

the flowchart of Figure 1 (for developing flowcharts in LaTeX one can see [89]):

3.1 Satisfaction of the P–stability properties

The procedure first introduced by Lambert and Watson [14] and Wang [82] is used in

order to satisfy the P–stability properties for the new proposed method:

• Satisfaction of the characteristic equation given by (9) with m = 1 for λ = eI v,

where I =
√
−1, leads to the following equation:

(
eI v
)2

Υ0 (v) + eI v Υ1 (v) + Υ0 (v) = 0 (19)
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Building of the New
Finite Difference Pair

Satisfaction of the P–
stability Properties

Satisfaction of the Vanishing
of the Phase–Lag and its

Derivatives up to Order Four

Solution of the Result-
ing System of Equations

Computation of the Local Trun-
cation Error (LTE) of the Builded

New Finite Difference Pair

Figure 1. Flowchart for the methodology of the building of the new proposed P–
stable three stages symmetric two–step scheme with vanished phase–lag
and its derivatives up to order four

• Satisfaction of characteristic equation given by (9) with m = 1 for λ = e−I v, where

I =
√
−1, leads to the following equation:(

e−I v
)2

Υ0 (v) + e−I v Υ1 (v) + Υ0 (v) = 0 (20)

Remark 7. The above built conditions of P–stability are obtained based on the Definition

4 and taking into account that the new proposed new method has the characteristic equation

given by (9) with m = 1, where Υj, j = 0, 1 are given by (18).

3.2 Satisfaction of vanishing of the phase–lag of the pair and its
derivatives up to order four

The requirement of satisfaction of the vanishing of the phase–lag and its derivatives up

to order four for the new proposed scheme (16) with the coefficients given by (17) leads

to the following system of equations:

Phase− Lag(PL) =
1

2

Υ2 (v)

v6c1c3 + v4c3 + v2 + 12
= 0 (21)

FirstDerivative of thePhase− Lag =
Υ3 (v)

(v6c1c3 + v4c3 + v2 + 12)2
= 0 (22)
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SecondDerivative of thePhase− Lag =
Υ4 (v)

(v6c1c3 + v4c3 + v2 + 12)3
= 0 (23)

ThirdDerivative of thePhase− Lag =
Υ5 (v)

(v6c1c3 + v4c3 + v2 + 12)4
= 0 (24)

FourthDerivative of thePhase− Lag =
Υ6 (v)

(v6c1c3 + v4c3 + v2 + 12)5
= 0 (25)

where Υj (v) , j = 2(1)6 are given in the Appendix A.

3.3 Solution of the obtained system of equations

In order to obtain the determination of the coefficients of the new finite difference pair

(16), the system of equations (19), (20), (21)–(25) is solved:

a1 = − 1

18

Υ7 (v)

Udenom1 (v)

c0 = −1

3

Υ8 (v)

Udenom2 (v)

c1 = −1

2

Υ9 (v)

Udenom2 (v)

c2 = −2
Υ10 (v)

v4 Udenom1 (v)

c3 = −2
Υ11 (v)

v4 Udenom1 (v)
(26)

where Υj (v) , j = 6(1)9 and Udenomk (v) , j = 1, 2 are given in the Appendix B.

Since there is the possibility to face cancellations or impossibility of determination

of the coefficients (26), during computations (Example of a possible cancellation: Some

of the denominators of the coefficients (26) lead to zero for some values of |v|), in the

Appendix C, we give the truncated Taylor series expansions of the coefficients built in

(26).

In Figure 1 we present the behavior of the coefficients.

Based on the methodology for the building of the new scheme, the last stage of the

development consists the determination of its local truncation error (LTE), which is given

by:

LTENM3SPS4DV = − 1

119750400
h12

(
5ϕ(12)

n + 24φ2 ϕ(10)
n + 45φ4 ϕ(8)

n
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Figure 2. Plot of the behavior of the coefficients of the new proposed symmetric
finite difference pair (16) given by (26) for several values of v = φh.

+40φ6 ϕ(6)
n + 15φ8 ϕ(4)

n − φ12 ϕn

)
+O

(
h14
)
. (27)

We symbolized the new built method as NM3SPS4DV . The explanation of the abbrevia-

tion NM3SPS4DV is: New Method of Three–Stages P–Stable with Vanished Phase–Lag

and its Derivatives up to Order Four.
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Remark 8. The computation of the formula of the local truncation error (27) is important

for the determination of the algebraic order of the new proposed finite difference scheme.

The formula of the LTE is also important for the computation of the asymptotic form of

the local truncation error which is important for the local truncation error analysis and

comparative error analysis.

4 Local truncation error and stability analysis of the
new proposed pair

4.1 Comparative error analysis

In the Section we will study the local truncation error of some finite difference pairs of

similar form. The error analysis is based on the following scalar model problem:

ϕ′′(x) = (V (x)− Vc + Γ) ϕ(x) (28)

where

• V (x) denotes the potential function,

• Vc denotes a constant approximation of the potential on the specific point x,

• Γ = Vc − E

• Ξ(x) = V (x)− Vc and

• E denotes the energy.

Remark 9. The scalar model problem for the error analysis is the radial Schrödinger

equation with potential V (x).

We will study the following methods:

4.1.1 Classical method (i.e., method (16) with constant coefficients)

LTECL = − 1

23950080
h12 ϕ(12)

n +O
(
h14
)
. (29)

4.1.2 P–stable linear six–step method of Wang [82]

LTEWANGPSL6S = − 81

44800
h10

(
ϕ(10)
n + 10φ10 ϕn

)
+O

(
h12
)
. (30)
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4.1.3 P–stable method with vanished phase–lag and its first and second
derivatives developed in [6]

LTENM3SPS2DV = − 1

47900160
h12

(
2ϕ(12)

n − 9φ4 ϕ(8)
n

−8φ6 ϕ(6)
n − φ12 ϕn

)
+O

(
h14
)
. (31)

4.1.4 P–stable scheme with vanished phase–lag and its first, second and third
derivatives developed in [7]

LTENM3SPS3DV = − 1

23950080
h12

(
ϕ(12)
n − 9φ4 ϕ(8)

n

−16φ6 ϕ(6)
n − 9φ8 ϕ(4)

n + φ12 ϕn

)
+O

(
h14
)
. (32)

4.1.5 P–stable scheme with vanished phase–lag and its first, second, third
and fourth derivatives developed in section 3

The formula of the Local Truncation Error for this method is given by (27)

The methodology for the comparative local truncation error analysis is the following:

• Computation of the new expressions for the LTE formulae given by (29), (30), (31),

(32) and (27) applying the model problem (28) (radial time independent Schrödinger

equation). The new expressions are derived by substituting the derivatives of the

function ϕ (which are produced based on the the test problem (28)) in the formulae

given by (29), (30), (31), (32) and (27). We mention here the some expressions of

the derivatives of the function ϕ are presented in the Appendix D.

• The above step leads to the new formulae of LTE for the methods under evaluation.

The characteristic of these new formulae is the inclusion of the parameter Γ and the

energy E.

The general form of the new formulae of LTE is given by:

LTE = hp
k∑
j=0

Φj Γ
j (33)

with Φj are: 1) real numbers (frequency independent cases i.e. the classical case)

or 2) formulae of v and Γ (frequency dependent cases), p is the algebraic order of
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the specific finite difference pair and k is the maximum possible power of Γ in the

formulae of LTE.

• Two cases for the parameter Γ will be studied:

1. The Energy is closed to the Potential.

Consequently:

Γ ≈ 0 ⇒ Γi ≈ 0, i = 1, 2, . . . . (34)

which leads to the form for the formula (33:

Remark 10.

LTEΓ=0 = hk Λ0 (35)

We note here that the quantity Λ0 is the same for all the finite difference pairs

of the same family, i.e. LTECL = LTENM3SPS2DV = LTENM3SPS3DV =

LTENM3SPS4DV = h12 Λ0, where Λ0 is given in the Appendix E.

Theorem 2. The formula (34) leads us to the conclusion that for Γ = Vc −

E ≈ 0 the local truncation error of the classical method (constant coefficients -

(29)), the local truncation error of the scheme with vanished phase–lag and its

first and second derivatives developed in [6] (with LTE given by (31), the local

truncation error for the algorithm with vanished phase–lag and its first, second

and third derivatives developed in [7] (with LTE given by (32) and the local

truncation error for the numerical pair with vanished phase–lag and its first,

second, third and fourth derivatives developed in Section 3 (with LTE given by

(27), are the same and equal to h12 Λ0, where Λ0 is given in the Appendix E.

2. The Potential and the Energy are far from each other. Therefore,

Γ >> 0 ∨ Γ << 0 ⇒ |Γ| >> 0. Consequently, the most accurate finite

difference pair is the finite difference pair with formula of asymptotic form of

LTE, given by (33), which contains the minimum power of Γ and the maximum

value of p.

• The above analysis leads to the following asymptotic forms of the LTE formulae for

the schemes which are under evaluation.
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4.1.6 Classical method

The Classical Method is the method (16) with constant coefficients.

LTECL = − 1

23950080
h12

(
ϕ (x) Γ6 + · · ·

)
+O

(
h14
)
. (36)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 5.

4.1.7 P–stable linear six–step method of Wang [82]

This is the method presented in Linear Six–step Method presented in [82] (see in [82]

equations (23)-(27). We note also here that there is a missprint in the paper [82]. In

formula (25) 2C3,0 y
′′
k+2 must be replaced by the correct: 2C3,0 y

′′
k+3.

LTEWANGPSL6S = − 81

8960
h10

(
Ξ (x) ϕ (x) Γ4 + · · ·

)
+O

(
h12
)
. (37)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 3.

4.1.8 P–stable method with vanished phase–lag and its first and second
derivatives developed in [6]

This is the P–stable method which we developed in [6].

LTENM3SPS2DV = − 1

997920
h12

(
d4

dx4
Ξ (x)ϕ (x) Γ4

+ · · ·

)
+O

(
h14
)
. (38)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 3.

4.1.9 P–stable scheme with vanished phase–lag and its first, second and third
derivatives developed in [7]

This is the P–stable method which we developed in [7].

LTENM3SPS3DV = − 1

997920
h12

[[
4Ξ (x) ϕ (x)

d2

dx2
Ξ (x) + 7ϕ (x)

d4

dx4
Ξ (x)
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+2
d3

dx3
Ξ (x)

d

dx
ϕ (x) + 3ϕ (x)

(
d

dx
Ξ (x)

)2
]
Γ3 + · · ·

]
+O

(
h14
)
. (39)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 2.

4.1.10 P–stable scheme with vanished phase–lag and its first, second, third
and fourth derivatives developed in section 3

This is the P–stable method which we developed in Section 3.

LTENM3SPS4DV = − 1

1247400
h12

[[
ϕ (x)

d4

dx4
Ξ (x)

]
Γ3 + · · ·

]
+O

(
h14
)
. (40)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol · · · means that there are also terms for Γj j = 0 (1) 2.

The above achievements lead to the following theorem:

Theorem 3.

• Classical Method (i.e., the method (16) with constant coefficients): For this method

the error increases as the sixth power of Γ.

• P–stable Linear Six–step Method of Wang [82]: For this method the error increases

as the fourth power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First and

Second Derivatives Developed in [6]: For this method the error increases as the

fourth power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First,

Second and Third Derivatives Developed in [7]: For this method the error increases

as the third power of Γ.

• P–Stable Tenth Algebraic Order Method with Vanished Phase–Lag and Its First,

Second, Third and Fourth Derivatives Developed in Section 3: For this method the

error increases as the third power of Γ, but the coefficient of the fourth power of Γ

is much lower.
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Therefore, for the numerical solution of the time independent radial Schrödinger equation,

which is the scalar model problem for the error analysis, the new P–stable tenth algebraic

order method with vanished phase–lag and its derivatives up to order four is the most

accurate one.

4.2 Stability analysis

For the stability and interval of periodicity analysis the following scalar model problem

is used:

ϕ′′ = −ω2 ϕ. (41)

where ω 6= φ, where φ is the frequency of the test problem (7) (phase–lag analysis) and

ω is the frequency of the test problem (41) (stability analysis).

Application of the new built finite difference pair (16) to the scalar model problem

(41) leads to the difference equation:

Ω1 (s, v) (ϕn+1 + ϕn−1) + Ω0 (s, v) ϕn = 0 (42)

and the corresponding characteristic equation:

Ω1 (s, v)
(
λ2 + 1

)
+ Ω0 (s, v) λ = 0 (43)

where the stability polynomials Ωj (s, v) , j = 0, 1 are given by:

Ω1 (s, v) = 1 + b1 s
2 + c3 b1 s

4 + c1 c3 b1 s
6

Ω0 (s, v) = a1 + b0 s
2 − c2 b1 s

4 − c0 c3 b1 s
6 (44)

where s = ω h and v = φh.

Remark 11. Observing that some of the coefficients of (44) are dependent on v, we

conclude that the formulae (44) have dependence on s and v, while the formulae (18)

have dependence only on v.

if we substitute the coefficients bj, j = 0, 1 from (17) and the coefficients a1, ci i =

0(1)3 from (26) into the above stability polynomials, we obtain:

Ω1 (s, v) =
1

12

Υ12 (s, v)

v6Υ14 (s, v)
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Ω0 (s, v) = − 1

18

Υ13 (s, v)

v6Υ14 (s, v)
(45)

where Υj (s, v) , j = 12(1)14 are given in the Appendix F.

Remark 12. We note here that the definitions of P–stability and singularly almost P–

stability, which are given in Section 2, are corresponded with problems having frequency

which satisfied the condition ω = φ.

The finite difference pair (16) has a non zero interval of periodicity if the roots of its

characteristic equation (43) satisfy the following condition:

|λ1,2| ≤ 1 (46)

4.2.1 Methodology of the building of s−v domain for the new finite difference
pair

The development of the s − v domain for the new scheme is based on the flowchart of

Figure 3.

The methodology which is described in the flowchart of Figure 3 leads to the devel-

opment of the s− v domain plotted in Figure 4.

Remark 13. Observing the s − v domain plotted in Figure 4 we arrive to the following

remarks:

1. The new proposed finite difference pair is stable within the shadowed area of the

domain.

2. The new proposed finite difference pair is unstable within the white area of the do-

main.

Remark 14. The stability area on s− v domain of the finite difference pair specifies the

kind of problems for which the specific method is appropriate:

1. Categories of problems for which ω 6= φ. For these problems we have to study

all the area of the s− v domain excluding the area around the first diagonal of the

domain.

2. Categories of problems for which ω = φ (see the Schrödinger equation and

related problems). For these problems we have to study the area around the first

diagonal of the figure of the s− v domain.
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Building of s − v Domain for
the New Finite Difference Pair

Specification of the char-
acteristic equation (43)

The equation (43) is solved
for several values of s and v

Evaluation of the solution of the
equation (43) - examination of the
satisfaction of the condition (46)

The cases where the values of s and
v produce an equation (43) which its

solutions satisfy the condition (46) lead to
the plot of the corresponding point (s, v)

The cases where the values of s and
v produce an equation (43) which

its solutions do not satisfy the con-
dition (46) lead to the selection for
examination of another point (s, v)

Figure 3. Flowchart for the methodology of the building of s − v domain for the
new finite difference pair

The methodology for the determination of the interval of periodicity of the new de-

veloped finite difference pair is as follows:

1. Substitution s = v in the stability polynomials Ωi, i = 0, 1 given by (45).

2. Investigation of the area around the first diagonal of the s−v domain which is given

in Figure 4.

Based on the above described methodology, the interval of periodicity of the new built

method is found to be equal to (0,∞).

Remark 15. The interval of periodicity is a property corresponding to categories of prob-

lems for which s = v.

The above analysis leads to the following theorem:
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Figure 4. The plot of s− v domain of the new developed P-stable two–stages pair
with vanished phase–lag and its derivatives up to order three.

Theorem 4. The method obtained in Section 3:

• is of three stages

• is of tenth algebraic order,

• has vanished the phase–lag and its derivatives up to order four and

• is P–stable i.e. has an interval of periodicity equals to: (0,∞).

5 Numerical results

The evaluation of the efficiency of the new built finite difference pair is achieved via its

application to the numerical solution of:

1. The radial time–independent Schrödinger equation and

2. The systems of coupled differential equations of the Schrödinger type.

5.1 Radial time–independent Schrödinger equation

The mathematical model of the radial time–independent Schrödinger equation is given

by:

ϕ′′(r) = [l(l + 1)/r2 + V (r)− k2]ϕ(r), (47)
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where

1. The function Θ(r) = l(l + 1)/r2 + V (r) determines the effective potential which

satisfies the following property : Θ(r) → 0 as r → ∞.

2. k2 ∈ R determines the energy.

3. l ∈ Z determines the angular momentum.

4. The function V determines the potential.

We note that the problem (47) is a boundary value one and therefore, the boundary

conditions must be determined. These conditions are given by:

ϕ(0) = 0

and another boundary condition at the end point of integration domain which is denoted

for large values of r from the physical considerations of the specific problem.

The new built finite difference pair is belonged to the frequency dependent methods

(all or some of its coefficients are dependent from the v = φh), and consequently, the

definition of the frequency φ is necessary, in order all or some coefficients of the new

developed method to be computed and therefore to be possible the new finite difference

pair to be applied on the numerical solution of the problem (47). In our numerical

experiments and for (47) and l = 0 we have:

φ =
√

|V (r)− k2| =
√

|V (r)− E|

where V (r) determines the potential and E = k2 determines the energy.

5.1.1 Woods–Saxon potential

Since the mathematical model of the problem (47) consists the potential V (r), it is

necessary its determination the mathematical form of the potential function before the

numerical solution of the problem (47). In our numerical tests we will use the Wood–Saxon

potential which is given by:

V (r) =
Ψ0

1 + ξ
− Ψ0 ξ

a (1 + ξ)2
(48)

with ξ = exp
[
r−X0

a

]
, Ψ0 = −50, a = 0.6, and X0 = 7.0.
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Figure 5. Behavior of the Woods–Saxon potential.

The plot of the Wood–Saxon potential for several values of r is presented in Figure 5.

The necessary values of the frequency φ are determined as follows (see for details [19]

and [20]):

φ =



√
−50 + E for r ∈ [0, 6.5− 2h]

√
−37.5 + E for r = 6.5− h

√
−25 + E for r = 6.5

√
−12.5 + E for r = 6.5 + h

√
E for r ∈ [6.5 + 2h, 15].

For the definition of the above values of the frequency φ, the methodology introduced

by Ixaru et al. ( [18] and [20]) is used. The specific methodology requests discrete

approximations of the continuous function V (r) by constant values on some critical points

within the integration domain. Examples for the determination of the values of φ are given

below:

1. On r = 6.5 − h, the value of φ is equal to:
√
−37.5 + E. Consequently, v = φh =

√
−37.5 + E h.

2. On r = 6.5 − 3h, the value of φ is equal to:
√
−50 + E. Consequently, v = φh =

√
−50 + E h.

It is noted that the potential V (r) is defined by the user. Many potentials are of great

interest in several scientific disciplines of Chemistry. Very few of them have known their

eigenenergies. The selection of the Woods–Saxon potential was done based on the fact

that for this potential the eigenenergies are known.
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5.1.2 The resonance problem of the radial Schrödinger equation

We will solve numerically the problem (47):

• with l = 0 and

• using the Woods-Saxon potential (48)

By theory, the interval of integration for the problem described above is equal to

(0,∞). Therefore and in order the above mentioned problem to be solved numerically,

an approximation of the infinite interval of integration (0,∞) by a finite one is necessary.

For our numerical tests we approximate the infinite interval of integration by r ∈ [0, 15].

For our numerical experiments we also apply the finite difference methods to be examined

on a wide range of energies: E ∈ [1, 1000].

The radial Schrödinger equation (47) can be written as:

ϕ′′ (r) +

(
k2 − l(l + 1)

r2

)
ϕ (r) = 0 (49)

when r → ∞, because in these cases, for positive energies the potential V (r) vanished

faster than the term l(l+1)
r2

. We note also that in (49) the linearly independent solutions

of the above model are given by k r jl (k r ) and k r nl (k r), with jl (k r) and nl (k r) are

the spherical Bessel and Neumann functions respectively (see [83]).

Therefore, the asymptotic form of the solution of equation (47) (when r → ∞) is given

by:

ϕ (r) ≈ Akrjl (kr)−B krnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan δl cos

(
kr − lπ

2

)]
where δl is the phase shift and A, B, AC ∈ R. The direct formula for the computation

of the phase shift is given by:

tan δl =
ϕ (r2)S (r1)− ϕ (r1)S (r2)

ϕ (r1)C (r1)− ϕ (r2)C (r2)

where r1 and r2 are distinct points in the asymptotic region (we chosen r1 = 15 and

r2 = r1 − h) with S (r) = k r jl (k r) and C (r) = −k r nl (k r). The above mentioned

problem is an initial–value one and consequently, the values of ϕj, j = 0, 1 must be
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computed in order a two–step scheme to be applied. The value ϕ0 is defined by the initial

condition of the problem. The value ϕ1 is computed using the high order Runge–Kutta–

Nyström methods (see [21] and [22]). The computation of the values ϕi, i = 0, 1 leads to

the computation of the phase shift δl at the point r2 of the asymptotic region. It is noted

that ϕj is the approximation of the function ϕ at the point xj.

The above mentioned problem is solved for positive energies and therefore, two are

the possible results of the solution:

• the phase-shift δl or

• The energies E, for E ∈ [1, 1000], for which δl =
π
2
.

For our numerical experiments the second problem is solved, which is known as the

resonance problem.

The boundary conditions are:

ϕ(0) = 0 , ϕ(r) = cos
(√

Er
)

for large r.

The following methods are evaluated for the computation of the the positive eigenen-

ergies of the resonance problem described above:

• Method QT8: the eighth order multi–step method developed by Quinlan and

Tremaine [23];

• Method QT10: the tenth order multi–step method developed by Quinlan and

Tremaine [23];

• Method QT12: the twelfth order multi–step method developed by Quinlan and

Tremaine [23];

• Method MCR4: the fourth algebraic order method of Chawla and Rao with

minimal phase–lag [24];

• Method RA: the exponentially–fitted method of Raptis and Allison [25];

• Method MCR6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase–lag [26];

• Method NMPF1: the Phase-Fitted Method (Case 1) developed in [13];
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• Method NMPF2: the Phase-Fitted Method (Case 2) developed in [13];

• Method NMC2: the Method developed in [27] (Case 2);

• Method NMC1: the method developed in [27] (Case 1);

• Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];

• Method WPS2S: the Two–Step P–stable Method developed in [82];

• Method WPS4S: the Four–Step P–stable Method developed in [82];

• Method WPS6S: the Six–Step P–stable Method developed in [82];

• Method NM3SPS2DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first and second derivatives

developed in [6];

• Method NM3SPS3DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first, second and third

derivatives developed in [7].

• Method NM3SPS4DV: the Three Stages Tenth Algebraic Order P–stable Sym-

metric Two–Step method with vanished phase-lag and its first, second, third and

fourth derivatives developed in Section 3.

In Figures 6 and 7 we present the maximum absolute error Errmax, which is defined

by: Errmax = max| log10 (Err) | where

Err = |Ecalculated − Eaccurate|

In order to compute the absolute error Err two values of the specific eigenenergy are

used:

1. The computed eigenenergies. The computed eigenenergies are determined as

Ecalculated and are computed using each of the 17 numerical methods mentioned

above.

2. The accurate eigenenergies (the reference values for the eigenenergies). The accurate

eigenenergies are determined as Eaccurate and are computed using the well known

two-step method of Chawla and Rao [26]. .
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Figure 6. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E2 = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.
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Figure 7. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue E3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.
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In Figures 6 and 7 we present the maximum absolute errors Errmax for the eigenen-

ergies E2 = 341.495874 and E3 = 989.701916, respectively, and for the 17 numerical

methods mentioned above for several values of CPU time (in seconds). The symboliza-

tions E2 and E3 for the computed eigenenergies in our numerical experiments are given

since it is known that the Woods–Saxon potential has also the eigenenergies E0 and E1.

The choice of the eigenenergies E2 and E3 was done because for these eigenenergies the

solution has stiffer behavior and therefore the new built method can show effectively its

efficiency.

5.1.3 Conclusions on the obtained numerical results for the radial Schrödinger
equation

Our numerical experiments presented in Figures 6 and 7 lead to the following conclusions:

• Method QT10 is more efficient than Method MCR4 and Method QT8.

• Method QT10 is more efficient than Method MCR6 for large CPU time and

less efficient than Method MCR6 for small CPU time.

• Method QT12 is more efficient than Method QT10

• Method NMPF1 is more efficient than Method RA, Method NMPF2 and

Method WPS2S

• Method WPS4S is more efficient than Method MCR4, Method NMPF1 and

Method NMC2.

• Method WPS6S is more efficient than Method WPS4S.

• Method NMC1, is more efficient than all the other methods mentioned above.

• Method NM2SH2DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS2DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS3DV, is more efficient than all the other methods mentioned

above.

• Method NM3SPS4DV, is the most efficient one.
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5.2 Error estimation

The second problem which we will solve in our numerical experiments, is the numerical

solution of the coupled differential equations arising from the Schrödinger equation.

We will solve the above problem using a so called variable–step pair.

Definition 9. We denote a numerical pair as variable–step numerical pair if the stepsize

of integration is changed during the integration process.

Definition 10. We call Local truncation error estimation procedure(LTEEPR), the pro-

cess which is used in order a variable–step pair to change the stepsize during the integra-

tion.

We note that during the last decades much research has been done on the building of

numerical schemes of constant or variable stepsize for the numerical solution of problems

of the form of the Schrödinger equation (see for example [13]– [82]).

As we mentioned previously, we solve numerically the systems of coupled differential

equations arising from the Schrödinger equation using the variable–step pairs determined

above. We also mentioned above that the variable–step pairs are based on the LTEEPR

procedure determined above. The categories of the LTEEPR procedures are shown in

Figure 8.

Viariable–Step Meth-

ods - Embedded Fi-

nite Difference Pairs

LTEEPR Procedure Based

on the Algebraic Order

LTEEPR Procedure

Based on the the Order

of Derivatives of the Phase–Lag

Figure 8. Categories of LTEEPR Procedures used for Building Embedded Finite
Difference Pairs for Problems with Oscillatory and/or Periodical solu-
tions

The following formula for the estimation of the local truncation error (LTE) in the

lower order solution ϕLn+1 is used:

LTE =| ϕHn+1 − ϕLn+1 | (50)

where ϕLn+1 and ϕHn+1 are
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• LTEEPR Procedure based on the algebraic order of the pairs. For this

procedure, ϕLn+1 determines the finite difference pair with the lower algebraic order

solution and ϕHn+1 determines the finite difference pair with the higher algebraic

order solution.

• LTEE Procedure based on the order of the derivatives of the phase–lag.

Let us consider that the higher order of the derivatives of the phase–lag which are

eliminated for the finite difference pairs which participate in this procedure are p and

s respectively, where p < s. For this procedure ϕLn+1 determines the finite difference

pair with eliminated higher order derivative of the phase–lag equal to p and ϕHn+1

determines the finite difference pair with eliminated higher order derivative of the

phase–lag equal to s .

For our numerical experiments we use the first LTEEPR procedure for the estimation

of the local truncation error. Consequently, we use:

As ϕLn+1 we use the eighth algebraic order method developed in [81] and as ϕHn+1 we

use the tenth algebraic order method developed in Section 3.

In Figure 9 we present the variable–step procedure via the Local Truncation Error

Control Procedure LTEEPR. This is the procedure which we use in our numerical

experiments. We note that:

• hn is denoted the stepsize which is used for the nth step of the integration and

• acc is denoted the accuracy of the local truncation error LTE which is determined

by the user.

Remark 16. In our numerical tests the known as local extrapolation technique is

used. Based on this technique for the approximation of the solution at each point of

the integration domain we use the higher order solution ϕHn+1 although the local error

estimation is based on the lower order solution ϕLn+1.

5.3 Coupled differential equations arising from the Schrödinger
equation

Systems of coupled differential equations of the Schrödinger type are appeared in mathe-

matical models of problems in many scientific disciplines like:
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Error Control Pro-
cedure LTEEPR

LTEEPR < acchn+1 = 2hn

acc ≤ LTEEPR ≤
100 acc

hn+1 = hn

hn+1 = 1
2
hn and

the step is repeated

yes

no

yes

no

Figure 9. Flowchart for the Local Truncation Error Control Procedure LTEEPR.
The parameter acc is defined by the user

• quantum chemistry,

• material science,

• theoretical physics,

• quantum physics,

• atomic physics,

• physical chemistry

• chemical physics,

• quantum chemistry,

• electronics,
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• etc.

The formula of the close-coupling Schrödinger equations is given by:[
d2

dx2
+ k2i −

li(li + 1)

x2
− Vii

]
ϕij =

N∑
m=1

Vim ϕmj

for 1 ≤ i ≤ N and m 6= i. This problem is a boundary value problem.

The boundary conditions are given by (see for details [28]):

ϕij = 0 at x = 0

ϕij ∼ ki xjli (kix)δij +

(
ki
kj

)1/2

Kij ki xnli (kix) (51)

Remark 17. The finite difference pair built in this paper and the resulting embedded pair

can be applied effectively to both open and close channels problem.

The analysis fully described in [28] leads to the new formulae of the asymptotic con-

dition (51):

ϕ ∼ M+NK′.

where the matrix K′ and diagonal matrices M, N are give by :

K ′
ij =

(
ki
kj

)1/2

Kij

Mij = kixjli(kix)δij

Nij = kixnli(kix)δij

We will investigate the rotational excitation of a diatomic molecule by neutral parti-

cle impact. We can meet this problem in many scientific disciplines like quantum chem-

istry, theoretical chemistry, theoretical physics, quantum physics, material science, atomic

physics, molecular physics, in technical applications in the analysis of gas dynamics and

stratification of chemically reacting flows, dispersed flows, including with nano-sized parti-

cles etc. The form of the above presented problem contains the close–coupling Schrödinger

equations (see [8], [9–12], [84] - [88]). We use the determinations:

• quantum numbers (j, l) which denote the entrance channel (see for details in [28]),

• quantum numbers (j′, l′) which denote the exit channels and
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• J = j + l = j′ + l′ which denote the total angular momentum.

and we obtain:

[
d2

dx2
+ k2j′j −

l′(l′ + 1)

x2

]
ϕJjlj′l′(x) =

2µ

~2
∑
j′′

∑
l′′

< j′l′; J | V | j′′l′′; J > ϕJjlj′′l′′(x)

where

kj′j =
2µ

~2

[
E +

~2

2I
{j(j + 1)− j′(j′ + 1)}

]
.

and E determines the kinetic energy of the incident particle in the center-of-mass system,

I determines the moment of inertia of the rotator, µ determines the reduced mass of

the system, Jjl is angular momentum of the quantum numbers (j, l) and j′′ and l′′ are

quantum numbers.

For our numerical experiments, we use the following potential V (see [28]):

V (x, k̂j′jk̂jj) = V0(x)P0(k̂j′jk̂jj) + V2(x)P2(k̂j′jk̂jj)

and consequently, the coupling matrix contains elements of the form:

< j′l′; J | V | j′′l′′; J >= δj′j′′δl′l′′V0(x) + f2(j
′l′, j′′l′′; J)V2(x)

where f2 coefficients are determined from formulae presented by Bernstein et al. [29]

and k̂j′j is a unit vector parallel to the wave vector kj′j and Pi, i = 0, 2 are Legendre

polynomials (see for details [30]). We note also that V0(x) and V2(x) are potential functions

defined by the user. The above analysis leads to the following new expressions of the

boundary conditions:

ϕJjlj′l′(x) = 0 at x = 0 (52)

ϕJjlj′l′(x) ∼ δjj′δll′ exp[−i(kjjx− 1/2lπ)]−
(
ki
kj

)1/2

SJ(jl; j′l′) exp[i(kj′jx− 1/2l′π)]

where S matrix. For K matrix of (51) we use the following formula:

S = (I+ iK)(I− iK)−1.

The methodology fully described in [28] is used for the numerical solution of the above

presented problem. The methodology contains the numerical method built in this paper

for the integration from the initial value point to the matching points.

-512-



For our numerical tests the following parameters for the S matrix are used:
2µ

~2
= 1000.0 ;

µ

I
= 2.351 ; E = 1.1

V0(x) =
1

x12
− 2

1

x6
; V2(x) = 0.2283V0(x).

In our numerical tests we chose (see for full details in [28]) J = 6 and for the excitation

of the rotator the value j = 0 state to levels up to j′ = 2, 4 and 6. The above values

leads to systems of four, nine and sixteen coupled differential equations arising

from the Schrödinger equation, respectively. Following the theory fully described

in [30] and [28], the potential is considered infinite for x less than x0. Consequently, the

boundary condition (52) can be written now as

ϕJjlj′l′(x0) = 0.

For the approximate solution of the above presented problem, we use the following

methods:

• the Iterative Numerov method of Allison [28] which is indicated as Method I2,

• the variable–step method of Raptis and Cash [31] which is indicated as Method

II,

• the embedded Runge–Kutta Dormand and Prince method 5(4) (5(4) means: Runge–

Kutta method of variable step which uses the fourth algebraic order part in order

to control the error of the the fifth algebraic order part) which is developed in [22]

which is indicated as Method III,

• the embedded Runge–Kutta method ERK4(2) developed in Simos [32] which is

indicated as Method IV,

• the embedded two–step method developed in [1] which is indicated as Method V,

• the embedded two–step method developed in [2] which is indicated as Method VI.

• the embedded two–step method developed in [3] which is indicated as Method

VII.
2We note here that Iterative Numerov method developed by Allison [28] is one of the most well-known

methods for the numerical solution of the coupled differential equations arising from the Schrödinger
equation
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• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in [6] which is indicated as Method VIII.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in [7] which is indicated as Method IX.

• the new developed embedded two–step method with error control based on the

algebraic order of the method developed in this paper which is indicated as Method

X.

The real time of computation required by the numerical methods I-X presented above

in order to calculate the square of the modulus of the S matrix for the sets of 4, 9 and 16

coupled differential equations respectively, is presented in Table 2. The maximum error

in the computation of the square of the modulus of the S matrix is also presented in the

same table.

All computations were carried out on a x86-64 compatible PC using double-precision

arithmetic data type (64 bits) according to IEEE c© Standard 754 for double precision.
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Table 1. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|2 for
the variable–step methods Method I - Method VIII. acc=10−6. Note that
hmax is the maximum stepsize. N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr
Method I 4 0.014 3.25 1.2× 10−3

9 0.014 23.51 5.7× 10−2

16 0.014 99.15 6.8× 10−1

Method II 4 0.056 1.55 8.9× 10−4

9 0.056 8.43 7.4× 10−3

16 0.056 43.32 8.6× 10−2

Method III 4 0.007 45.15 9.0× 100

9
16

Method IV 4 0.112 0.39 1.1× 10−5

9 0.112 3.48 2.8× 10−4

16 0.112 19.31 1.3× 10−3

Method V 4 0.448 0.20 1.1× 10−6

9 0.448 2.07 5.7× 10−6

16 0.448 11.18 8.7× 10−6

Method VI 4 0.448 0.15 3.2× 10−7

9 0.448 1.40 4.3× 10−7

16 0.448 10.13 5.6× 10−7

Method VII 4 0.448 0.10 2.5× 10−7

9 0.448 1.10 3.9× 10−7

16 0.448 9.43 4.2× 10−7

Method VIII 4 0.896 0.04 3.8× 10−8

9 0.896 0.55 5.6× 10−8

16 0.896 8.45 6.5× 10−8

Method IX 4 0.896 0.03 3.2× 10−8

9 0.896 0.50 4.1× 10−8

16 0.896 8.35 5.0× 10−8

Method X 4 0.896 0.02 2.7× 10−8

9 0.896 0.44 3.3× 10−8

16 0.896 8.01 4.2× 10−8
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6 Conclusions

In the present paper a new P–stable symmetric two–step finite difference pair with elim-

inated phase–lag and its derivatives up to order four was built. The three stages of the

building of the new proposed scheme are as follows:

1. In the first stage the P–stability conditions introduced by Lambert and Watson [14]

and Wang [82] are satisfied.

2. In the second stage, the condition for the elimination of the phase–lag is satisfied.

3. In the third stage, the conditions for the elimination of the derivatives of the phase–

lag up to order four are satisfied.

The above methodology for the building of P–stable symmetric finite difference pairs

was first introduced in the paper of Medvedev and Simos [6].

The analysis of the new built scheme consisted from the following parts:

• The determination of the local truncation error (LTE) was done.

• The asymptotic form of the LTE was computed and the asymptotic form of the

LTE of new built scheme was compared with the asymptotic forms of the LTE of

similar methods.

• The stability and the interval of periodicity properties of the new built finite differ-

ence method was investigated.

• The computational effectiveness of the new built pair was also investigated.

Based on the above studies we conclude that the theoretical, computational and nu-

merical results presented in this paper, proved the effectiveness of the new built method

compared with other well known and recently obtained methods of the literature for

the numerical solution of the radial Schrödinger equation and of the systems of coupled

differential equations arising from the Schrödinger equation.
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Appendix A: Formulae for the Υi (v) , i = 2(1)6

Υ2 (v) = 2 cos (v) v6c1c3 − v6c0c3 + 2 cos (v) v4c3 − v4c2

+ 2 cos (v) v2 + 10 v2 + 24 cos (v) + 12 a1

Υ3 (v) = − sin (v) v12c1
2c3

2 − 2 sin (v) v10c1c3
2 − v9c0c3

2

+ v9c1c2c3 − 2 sin (v) v8c1c3 − sin (v) v8c3
2 − 24 sin (v) v6c1c3

− 2 v7c0c3 − 20 v7c1c3 − 2 sin (v) v6c3 − 36 v5a1c1c3

− 36 v5c0c3 − 24 sin (v) v4c3 − v5c2 − 10 v5c3 − sin (v) v4 − 24 v3a1c3

− 24 v3c2 − 24 sin (v) v2 − 12 va1 − 144 sin (v) + 120 v

Υ4 (v) = 1440− 204 v6c0c3 + 120 v6c2c3 − 432 cos (v) v4c3

+ 108 v4a1c3 − 864 v2a1c3 − cos (v) v12c3
3 − 3 cos (v) v10c3

2

− 3 cos (v) v8c3 − 36 cos (v) v8c3
2 − 72 cos (v) v6c3 − 3 v10c0c3

2

− 3 v14c1
2c2c3

2 + 10 v12c0c1c3
2 + v12c1c2c3

2

+ 252 v10a1c1
2c3

2 + 252 v10c0c1c3
2 + 12 v10c1c2c3

+ 324 v8a1c1c3
2 + 3 v8c2c3 − 6 v8c0c3 − v12c0c3

3

+ 120 v6a1c3
2 − 432 cos (v) v2 − 10 v6c3 − 3 cos (v) v14c1c3

3

− 1440 v4c3 − 864 v2c2 − 36 v4c2 − cos (v) v6 − 72 cos (v) v8c1c3

− 3 cos (v) v10c1c3 − 72 cos (v) v10c1c3
2 − 6 cos (v) v12c1c3

2

− cos (v) v18c1
3c3

3 − 2160 v4a1c1c3 + 96 v6a1c1c3

+ 324 v8c1c2c3 + 3 v14c0c1c3
3 − 3 cos (v) v14c1

2c3
2

− 432 cos (v) v6c1c3 − 3 cos (v) v16c1
2c3

3 + 36 v2a1

− 36 cos (v) v4 − v6c2 − 2160 v4c0c3 − 3000 v6c1c3 − 36 cos (v) v12c1
2c3

2

+ 30 v8c3
2 − 1728 cos (v)− 144 a1 − 360 v2 − 60 v8c1c3 + 100 v12c1

2c3
2

+ 90 v10c1c3
2

Υ5 (v) = −17280 v + 6912 sin (v) v6c1c3 + 2592 v9c1c2c3

+ 13824 v5a1c1c3 + 864 sin (v) v12c1
2c3

2 + 1728 sin (v) v10c1c3
2

+ 1728 sin (v) v8c1c3 + 1728 sin (v) v6c3 + 6912 sin (v) v2 + 1728 v3c2

+ 5760 v5c3 − 86400 v3c3 + 864 sin (v) v8c3
2 + 10368 v3a1c3
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− 576 v7c0c3 + 864 v9c0c3
2 − 241920 v5c1c3 − 20736 va1c3

− 103680 v3c0c3 − 103680 v3a1c1c3 − 2016 v15a1c1
3c3

3

− 12 v17c1
2c2c3

3 + 12 v17c0c1c3
4 − 60 v17c0c1

2c3
3

+ 12 v19c1
3c2c3

3 − 12 v19c0c1
2c3

4 + 1728 va1

− 20736 vc2 − 144 v3a1 + 14400 v7c3
2 + 120 v9c3

2 − 120 v11c3
3

+ 144 sin (v) v10c1c3 + 4 sin (v) v12c1c3 + 288 sin (v) v12c1c3
2

+ 12 sin (v) v14c1c3
2 + 144 sin (v) v14c1c3

3 + 144 sin (v) v14c1
2c3

2

+ 12 sin (v) v16c1c3
3 + 6 sin (v) v16c1

2c3
2 + 144 sin (v) v16c1

2c3
3

+ 4 sin (v) v18c1c3
4 + 12 sin (v) v18c1

2c3
3 + 48 sin (v) v18c1

3c3
3

+ 6 sin (v) v20c1
2c3

4 + 4 sin (v) v20c1
3c3

3 + 4 sin (v) v22c1
3c3

4

+ sin (v) v24c1
4c3

4 + 44928 v7c1c2c3 − 576 v7a1c1c3

+ 62208 v7a1c1c3
2 + 60480 v9c0c1c3

2 − 1440 v9a1c1c3
2

+ 48 sin (v) v12c3
3 + 60480 v9a1c1

2c3
2 + 60 v11c1c2c3

− 2592 v11c1c2c3
2 + 4896 v11c0c1c3

2 − 2736 v11a1c1c3
3

− 144 v11a1c1
2c3

2 − 48 v13c1c2c3
2

+ 120 v13c0c1c3
2 − 3744 v13c1

2c2c3
2

− 3744 v13a1c1
2c3

3 − 120 v15c1
2c2c3

2

+ 48 v15c0c1c3
3 − 2016 v15c0c1

2c3
3 + sin (v) v8

+ 864 sin (v) v4 + 48 sin (v) v6 + 4 sin (v) v14c3
3 + sin (v) v16c3

4 − 576 v5a1c3

+ 17280 v5c2c3 + 17280 v5a1c3
2 + 576 v7c2c3

− 864 v7a1c3
2 + 17280 v7c0c3

2 − 120 v9c1c3 + 12 v9c2c3

− 720 v9c2c3
2 − 12 v9c0c3 − 720 v9a1c3

3 + 48960 v9c1c3
2

− 12 v11c2c3
2 + 720 v11c1c3

2 − 144 v11c0c3
3

+ 12 v11c0c3
2 + 50400 v11c1

2c3
2 − 720 v15c1

2c3
3

+ 144 sin (v) v10c3
2 + 4 sin (v) v10c3 + 6912 sin (v) v4c3 − 10368 v5c0c3

+ 6 sin (v) v12c3
2 − 600 v17c1

3c3
3 − 480 v13c1c3

3

+ 144 sin (v) v8c3 + 1200 v13c1
2c3

2 + 1440 v3 + 20736 sin (v)

Υ6 (v) = −207360 + 240 cos (v) v18c1c3
4 + 10 cos (v) v18c1

2c3
2
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+ 30 cos (v) v18c1c3
3 + 360 cos (v) v16c1

2c3
2 + 720 cos (v) v16c1c3

3

+ 20 cos (v) v16c1c3
2 + 720 cos (v) v14c1c3

2 + 5 cos (v) v14c1c3

+ 240 cos (v) v12c1c3 − 12 v20c1
2c2c3

4 + 43200 v18a1c1
3c3

4

+ 5880 v20c1
3c3

4 + 30 cos (v) v20c1
2c3

3 + 20 cos (v) v20c1c3
4

+ 720 cos (v) v18c1
2c3

3 + 5 cos (v) v22c1c3
5 + 240 cos (v) v20c1

3c3
3

+ 360 cos (v) v20c1
2c3

4 + 10 cos (v) v22c1
3c3

3 + 30 cos (v) v22c1
2c3

4

− 1270080 v14a1c1
3c3

3 + 103680 cos (v) v6c1c3

+ 780 v14c0c1c3
2 + 23760 v14c1c2c3

3 + 24480 v14a1c1c3
4

− 1270080 v14c0c1
2c3

3 − 248832 a1c3 + 198720 v8c1c2c3

− 120 v10c1c3 + 60 cos (v) v8 + 1212 v20c1
3c2c3

3

+ 7800 v14c1
2c3

2 + 540 v18c1
2c2c3

3 − 1860 v18c0c1
2c3

3

+ 60 v18c0c1c3
4 + 43920 v18c1

3c2c3
3

− 720 v18c0c1
2c3

4 + 3000 v12c1c3
2 − 12240 v16a1c1

3c3
3

+ 600 v14c3
4 − 3110400 v2c3 + 1036800 v4c3 + 207360 v2c2

− 8640 v4c2 + 1440 cos (v) v6 − 25920 v6c2c3 − 7800 v14c1c3
3

+ 103680 cos (v) v2 − 36000 v6c3 + 5040 v12a1c3
4 + 3000 v16c1c3

4

+ 2332800 c3
2v6 + 4200 v22c1

4c3
4 + 46800 v16a1c1

2c3
4

− 90000 v16c0c1
2c3

3 + 17280 cos (v) v4 + 11249280 v10c1
2c3

2

− 662400 v12c1c3
3 + 720 v14c0c3

4 + 60 v14c2c3
3

− 60 v14c0c3
3 + 12 v10c2c3 + 1347840 v4c2c3

+ 4320 cos (v) v8c3 + 17280 cos (v) v8c3
2 − 18600 v18c1

3c3
3

+ 4320 cos (v) v10c3
2 + cos (v) v10 − 1116000 v14c1

2c3
3 − 2064960 v12a1c1

2c3
3

− 720 v14c1c2c3
2 − 18000 v16c1

2c3
3 + 120 v10c3

2

− 1200 v12c3
3 + 9763200 v8c1c3

2 − 7488 v10c2c3
2

− 64800 v8c3
2 − 12 v10c0c3 + 3600 v14a1c1

2c3
3

− 129600 v6a1c1c3 + 1347840 v4a1c1c3

+ 1440 cos (v) v18c1
3c3

3 + 4320 cos (v) v16c1
2c3

3

+ 4320 cos (v) v14c1
2c3

2 − 145440 v10c3
3 + 240 cos (v) v22c1

3c3
4
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− 17280 v2a1 + 60 cos (v) v24c1
4c3

4 + 10 cos (v) v24c1
2c3

5

+ 7200 v8a1c3
2 + 20 cos (v) v24c1

3c3
4 + 10 cos (v) v26c1

3c3
5

+ 5 cos (v) v26c1
4c3

4 + 5 cos (v) v28c1
4c3

5 + cos (v) v30c1
5c3

5

+ 300 v16c1c2c3
3 − 1620 v16c1

2c2c3
2

− 180 v16c0c1c3
3 + 42480 v16c1

2c2c3
3

+ 4250880 v6c1c2c3 + 7050240 v6a1c1c3
2

+ 3600 v8a1c1c3 + 8709120 v8c0c1c3
2 + 8709120 v8a1c1

2c3
2

− 777600 v16c1
3c3

3 + 6000 c1
2c3

4v18 + 12 v20c0c1c3
5

− 624 v20c0c1
2c3

4 + 18144 v20c0c1
3c3

4

+ 18144 v20a1c1
4c3

4 + 120 v22c1
3c2c3

4

− 120 v22c0c1
2c3

5 + 420 v22c0c1
3c3

4 + 4320 v16c0c1c3
4

− 1074816 v10c1c2c3
2 − 43200 v8c1c3 + 34560 v10c1c3

2

+ 338400 v12c1
2c3

2 + 34560 cos (v) v8c1c3 + 4320 cos (v) v10c1c3

+ 20736 a1 + 248832 cos (v)− 7200 v4 − 248832 c2 + 172800 v2

+ 240 cos (v) v10c3 + 5 cos (v) v12c3 + 10 cos (v) v14c3
2 + 4320 cos (v) v14c1c3

3

+ 17280 cos (v) v12c1
2c3

2 + 8640 cos (v) v12c1c3
2

− 3732480 v2a1c1c3 + 34560 cos (v) v10c1c3
2

+ 240 cos (v) v14c3
3 + 360 cos (v) v12c3

2 + 10 cos (v) v16c3
3 − 60 v24c1

4c2c3
4

+ 60 v24c0c1
3c3

5 + 60 cos (v) v16c3
4 + 5 cos (v) v18c3

4

+ cos (v) v20c3
5 − 28800 v14c0c1c3

3 − 79200 v14c1
2c2c3

2

+ 1347840 v4a1c3
2 + 3600 v6a1c3 + 43200 v12c0c1c3

2

− 43200 v12c1c2c3
2 + 2799360 v6c0c3

2 + 720 v4a1

− 221184 v10a1c1
2c3

2 − 267840 v8c2c3
2 + 1440 cos (v) v12c3

3

+ 518400 v2a1c3 − 112320 v4a1c3 − 174528 v10c0c3
3

− 259200 v6a1c3
2 + 720 v8c2c3 − 720 v8c0c3 + 7632 v10c0c3

2

− 6480 v12c0c3
3 + 14688 v10a1c1c3

2 − 1249344 v10a1c1c3
3

+ 180 v12c1c2c3 − 1347840 v12c1
2c2c3

2

− 717120 v12c0c1c3
3 + 16560 v12a1c1c3

3
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+ 9360 v12a1c1
2c3

2 + 34560 cos (v) v6c3 + 190080 v8c0c3
2

− 267840 v8a1c3
3 + 103680 cos (v) v4c3 − 17280 v6c0c3

− 14515200 v4c1c3 − 103680 v4c0c3 + 1123200 v6c1c3

− 3732480 v2c0c3 + 7056 v10a1c3
3 − 120 v12c2c3

2

+ 120 v12c0c3
2 + 5040 v12c2c3

3 + 903744 v10c0c1c3
2

+ 10512 v10c1c2c3 − 587520 v8a1c1c3
2.

Appendix B: Formulae for the Υj (v) , j = 7(1)11 and Udenomk (v) , k = 1, 2

Υ7 (v) = (cos (v))3 v6 − 9 (cos (v))2 sin (v) v5 + 5 (cos (v))2 v6

+ 15 (cos (v))3 v4 + 45 cos (v) sin (v) v5

+ 14 cos (v) v6 − 486 (cos (v))2 sin (v) v3

− 105 (cos (v))2 v4 − 36 sin (v) v5 − 20 v6

− 1665 (cos (v))3 v2 + 90 cos (v) sin (v) v3

+ 462 cos (v) v4 − 1080 (cos (v))2 sin (v) v

− 225 (cos (v))2 v2 − 1836 sin (v) v3

− 210 v4 − 3780 (cos (v))3 − 3195 cos (v) v2

+ 2160 sin (v) v + 225 v2 + 3780 cos (v)

Υ8 (v) = 2 (cos (v))3 v6 + 18 (cos (v))2 sin (v) v5 − 5 (cos (v))2 v6

+ 30 (cos (v))3 v4 − 105 cos (v) sin (v) v5

+ 28 cos (v) v6 + 480 (cos (v))2 sin (v) v3

+ 825 (cos (v))2 v4 + 72 sin (v) v5 + 20 v6

+ 450 (cos (v))3 v2 + 2850 cos (v) sin (v) v3

+ 1260 cos (v) v4 + 8280 (cos (v))2 sin (v) v

− 4275 (cos (v))2 v2 + 2160 sin (v) v3

+ 450 v4 − 5400 (cos (v))3 − 1800 cos (v) sin (v) v

+ 3150 cos (v) v2 − 17280 sin (v) v

+ 6075 v2 + 5400 cos (v)
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Υ9 (v) = (cos (v))2 v6 + cos (v) sin (v) v5

+ 43 (cos (v))2 v4 − 4 v6

− 110 cos (v) sin (v) v3 − 40 cos (v) v4 + 555 (cos (v))2 v2

− 400 sin (v) v3 − 138 v4

− 3000 cos (v) sin (v) v + 600 cos (v) v2

− 1800 (cos (v))2 − 600 sin (v) v + 645 v2 + 1800

Υ10 (v) = (cos (v))3 v6 + 3 (cos (v))2 sin (v) v5 − 5 (cos (v))2 v6

+ 63 (cos (v))3 v4 − 85 cos (v) sin (v) v5

+ 14 cos (v) v6 + 126 (cos (v))2 sin (v) v3

+ 465 (cos (v))2 v4 + 12 sin (v) v5 + 20 v6

+ 1467 (cos (v))3 v2 + 510 cos (v) sin (v) v3

+ 670 cos (v) v4 + 3360 (cos (v))2 sin (v) v

+ 1905 (cos (v))2 v2 + 108 sin (v) v3

+ 530 v4 + 11340 (cos (v))3 + 4200 cos (v) sin (v) v

+ 3873 cos (v) v2 − 5040 sin (v) v

+ 1575 v2 − 11340 cos (v)

Υ11 (v) = (cos (v))2 v6 + 7 cos (v) sin (v) v5

+ 29 (cos (v))2 v4 − 4 v6

+ 102 cos (v) sin (v) v3 − 20 cos (v) v4

+ 891 (cos (v))2 v2 − 360 sin (v) v3 − 90 v4

− 840 cos (v) sin (v) v + 1740 cos (v) v2

+ 5670 (cos (v))2 + 2100 sin (v) v + 1779 v2 − 5670

Udenom1 (v) = (cos (v))2 v4 + 13 cos (v) sin (v) v3

− 4 v4 − 45 (cos (v))2 v2

+ 30 cos (v) sin (v) v − 90 v2 − 105 (cos (v))2 + 105

Udenom2 (v) = v2
(
(cos (v))2 v6 + 7 cos (v) sin (v) v5

+ 29 (cos (v))2 v4 − 4 v6 + 102 cos (v) sin (v) v3

− 20 cos (v) v4 + 891 (cos (v))2 v2
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− 360 sin (v) v3 − 90 v4 − 840 cos (v) sin (v) v + 1740 cos (v) v2

+ 5670 (cos (v))2 + 2100 sin (v) v + 1779 v2 − 5670
)
.

Appendix C: Truncated Taylor Series Expansion Formulae for the

coefficients of the new obtained method given by (26)

a1 = −2 +
v12

119750400
+

37 v14

74724249600
+

3823 v16

131813576294400

+
8082727 v18

6470398926351360000
+ · · ·

c0 =
15

28
− 115 v2

4851
+

4183181 v4

2796970176
+

43290661 v6

8614668142080

+
26855116571749 v8

15832347239567738880
+

13069268523635959 v10

138976344068925611888640

+
36995398988232494879 v12

5891942982197415705904742400

+
4794898835302746891443 v14

11568830045544625738543961702400

+
44791008915154857836703317699 v16

1630056945728072380476405497279053824000

+
36614245294685173091989320114727 v18

20082301571369851727469315726477943111680000
+ · · ·

c1 =
1

56
+

v2

882
+

39001 v4

508540032
+

8111861 v6

1566303298560

+
4995247059577 v8

14393042945061580800
+

14616813578053517 v10

631710654858752781312000

+
36868361335551830789 v12

23962447535252647607746560000

+
154491264866748824244067 v14

1511835744588218136286994995200000

+
62828772349636551906828658211 v16

9261687191636774889070485779994624000000
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+
205504627149665352212652766877947 v18

456415944803860266533393539238135070720000000
+ · · ·

c2 =
1

15
+

4 v2

3465
− 1801 v4

45405360
− 52079 v6

7628100480

+
8651507759 v8

8986665175488000
+

199398453803 v10

2758214926938240000

+
5608485889441381 v12

1174668573084457651200000
+

1572019742188578791 v14

6569488556629182632448000000

+
1378327386753952656761 v16

157273556045702632220805120000000

+
7994388728944332905833 v18

66054893539195105532738150400000000
+ · · ·

c3 =
1

30
+

2 v2

3465
− 1801 v4

90810720
− 52079 v6

15256200960

− 4856586841 v8

17973330350976000
− 1143449026051 v10

71713588100394240000

− 1715515200063719 v12

2349337146168915302400000
− 294832409423618959 v14

13138977113258365264896000000

+
932778876735780883 v16

18502771299494427320094720000000

+
9778995804489942605833 v18

132109787078390211065476300800000000
+ · · ·

Appendix D: Expressions for the Derivatives of ϕn

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:

ϕ(2) = (V (x)− Vc + Γ) ϕ(x)

ϕ(3) =

(
d

dx
Ξ (x)

)
ϕ (x) + (Ξ (x) + Γ)

d

dx
ϕ (x)

ϕ(4) =

(
d2

dx2
Ξ (x)

)
ϕ (x) + 2

(
d

dx
Ξ (x)

)
d

dx
ϕ (x) + (Ξ (x) + Γ)2 ϕ (x)
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ϕ(5) =

(
d3

dx3
Ξ (x)

)
ϕ (x) + 3

(
d2

dx2
Ξ (x)

)
d

dx
ϕ (x)

+ 4 (Ξ (x) + Γ)ϕ (x)
d

dx
Ξ (x) + (Ξ (x) + Γ)2

d

dx
ϕ (x)

ϕ(6) =

(
d4

dx4
Ξ (x)

)
ϕ (x) + 4

(
d3

dx3
Ξ (x)

)
d

dx
ϕ (x)

+ 7 (Ξ (x) + Γ)ϕ (x)
d2

dx2
Ξ (x) + 4

(
d

dx
Ξ (x)

)2

ϕ (x)

+ 6 (Ξ (x) + Γ)

(
d

dx
ϕ (x)

)
d

dx
Ξ (x) + (Ξ (x) + Γ)3 ϕ (x)

ϕ(7) =

(
d5

dx5
Ξ (x)

)
ϕ (x) + 5

(
d4

dx4
Ξ (x)

)
d

dx
ϕ (x)

+ 11 (Ξ (x) + Γ)ϕ (x)
d3

dx3
Ξ (x) + 15

(
d

dx
Ξ (x)

)
ϕ (x)

+
d2

dx2
Ξ (x) + 13 (Ξ (x) + Γ)

(
d

dx
ϕ (x)

)
d2

dx2
Ξ (x)

+ 10

(
d

dx
Ξ (x)

)2
d

dx
ϕ (x) + 9 (Ξ (x) + Γ)2 ϕ (x)

+
d

dx
Ξ (x) + (Ξ (x) + Γ)3

d

dx
ϕ (x)

ϕ(8) =

(
d6

dx6
Ξ (x)

)
ϕ (x) + 6

(
d5

dx5
Ξ (x)

)
d

dx
ϕ (x)

+ 16 (Ξ (x) + Γ)ϕ (x)
d4

dx4
Ξ (x) + 26

(
d

dx
Ξ (x)

)
ϕ (x)

+
d3

dx3
Ξ (x) + 24 (Ξ (x) + Γ)

(
d

dx
ϕ (x)

)
d3

dx3
Ξ (x)

+ 15

(
d2

dx2
Ξ (x)

)2

ϕ (x) + 48

(
d

dx
Ξ (x)

)

+

(
d

dx
ϕ (x)

)
d2

dx2
Ξ (x) + 22 (Ξ (x) + Γ)2 ϕ (x)
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+
d2

dx2
Ξ (x) + 28 (Ξ (x) + Γ)ϕ (x)

(
d

dx
Ξ (x)

)2

+ 12 (Ξ (x) + Γ)2
(
d

dx
ϕ (x)

)
d

dx
Ξ (x) + (Ξ (x) + Γ)4 ϕ (x)

· · ·

We compute the j-th derivative of the function ϕ at the point xn, i.e. ϕ(j)
n , substituting

in the above formulae x with xn.

Appendix E: Formula for the quantity Λ0

Λ0 = −

(
d9

dx9
Ξ (x)

)
d
dx
ϕ (x)

2395008
−

353
(

d
dx
Ξ (x)

)
ϕ (x)

(
d3

dx3
Ξ (x)

)
d2

dx2
Ξ (x)

2395008

−
743Ξ (x)ϕ (x)

(
d
dx
Ξ (x)

)2 d2

dx2
Ξ (x)

5987520
−

5 (Ξ (x))2
(

d
dx
ϕ (x)

) (
d
dx
Ξ (x)

)
d2

dx2
Ξ (x)

99792

−
313 (Ξ (x))2 ϕ (x)

(
d
dx
Ξ (x)

)
d3

dx3
Ξ (x)

3991680
−

23Ξ (x)
(

d
dx
ϕ (x)

) (
d4

dx4
Ξ (x)

)
d
dx
Ξ (x)

299376

−
73Ξ (x)

(
d
dx
ϕ (x)

) (
d3

dx3
Ξ (x)

)
d2

dx2
Ξ (x)

598752
−

323Ξ (x)ϕ (x)
(

d5

dx5
Ξ (x)

)
d
dx
Ξ (x)

5987520

−
13Ξ (x)ϕ (x)

(
d4

dx4
Ξ (x)

)
d2

dx2
Ξ (x)

136080
−

31
(

d
dx
Ξ (x)

) (
d
dx
ϕ (x)

) (
d2

dx2
Ξ (x)

)2
266112

−
19
(

d2

dx2
Ξ (x)

) (
d
dx
ϕ (x)

)
d5

dx5
Ξ (x)

443520
−

7
(

d
dx
Ξ (x)

) (
d
dx
ϕ (x)

)
d6

dx6
Ξ (x)

342144

−
5
(

d2

dx2
Ξ (x)

)3
ϕ (x)

177408
−

(
d4

dx4
Ξ (x)

)2
ϕ (x)

114048
−

13
(

d
dx
Ξ (x)

)
ϕ (x) d7

dx7
Ξ (x)

2395008

−
19 (Ξ (x))4 ϕ (x) d2

dx2
Ξ (x)

4790016
−

13 (Ξ (x))3 ϕ (x)
(

d
dx
Ξ (x)

)2
1197504

− (Ξ (x))6 ϕ (x)

23950080
−

(
d10

dx10
Ξ (x)

)
ϕ (x)

23950080
−

17
(

d2

dx2
Ξ (x)

)
ϕ (x) d6

dx6
Ξ (x)

1596672

−

(
d3

dx3
Ξ (x)

) (
d
dx
ϕ (x)

)
d4

dx4
Ξ (x)

16632
−
(

d
dx
Ξ (x)

)2
ϕ (x) d4

dx4
Ξ (x)

19008

−
5Ξ (x)

(
d
dx
ϕ (x)

) (
d
dx
Ξ (x)

)3
199584

−
43Ξ (x)ϕ (x)

(
d3

dx3
Ξ (x)

)2
748440

−
(

d
dx
Ξ (x)

)4
ϕ (x)

85536
−

(Ξ (x))4
(

d
dx
ϕ (x)

)
d
dx
Ξ (x)

798336
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−
109

(
d
dx
Ξ (x)

)2 ( d
dx
ϕ (x)

)
d3

dx3
Ξ (x)

1197504
−

5 (Ξ (x))3
(

d
dx
ϕ (x)

)
d3

dx3
Ξ (x)

598752

−
1201 (Ξ (x))2 ϕ (x)

(
d2

dx2
Ξ (x)

)2
23950080

−
37 (Ξ (x))3 ϕ (x) d4

dx4
Ξ (x)

2993760

−
23Ξ (x)ϕ (x) d8

dx8
Ξ (x)

11975040
−

Ξ (x)
(

d
dx
ϕ (x)

)
d7

dx7
Ξ (x)

187110

−
31
(

d3

dx3
Ξ (x)

)
ϕ (x) d5

dx5
Ξ (x)

1995840
−

157 (Ξ (x))2
(

d
dx
ϕ (x)

)
d5

dx5
Ξ (x)

11975040

−
239 (Ξ (x))2 ϕ (x) d6

dx6
Ξ (x)

23950080

at every point x = xn.

Appendix F: Formulae for the Υj (v) , j = 12(1)14

Υ12 (s, v) = −1260 (cos (v))2 v6 + 105 s2v6

+ 180 s4v6 − 90 s2v8 − 3558 s4v4

+ 11340 s4v2 − 4 s6v6 + 8 s4v8 − 4 s2v10

− 138 s6v4 + 645 s6v2 + 12 (cos (v))2 v10

− 540 (cos (v))2 v8 − 1800 (cos (v))2 s6

− 1080 v8 − 3480 cos (v) s4v4

− 40 cos (v) s6v4 + 43 (cos (v))2 s6v4

− 45 (cos (v))2 s2v8 + cos (v) sin (v) s6v5

− 14 cos (v) sin (v) s4v7 + 13 cos (v) sin (v) s2v9

− 110 cos (v) sin (v) s6v3 − 204 cos (v) sin (v) s4v5

+ 30 cos (v) sin (v) s2v7 − 3000 cos (v) sin (v) s6v

+ 1680 cos (v) sin (v) s4v3 − 58 (cos (v))2 s4v6

− 400 sin (v) s6v3 + 720 sin (v) s4v5 − 4200 sin (v) s4v3

+ 360 cos (v) sin (v) v7 − 600 sin (v) s6v

− 2 (cos (v))2 s4v8 − 105 (cos (v))2 s2v6

+ 40 cos (v) s4v6 + (cos (v))2 s6v6

− 1782 (cos (v))2 s4v4 + 555 (cos (v))2 s6v2

− 11340 (cos (v))2 s4v2 + 156 cos (v) sin (v) v9
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+ 600 cos (v) s6v2 + (cos (v))2 s2v10

+ 1260 v6 − 48 v10 + 1800 s6

Υ13 (s, v) = (cos (v))3 v12 − 20 v12 − 3 (cos (v))3 s4v8 − 1575 s2v6

− 1590 s4v6 + 1350 s2v8 − 4725 s4v4 + 20 s6v6

− 60 s4v8 + 60 s2v10 + 450 s6v4

+ 6075 s6v2 − 105 (cos (v))2 v10

− 225 (cos (v))2 v8 + 5400 cos (v) s6

− 36 sin (v) s4v7 + 72 sin (v) s6v5 + 225 v8

− 11619 cos (v) s4v4 + 1260 cos (v) s6v4

+ 825 (cos (v))2 s6v4 + 675 (cos (v))2 s2v8 − 105 cos (v) sin (v) s6v5

+ 255 cos (v) sin (v) s4v7 − 195 cos (v) sin (v) s2v9

+ 2850 cos (v) sin (v) s6v3 − 1530 cos (v) sin (v) s4v5

− 450 cos (v) sin (v) s2v7 − 1800 cos (v) sin (v) s6v

− 12600 cos (v) sin (v) s4v3 − 1395 (cos (v))2 s4v6

+ 2160 sin (v) s6v3 − 324 sin (v) s4v5 + 15120 sin (v) s4v3

− 17280 sin (v) s6v + 15 (cos (v))2 s4v8

+ 1575 (cos (v))2 s2v6 − 2010 cos (v) s4v6

− 5 (cos (v))2 s6v6 − 5715 (cos (v))2 s4v4

− 4275 (cos (v))2 s6v2 + 90 cos (v) sin (v) v9

+ 3150 cos (v) s6v2 − 15 (cos (v))2 s2v10

+ 14 cos (v) v12 − 36 sin (v) v11 + 462 cos (v) v10

− 1836 sin (v) v9 − 3195 cos (v) v8 + 2160 sin (v) v7

− 5400 (cos (v))3 s6 + 15 (cos (v))3 v10

− 1665 (cos (v))3 v8 + 5 v12 (cos (v))2

− 42 cos (v) s4v8 + 28 cos (v) s6v6

− 9 (cos (v))2 sin (v) v11 + 8280 (cos (v))2 sin (v) s6v

− 10080 (cos (v))2 sin (v) s4v3 − 210 v10

− 3780 (cos (v))3 v6 + 3780 cos (v) v6
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+ 18 (cos (v))2 sin (v) s6v5 − 9 (cos (v))2 sin (v) s4v7

+ 480 (cos (v))2 sin (v) s6v3 − 378 (cos (v))2 sin (v) s4v5

+ 45 cos (v) sin (v) v11 − 486 (cos (v))2 sin (v) v9

− 1080 (cos (v))2 sin (v) v7 − 34020 (cos (v))3 s4v2

+ 34020 cos (v) s4v2 + 30 (cos (v))3 s6v4

− 189 (cos (v))3 s4v6 + 450 (cos (v))3 s6v2

− 4401 (cos (v))3 s4v4 + 2 (cos (v))3 s6v6

Υ14 (s, v) = (cos (v))2 v4 + 13 cos (v) sin (v) v3

− 4 v4 − 45 (cos (v))2 v2 + 30 cos (v) sin (v) v

− 90 v2 − 105 (cos (v))2 + 105.
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