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Abstract

For a graph G and a real number α, the graph invariant sα(G) is the

sum of the αth powers of the signless Laplacian eigenvalues and σα(G) is the

sum of the αth powers of the Laplacian eigenvalues of G. In this study, for

appropriate vales of alpha, we give some bounds for the generalized versions

of incidence energy and of the Laplacian-energy-like invariant of graphs.

1 Introduction

Let G be a finite, simple, connected graph with n vertices and m edges. Let V (G) =

{v1,v2, ..., vn} be the vertex set of G. vi ∈ V (G), the degree of the vertex vi , denoted
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by di. The maximum vertex degree is denoted by ∆ and the minimum vertex degree is
denoted by δ.

Let A(G) be the (0, 1)−adjacency matrix of G and D(G) be the diagonal matrix of

vertex degrees. The matrix L(G) = D(G)−A(G) (resp., Q(G) = D(G) +A(G)) is called

the Laplacian matrix [26, 27] (resp., the signless Laplacian matrix ) of G. Since A(G),

L(G) and Q(G) are all real symmetric matrices, their eigenvalues are real numbers. So,

we can assume that λ1(G) ≥ λ2(G) ≥ ... ≥ λn(G) (resp., µ1(G) ≥ µ2(G) ≥ ... ≥ µn(G),

q1(G) ≥ q2(G) ≥ ... ≥ qn(G)) are the adjacency (resp., Laplacian, signless Laplacian)

eigenvalues of G.

The energy of G was defined by Gutman in [12, 13] as

E(G) =
n∑

i=1

|λi|

λi, i = 1, ..., n are the eigenvalues of adjacency matrix of G. For survey and details on

E(G), see [12–15,22, 28, 34].

Let I(G) be the (vertex-edge) incidence matrix of the graph G with vertex set

{v1,v2, ..., vn} and edge set {e1,e2, ..., en}. The (i, j) -entry of I(G) is 0 if vi is not incident

with ej and 1 if vi is incident with ej. Jooyandeh et al. [20] introduced the incidence

energy IE of G, which is defined as the sum of the singular values of the incidence matrix

of G. Gutman et al. [17] showed that

IE = IE(G) =
n∑

i=1

√
qi.

Some basic properties of IE may be found in [17, 18, 20].

In [23] Liu and Lu introduced a new graph invariant based on the Laplacian eigen-

values

LEL = LEL(G) =
n−1∑
i=1

√
µi

and called it Laplacian energy like invariant. At first it was considered that LEL [23]

shares similar properties with Laplacian energy [16]. Then it was shown that it is much

more similar to the ordinary graph energy [19]. For survey and details on LEL, see [24].

For a graph G with n vertices and a real number α, the sum of the αth powers of the

non zero Laplacian eigenvalues is defined as [33]

σα = σα(G) =
n−1∑
i=1

µα
i .
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For survey and details on sum of powers of the Laplacian eigenvalues of graphs, see [9].

The cases α = 0 and α = 1 are σ0 = n− 1 and σ1 = 2m, where m is the number of edges

of G. Note that σ1/2 is equal to LEL.

Motivated by the definitions of IE, LEL and σα, Akbari et al. [1] introduced the sum

of the αth powers of signless Laplacian eigenvalues of G as

sα = sα(G) =
n∑

i=1

qαi

and they also gave some relations between σα and sα. In this sum, the cases α = 0

and α = 1 are s0 = n and s1 = 2m. Note that s1/2 is equal to IE. Note further that

Laplacian eigenvalues and signless Laplacian eigenvalues of bipartite graphs coincide [6,

26, 27]. Therefore, for bipartite graphs σα is equal to sα [2, 25, 29, 30, 35] and and LEL is

equal to IE [17].

In this paper, we give some generalizations for the Incidence energy and the Laplacian-

energy-like invariant of graphs.

2 Lemmas

The following lemmas will be used for our main results.

Lemma 2.1 ( [26]) Let G be a graph on n vertices with at least one edge. Then

µ1 ≥ ∆+ 1.

Moreover, if G is connected, then the equality holds if and only if ∆ = n− 1.

Lemma 2.2 ( [26]) Let G be a graph of order n and G its complement. If Spec(G) =

{µ1, µ2, ..., µn−1, 0} , then Spec(G) = {n− µ1, n− µ2, ..., n− µn−1, 0} . From this, it fol-

lows that µ1(G) ≤ n with equality holding if and only if G is connected.

Lemma 2.3 ( [8]) Let G be a connected graph with n ≥ 3 vertices. Then µ2 = µ3 =

... = µn−1 if and only if G ∼= Kn or G ∼= K∆,∆ or G ∼= K1,n−1.

Lemma 2.4 ( [8]) Let G be a connected graph of order n. Then µ1 = µ2 = ... = µn−1 if

and only if G ∼= Kn .
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Let t = t(G) be the number of spanning trees of a graph G. Let G1 × G2 denotes

the Cartesian product of the graphs G1 and G2 [5]. Now we introduce the following two

auxiliary quantities for a graph G as

t1 = t1(G) =
2t(G×K2)

t(G)
, (1)

t2 = t2(G) =
∆ + δ +

√
(∆− δ)2 + 4∆

2

and where ∆ and δ are the maximum and minimum vertex degree of G, respectively.

Lemma 2.5 ( [7]) If G is connected bipartite graph of order n, then
n−1∏
i=1

µi =
n−1∏
i=1

qi =

nt(G). If G is a connected non-bipartite graph of order n, then
n∏

i=1

qi = t1.

Lemma 2.6 ( [4], [32]) Let G be a connected graph with n ≥ 3 vertices and ∆ be the

maximum vertex degree of G. Then q1 ≥ t2 ≥ ∆ + 1 with either equalities if and only if

G is a star graph K1,n−1.

Lemma 2.7 ( [6], [26], [27]) The spectra of L(G) and Q(G) coincide if and only if the

graph G is bipartite.

Lemma 2.8 ( [31]) Let G be simple connected graph with n vertices. Then q1 ≤ 2∆,

with equality if and only if G is a regular graph.

Lemma 2.9 ( [21]) Let x1, x2, ..., xN be non-negative numbers, and let

β =
1

N

N∑
i=1

xi and γ =

(
N∏
i=1

xi

)1/N

be their arithmetic and geometric means. Then

1

N(N − 1)

∑
i<j

(√
xi −

√
xj

)2 ≤ β − γ ≤ 1

N

∑
i<j

(√
xi −

√
xj

)2
.

Moreover, equality holds if and only if x1 = x2 = ... = xN .

Lemma 2.10 ( [11]) For a1, a2, ..., an ≥ 0 and p1,p2, ..., pn ≥ 0 such that
n∑

i=1

pi = 1

n∑
i=1

piai −
n∏

i=1

apii ≥ nλ

(
1

n

n∑
i=1

ai −
n∏

i=1

a
1/n
i

)

where λ = min {p1,p2, ..., pn} . Moreover, equality holds if and only if a1 = a2 = ... = an.
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3 Main Results
After all above materials, we are now ready to present our main results.

Theorem 3.1 Let α be a real number with 0 < α < 1 and let G be a connected graph of

order n with maximum degree ∆ and t spanning trees. Then

σα(G) =

 ≤ nα +
√

(n− 3)
[
σ2α − (∆ + 1)2α

]
+ (n− 2)

(
tn

∆+1

)2α/n−2

≥ (∆ + 1)α +
√

σ2α − n2α + (n− 2)(n− 3)t2α/n−2.

(2)

Equality hold on both sides if and only if G ∼= Kn or G ∼= K1,n−1 .

Proof. Taking N = n − 2 and xi = µ2α
i , i = 2, 3, ..., n − 1 in Lemma 2.9 and using

Lemmas 2.1 and 2.2, we obtain

∑
2≤i<j≤n−1

(
µα
i − µα

j

)2
(n− 2) (n− 3)

≤ σ2α − µ2α
1

n− 2
−
(
nt

µ1

)2α/n−2

≤

∑
2≤i<j≤n−1

(
µα
i − µα

j

)2
(n− 2)

.

Since
n−1∑
i=1

µ2α
i = σ2α, we have

∑
2≤i<j≤n−1

(
µα
i − µα

j

)2
= (n− 3)

n−1∑
i=2

µ2α
i − 2

∑
2≤i<j≤n−1

(µiµj)
α

= (n− 3)
(
σ2α − µ2α

1

)
−

(
n−1∑
i=2

µα
i

)2

+
n−1∑
i=2

µ2α
i

= (n− 2)
(
σ2α − µ2α

1

)
− (σα − µα

1 )
2 .

Therefore,

(n− 2) (σ2α − µ2α
1 )− (σα − µα

1 )
2

(n− 2) (n− 3)
≤ σ2α − µ2α

1

n− 2
−
(
nt

µ1

)2α/n−2

≤ (n− 2) (σ2α − µ2α
1 )− (σα − µα

1 )
2

(n− 2)
.

This implies that,

σα ≤ µα
1 +

√
(n− 3) [σ2α − µ2α

1 ] + (n− 2)
(

tn
µ1

)2α/n−2

(3)

and

σα ≥ µα
1 +

√
σ2α − µ2α

1 + (n− 2)(n− 3)
(

tn
µ1

)2α/n−2

. (4)
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Consider the function,

f(x) =

√
(n− 3) [σ2α − x2α] + (n− 2)

(
tn
x

)2α/n−2

.

It can be easily shown that f(x) is decreasing for x ≥ ∆+ 1, as 0 < α < 1. Thus, we

get

f(x) ≤ f(∆ + 1) =

√
(n− 3)

[
σ2α − (∆ + 1)2α

]
+ (n− 2)

(
tn

∆+1

)2α/n−2
.

Considering this, (3) and Lemma 2.2, we get

σα(G) ≤ µα
1 +

√
(n− 3)

[
σ2α − (∆ + 1)2α

]
+ (n− 2)

(
tn

∆+1

)2α/n−2

≤ nα +

√
(n− 3)

[
σ2α − (∆ + 1)2α

]
+ (n− 2)

(
tn

∆+1

)2α/n−2
.

In an analogous manner,

g(x) =

√
σ2α − x2α + (n− 2)(n− 3)

(
tn
x

)2α/n−2

is a decreasing function for x ≤ n, as 0 < α < 1. Therefore,

g(x) ≥ g(n) =
√

σ2α − n2α + (n− 2)(n− 3)t2α/n−2

Considering this, (4) and Lemma 2.1, we get

σα ≥ µα
1 +

√
σ2α − n2α + (n− 2)(n− 3)t2α/n−2

≥ (∆ + 1)α +
√

σ2α − n2α + (n− 2)(n− 3)t2α/n−2.

By this, the first part of the proof is done.

Suppose now that equalities hold in (2). Then all the above inequalities must become

equalities. For both lower and upper bounds, by Lemma 2.9 it must be µ2 = µ3 =

... = µn−1. Then by Lemma 2.3, either G ∼= Kn or G ∼= K1,n−1 or G ∼= K∆,∆ . Moreover

µ1 = ∆ + 1 = n for both lower and upper bounds. Then by Lemmas 2.1 and 2.2, we

conclude that G ∼= Kn or G ∼= K1,n−1 .

For the converse, if G ∼= Kn or G ∼= K1,n−1 it is easy to see that equalities (2) hold.

Corollary 3.2 Let α be a real number with 0 < α < 1 and let T be a tree of order n with
maximum degree ∆. Then

σα(T ) =

 ≤ nα +

√
(n− 3)

[
σ2α − (∆ + 1)2α

]
+ (n− 2)

(
n

∆+1

)2α/n−2

≥ (∆ + 1)α +
√

σ2α − n2α + (n− 2)(n− 3).

Equality holds on both sides if and onlt if T ∼= K1,n−1 .
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Proof. For a tree T , t = 1.

Corollary 3.3 Let α be a real number with 0 < α < 1 and let U be a connected unicyclic

graph of order n with maximum degree ∆. Then

σα(U) =

 ≤ nα +

√
(n− 3)

[
σ2α − (∆ + 1)2α

]
+ (n− 2)

(
n2

∆+1

)2α/n−2

≥ (∆ + 1)α +
√

σ2α − n2α + (n− 2)(n− 3)32α/n−2.

Equality holds on both sides if and only if U ∼= K3.

Proof. For unicyclic graphs, 3 ≤ t ≤ n and K3 is the only unicyclic graph for which

equality in Theorem 3.1 holds.

For a special case, if we take α = 1
2
, we get the same bounds as in Theorem 2.5 and

Corollaries 2.6 and 2.7 of the paper [10] for the LEL given as follows:

Theorem 3.4 ( [10]) Let G be a connected graph of order n with m edges, maximum

degree ∆ and t spanning trees. Then

LEL(G) =

{
≤

√
n+

√
(n− 3) (2m−∆− 1) + (n− 2)

(
tn

∆+1

)1/n−2

≥
√
∆+ 1 +

√
2m− n+ (n− 2)(n− 3)t1/n−2.

Equality hold on both sides if and onlt if G ∼= Kn or G ∼= K1,n−1 .

Corollary 3.5 ( [10]) Let T be a tree of order n with maximum degree ∆. Then

LEL(T ) =

{
≤

√
n+

√
(n− 3) (2n−∆− 3) + (n− 2)

(
n

∆+1

)1/n−2

≥ n− 2 +
√
∆+ 1.

Equality holds on both sides if and onlt if T ∼= K1,n−1 .

Corollary 3.6 ( [10]) Let U be a connected unicyclic graph of order n with maximum

degree ∆. Then

LEL(U) =

 ≤
√
n+

√
(n− 3) (2n−∆− 1) + (n− 2)

(
n2

∆+1

)1/n−2

≥
√
∆+ 1 +

√
n+ (n− 2)(n− 3)31/n−2.

Equality holds on both sides if and onlt if U ∼= K3 .

By using the Lemmas 2.1-2.9, we obtain the following results.
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Theorem 3.7 Let α be a real number with 0 < α < 1 and let G be a connected graph

with n ≥ 3 vertices, maximum degree ∆ and t spanning trees and let t1and t2 be given by

(1).

(i) If G is bipartite then

σα(G) = sα(G) =

 ≤ nα +

√
(n− 3) [s2α − t2α2 ] + (n− 2)

(
tn
t2

)2α/n−2

≥ tα2 +
√

s2α − n2α + (n− 2)(n− 3)t2α/n−2.

(5)

Moreover, equalities hold if and only if G ∼= K1,n−1 .

(ii) If G is non-bipartite, then

sα(G) =

 < (2∆)α +

√
(n− 2) [s2α − t2α2 ] + (n− 1)

(
t1
t2

)2α/n−1

> tα2 +

√
s2α − (2∆)2α + (n− 1)(n− 2)

(
t1
2∆

)2α/n−1
.

(6)

Proof. (i) Taking N = n − 2 and xi = q2αi , i = 2, 3, ..., n − 1 in Lemma 2.9 and using

Lemmas 2.1 and 2.2, we obtain

∑
2≤i<j≤n−1

(
qαi − qαj

)2
(n− 2) (n− 3)

≤ s2α − q2α1
n− 2

−
(
tn

q1

)2α/n−2

≤

∑
2≤i<j≤n−1

(
qαi − qαj

)2
(n− 2)

.

Since
n−1∑
i=1

q2αi = s2α, we have

∑
2≤i<j≤n−1

(
qαi − qαj

)2
= (n− 3)

n−1∑
i=2

q2αi − 2
∑

2≤i<j≤n−1

(qiqj)
α

= (n− 3)
(
s2α − q2α1

)
−

(
n−1∑
i=2

qαi

)2

+
n−1∑
i=2

q2αi

= (n− 2)
(
s2α − q2α1

)
− (sα − qα1 )

2 .

Therefore,

(n− 2) (s2α − q2α1 )− (sα − qα1 )
2

(n− 2) (n− 3)
≤ s2α − q2α1

n− 2
−
(
nt

q1

)2α/n−2

≤ (n− 2) (s2α − q2α1 )− (sα − qα1 )
2

(n− 2)
.

This implies that,

sα ≤ qα1 +

√
(n− 3) [s2α − q2α1 ] + (n− 2)

(
tn
q1

)2α/n−2

(7)
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and

sα ≥ qα1 +

√
s2α − q2α1 + (n− 2)(n− 3)

(
tn
q1

)2α/n−2

. (8)

Consider the function,

f(x) =

√
(n− 3) [s2α − x2α] + (n− 2)

(
tn
x

)2α/n−2
.

It can be easily shown that f(x) is a decreasing function for x ≥ ∆+1, as 0 < α < 1.

By Lemma 2.6, we have q1 ≥ t2 ≥ ∆+ 1.Therefore,

f(x) ≤ f(t2) =

√
(n− 3) [s2α − t2α2 ] + (n− 2)

(
tn
t2

)2α/n−2

considering this, (7) and Lemma 2.2, we get

sα ≤ qα1 +

√
(n− 3) [s2α − t2α2 ] + (n− 2)

(
tn
t2

)2α/n−2

≤ nα +

√
(n− 3) [s2α − t2α2 ] + (n− 2)

(
tn
t2

)2α/n−2

.

In an analogous manner,

g(x) =

√
s2α − x2α + (n− 2)(n− 3)

(
tn
x

)2α/n−2

is a decreasing function for x ≤ n, as 0 < α < 1. Therefore,

g(x) ≥ g(n) =
√

s2α − n2α + (n− 2)(n− 3)t2α/n−2

considering this, (8) and Lemma 2.6, we get

sα ≥ qα1 +
√

s2α − n2α + (n− 2)(n− 3)t2α/n−2

≥ tα2 +
√

s2α − n2α + (n− 2)(n− 3)t2α/n−2.

By this, the first part of the proof is done.

Suppose now that equalities hold in (5). Then all the above inequalities must become

equalities. For both lower and upper bounds, by Lemma 2.9 it must be q2 = q3 = ... =

qn−1. Then by Lemmas 2.3 and 2.7, either G ∼= Kn or G ∼= K1,n−1 or G ∼= K∆,∆ . Moreover

q1 = t2 = n for both lower and upper bounds. Then by Lemmas 2.1, 2.2 and 2.6 , we

conclude that G ∼= K1,n−1 .

Conversely, equalities hold on both sides of (5) for G ∼= K1,n−1 .

(ii) Taking N = n − 1 and xi = q2αi , i = 2, 3, ..., n in Lemma 2.9 and using Lemma

2.5, we obtain
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∑
2≤i<j≤n

(
qαi − qαj

)2
(n− 1) (n− 2)

≤ s2α − q2α1
n− 1

−
(
t1
q1

)2α/n−1

≤

∑
2≤i<j≤n

(
qαi − qαj

)2
n− 1

.

Since
n∑

i=1

q2αi = s2α, we have

∑
2≤i<j≤n

(
qαi − qαj

)2
= (n− 2)

n∑
i=2

q2αi − 2
∑

2≤i<j≤n

(qiqj)
α

= (n− 2)
(
s2α − q2α1

)
−

(
n∑

i=2

qαi

)2

+
n∑

i=2

q2αi

= (n− 1)
(
s2α − q2α1

)
− (sα − qα1 )

2 .

Therefore,

(n− 1) (s2α − q2α1 )− (sα − qα1 )
2

(n− 1) (n− 2)
≤ s2α − q2α1

n− 1
−
(
t1
q1

)2α/n−1

≤ (n− 1) (s2α − q2α1 )− (sα − qα1 )
2

n− 1
.

This implies that,

sα ≤ qα1 +

√
(n− 2) [s2α − q2α1 ] + (n− 1)

(
t1
q1

)2α/n−1

(9)

and

sα ≥ qα1 +

√
s2α − q2α1 + (n− 1)(n− 2)

(
t1
q1

)2α/n−1

. (10)

Consider the function,

f(x) =

√
(n− 2) [s2α − x2α] + (n− 1)

(
t1
x

)2α/n−1

.

It can be easily shown that f(x) is a decreasing function for x ≥ ∆+1, as 0 < α < 1.

By Lemma 2.6, we have q1 ≥ t2 ≥ ∆+ 1.Therefore,

f(x) ≤ f(t2) =

√
(n− 2) [s2α − t2α2 ] + (n− 1)

(
t1
t2

)2α/n−1

.

Considering this, (9) and Lemma 2.8, we get

sα ≤ qα1 +

√
(n− 2) [s2α − t2α2 ] + (n− 1)

(
t1
t2

)2α/n−1

≤ (2∆)α +

√
(n− 2) [s2α − t2α2 ] + (n− 1)

(
t1
t2

)2α/n−1

.
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In an analogous manner,

g(x) =

√
s2α − x2α + (n− 1)(n− 2)

(
t1
x

)2α/n−1

is a decreasing function for x ≤ 2∆, as 0 < α < 1. Therefore,

g(x) ≥ g(2∆) =

√
s2α − (2∆)2α + (n− 1)(n− 2)

(
t1
2∆

)2α/n−1

considering this, (10) and Lemma 2.6, we get

sα ≥ qα1 +

√
s2α − (2∆)2α + (n− 1)(n− 2)

(
t1
2∆

)2α/n−1

≥ tα2 +

√
s2α − (2∆)2α + (n− 1)(n− 2)

(
t1
2∆

)2α/n−1

.

Hence the inequalities (9) and (10) hold. Either equalities in (9) and (10) hold if and only

if q1 = t2 = 2∆ and q2 = q3 = ... = qn. From the conditions q1 = 2∆ and q2 = q3 = ... = qn,

we conclude that G ∼= Kn . However

q1 (Kn ) = 2(n− 1) 6= n− 1 +
√
n− 1 = t2 (Kn )

Thus, (9) and (10) cannot become equalities.

Corollary 3.8 Let α be a real number with 0 < α < 1 and let T be a tree with n ≥ 3

vertices, maximum degree ∆ and let t2 be given by (1). Then,

σα(T ) = sα(T ) =

 ≤ nα +

√
(n− 3) [s2α − t2α2 ] + (n− 2)

(
n
t2

)2α/n−2

≥ tα2 +
√

s2α − n2α + (n− 2)(n− 3).

Equality holds on both sides if and only if G ∼= K1,n−1 .

Proof. Every tree is a bipartite. For a tree T , t = 1.

Note that, if we take α = 1
2
, we get the same bounds as in the Theorem 3.1 of the

paper [3] for the IE given as follows:

Theorem 3.9 ( [3]) Let G be a connected graph with n ≥ 3 vertices, m edges, maximum

degree ∆ and t spanning trees and let t1and t2 be given by (1).

(i) If G is bipartite then

LEL(G) = IE(G) =

 ≤
√
n+

√
(n− 3) (2m− t2) + (n− 2)

(
tn
t2T

)1/n−2

≥
√
t2 +

√
2m− n+ (n− 2)(n− 3)t1/n−2.

-477-



Moreover, equalities hold if and only if G ∼= K1,n−1 .

(ii) If G is non-bipartite, then

IE(G) =


<

√
2∆ +

√
(n− 2) (2m− t2) + (n− 1)

(
t1
t2

)1/n−1

>
√
t2 +

√
2m− 2∆ + (n− 1)(n− 2)

(
t1
2∆

)1/n−1
.

For a special case, if we take α = 1
2

in Corollary 3.8, we get the following result.

Corollary 3.10 Let T be a tree with n ≥ 3 vertices, maximum degree ∆ and let t2 be

given by (1). Then,

LEL(T ) = IE(T ) =

 ≤
√
n+

√
(n− 3) (2n− 2− t2) + (n− 2)

(
n
t2

)1/n−2

≥
√
t2 + (n− 2).

Equality holds on both sides if and onlt if T ∼= K1,n−1 .
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