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Abstract

Using majorization, we give new bounds for the resolvent energy of general
bipartite graphs. We also find more specific lower bounds in the particular case of
trees.

1 Introduction

Let G = (V,E) be a finite simple graph with vertex set V = {1, 2, . . . , n} and degrees

di for 1 ≤ i ≤ n, with dG = 2|E|
n

the average degree. We consider A to be the adjacency

matrix of G, with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. There are several descriptors in

Mathematical Chemistry defined in terms of these eigenvalues; among them we will work

with the resolvent energy, defined in [6] (see also [5]) as

ER(G) =
n∑

i=1

1

n− λi
.

In [6], Theorem 11, it is shown that

ER(G) ≥ n3

n3 − 2|E|
, (1)
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where the equality is attained by the graph on n vertices without any edges Kn or (pro-

vided n is even) by the graph obtained by the union of n/2 complete graphs of order

two.

Moreover, for bipartite graphs with an odd number of vertices, the following inequality

was also proved in [6]:

ER(G) ≥ 1

n
+

n(n− 1)2

n2(n− 1)− 2|E|
. (2)

More recently, this index has been investigated in several works (see [3] and [4]).

In what follows, we improve these lower bounds whenever the average degree dG lies

in certain intervals described below. We focus first on simple connected bipartite graphs

and then on trees, which are a particular case of bipartite graphs. The main technique

used in this note is majorization.

2 Preliminaries and notations

The main references about majorization order and Schur convexity are the classical book

[8] and the paper [1] for the notations and techniques. We briefly recall some basic facts.

Definition 1. Given two vectors y, z ∈ D = {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn}, the

majorization order y E z means:
〈
y, sk

〉
≤
〈
z, sk

〉
, k = 1, ..., (n− 1)

〈y, sn〉 = 〈z, sn〉

where 〈·, ·〉 is the inner product in Rn and sj = [1, 1, · · · , 1︸ ︷︷ ︸
j

, 0, 0, · · · 0︸ ︷︷ ︸
n−j

], j = 1, 2, · · · , n.

Given a closed subset S ⊆ Σa = D ∩ {x ∈ Rn
+ : 〈x, sn〉 = a}, where a is a positive real

number, let us consider the following optimization problem

Minx∈S φ(x). (3)

If the objective function φ is Schur-convex, i.e. x E y implies φ(x) ≤ φ(y), and the set

S has a minimal element x∗(S) with respect to the majorization order, then x∗(S) solves

problem (3), that is

φ(x) ≥ φ(x∗(S)) for all x ∈ S.

It is worthwhile to notice that if S ′ ⊆ S the inequality x∗(S) E x∗(S
′) holds and thus

φ(x) ≥ φ(x∗(S
′)) ≥ φ(x∗(S)) for all x ∈ S ′. (4)
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On the other hand, if the objective function φ is Schur-concave, i.e. −φ is Schur-

convex, then

φ(x) ≤ φ(x∗(S
′)) ≤ φ(x∗(S) for all x ∈ S ′. (5)

A very important class of Schur-convex (Schur-concave) functions can be built adding

convex (concave) functions of one variable. Indeed, given an interval I ⊂ R, and a

convex function g : I → R, the function φ(x) =
∑n

i=1 g(xi) is Schur-convex on In =

I × I × · · · × I︸ ︷︷ ︸
n−times

. The corresponding result holds if g is concave on In.

In [1] some of the authors derived the maximal and minimal elements, with respect to the

majorization order, of the set

Sa = Σa ∩ {x ∈ Rn : Mi ≥ xi ≥ mi, i = 1, · · · , n}

where M1 ≥M2 ≥ · · · ≥Mn, m1 ≥ m2, · · · ≥ mn.

In particular, in the sequel, we need the following result.

Theorem 1. (see [1], Theorem 8) Let k ≥ 0 and d ≥ 0 be the smallest integers such that

1) k + d < n

2) mk+1 ≤ ρ ≤Mn−d where ρ =
a−

∑k
i=1mi −

∑n
i=n−d+1Mi

n− k − d
.

Then

x∗(Sa) = [m1, · · · ,mk, ρ
n−d−k,Mn−d+1 · · · ,Mn].

3 Lower bounds for bipartite graphs

The resolvent energy is defined as

ER(G) =
n∑

i=1

1

n− λi
.

We consider the Schur-convex function Φ(x) =
n∑

i=1

1

xi
, where xi = n − λn−i+1 with

i = 1, · · · , n. Since the sum of the eigenvalues of the adjacency matrix is zero, we have∑n
i=1 xi = a = n2. Moreover, for bipartite graphs we know that the eigenvalues of the

adjacency matrix are symmetric around 0, that is, λ1 = −λn, λ2 = −λn−1, etc., and the

numbers

n− λn ≥ n− λn−1 ≥ · · · ≥ n− λ2 ≥ n− λ1,
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are actually

n+ λ1 ≥ n+ λ2 ≥ · · · ≥ n+ λn−1 ≥ n+ λn,

therefore xi = n + λi. We consider the following general constraints n− 1 ≥ λ1 ≥ α and

γ ≥ λ2 ≥ β on λ1 and λ2. Since the spectrum is symmetric around zero, we also obtain

the restrictions 1− n ≤ λn ≤ −α and −γ ≤ λn−1 ≤ −β on λn and λn − 1.

By using well-known results we can set

α = dG (see [7]),

β = −1 (see [2]),

γ =
⌊n

2

⌋
− 1 (see Corollary 1 in [10]).

In order to apply Theorem 1, in the following table we summarize the lower and upper

bounds on the variables xi, i = 1, · · · , n:

m1 = n+ dG M1 = 2n− 1

m2 = n− 1 M2 = n+ bn
2
c − 1

mk = n− bn
2
c+ 1 Mk = n+ bn

2
c − 1 with k = 3, · · · , n− 2.

mn−1 = n− bn
2
c+ 1 Mn−1 = n+ 1

mn = 1 Mn = n− dG

Theorem 2. The following lower bound holds:

ER(G) ≥ 2n

n2 − d2G
+
n− 2

n
. (6)

Proof. The smallest integers k and d satisfying the assumptions of Theorem 1 are k =

d = 1. Thus the minimal element of Sn2 is given byn+ dG, n, n, · · · , n︸ ︷︷ ︸
n−2

, n− dG


and we get the lower bound (6).

We now compare our result with those in [6]; by simple algebra it is easy to verify that:

1) bound (6) performs better than (1)

(a) for dG ∈ I1 =
(
−2n2+

√
8n4−8n3

2(n−2) ; n
2

)
for bipartite graphs with n > 3 even;

(b) for dG ∈ I2 =
(
−2n2+

√
8n4−8n3

2(n−2) ; n2−1
2n

)
for bipartite graphs with n > 3 odd.

2) bound (6) is sharper than (2) for dG ∈ I3 =

(
n
(
1−n+
√

2(n2−3n+2)
)

n−3 ; n2−1
2n

)
for bipartite

graphs with n > 3 odd.
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Some examples of bipartite graphs whose average degrees are in the intervals I1, I2

and I3, for selected values of n, are provided in table (1) and (2) (notice that graphs have

been randomly derived by using the i-graph R package):

n dG I1 bound (1) bound (6)

10 4.4 (4.27051;5) 1.046025 1.048016

20 8.8 (8.408997;10) 1.022495 1.024008

50 20.92 (20.83333;25) 1.008439 1.008488

100 41.68 (41.54334;50) 1.004185 1.004205

Table 1. Bipartite graphs with n > 3 even

n dG I2 I3 bound (1) bound (2) bound (6)

15 6.428571 (6.339117;7.466667) (6.34848;7.466667) 1.027397 1.027451 1.03

25 10.66667 (10.47937;12.48) (10.48465;12.48) 1.016657 1.016668 1.017805

55 22.96296 (20.83333;27.49091) (22.90657;27.49091) 1.007509 1.00751 1.007677

105 47.23077 (43.61438;52.49524) (43.61555;52.49524) 1.004261 1.004261 1.004832

Table 2. Bipartite graphs with n > 3 odd

4 Lower bounds for trees

It is worthwhile to note that if G is a tree T , then dG = 2(n−1)
n

and this value lies outside

the intervals Ii, i = 1, 2, 3. Therefore in the sequel we keep focused on trees, and in order

to get a bound sharper than (6), we look for a more binding constraint on λ2.

Suppose it is known that λ2(T ) ≥ β ≥ 0; then the bounds on the variables xi,

i = 1, · · · , n can be summarized in the table below:

m1 = n2+2n−2
n

M1 = 2n− 1

m2 = n+ β M2 = n+ bn
2
c − 1

mk = n− bn
2
c+ 1 Mk = n+ bn

2
c − 1 with k = 3, · · · , n− 2.

mn−1 = n− bn
2
c+ 1 Mn−1 = n− β

mn = 1 Mn = n2−2n+2
n
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Theorem 3. The following lower bound holds for trees:

ER(T ) ≥ 2n3

(n2 + 2n− 2)(n2 − 2n+ 2)
+

2n

n2 − β2
+
n− 4

n
. (7)

Proof. In this case the smallest integers k and d required by Theorem 1 are k = d = 2.

Hence the minimal element of the set Sn2 is given by

n2 + 2n− 2

n
, n+ β, n, n, · · · , n︸ ︷︷ ︸

n−4

, n− β, n
2 − 2n+ 2

n


and the corresponding lower bound is (7).

Some basic algebra shows that bound (7) performs better than (2), if β > γ, considering

n ≥ 11 and odd, where

γ =

√
n2 (n2 − 8n+ 6) (n2 − 2)

(24n+ 12n2 − 16n3 + 3n4 + 2n5 − 20)
.

In the following example we will show a class of trees for which λ2 = β > γ.

Example. We deal with a special class of trees studied in [9] (see Theorem 4.7, (ii)).

For these trees we have λ2 = β =
√

n−3
2

and the above inequality is satisfied. Figure 1

shows the class of graphs for n = 11.

(a) (b)

(c)

Figure 1. Special trees with λ2 = β = 2.
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5 Conclusions

We have applied majorization in this note, which is an important tool in Mathematical

Chemistry used frequently to obtain upper and lower bounds of molecular descriptors. In

the particular case of the resolvent energy the technique seems to work better than other

approaches only in the case of bipartite graphs and under the condition that the average

degree belong to certain interval in the real line. In the case of trees this condition is

vacuous, but under a different condition on the second eigenvalue of the adjacency matrix

- which is shown to be satisfied by a previously studied family of trees - we find a new

and improved lower bound for trees.
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[2] D. Cvetković, S. Simić, The second largest eigenvalue of a graph (a survey), Filomat

9 (1995) 449–472.

[3] Z. Du, Asymptotic expressions for resolvent energies of paths and cycles, MATCH

Commun. Math. Comput. Chem. 77 (2017) 85–94.
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