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Abstract

A graph G of order n is L-borderenergetic if it has the same Laplacian energy
as the complete graph Kn does. Similarly, this concept can be extended to signless
Laplacian energy of a graph, i.e., if a graph has the same signless Laplacian energy as
the complete graph Kn, then it is called Q-borderenergetic. In this paper, we mainly
survey a class of join of graphs and check that whether they are L-borderenergetic
or Q-borderenergetic. Moreover, in this paper, we will show that a main result in
[B. Deng, X. Li, More on L-Borderenergetic Graphs, MATCH Commun. Math.
Comput. Chem. 77 (2017) 115–127.] is a directed corollary of our results.

1 Introduction

All graphs considered in this paper are simple and undirected. Let G be a graph with its

edge set E(G) and vertex set V (G). The complete graph of order n is denoted by Kn.

The union of two vertex-disjoint graphs G1 and G2 is denoted by G1 ∪ G2. Let G1∇G2

be the join of G1 and G2, obtained from the union of G1 and G2 by joining each vertex of

G1 and each vertex of G2. For terminology and notation not given here, we refer to [1].
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Let A(G) be an adjacency matrix of G and let λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues

of the adjacency matrix A(G). If D(G) is the diagonal matrix of the vertex degrees of G,

L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are the Laplacian matrix and signless

Laplacian matrix of G, respectively. Let µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and q1 ≥ q2 ≥ · · · ≥

qn = 0 be the eigenvalues of L(G) and Q(G), respectively. The energy of a graph G,

denoted by E(G), is defined as [8, 9]

E(G) =
n∑

i=1

|λi| .

For additional information on graph energy and its applications in chemistry, we refer

to [9–11,15].

Recently, Gong et al. [7] proposed the concept of borderenergetic graphs, namely graphs

of order n satisfying E(G) = 2(n−1). The corresponding results on borderenergetic graphs

can be seen in [4, 13, 16, 17, 19].

For the Laplacian energy of a graph G [3,12], denoted by LE(G), F. Tura [20] proposed

the concept of L-borderenergetic graphs. That is, a graph G of order n is L-borderenergetic

if LE(G) = LE(Kn), where LE(G) =
∑n

i=1 |µi−d| and d is the average degree of G. Note

that LE(Kn) = 2(n − 1). Several classes of L-borderenergetic graphs [20] are obtained

including the result that for each integer r ≥ 1, there are 2r+1 graphs, of order n = 4r+4,

which are pairwise L-noncospectral and L-borderenergetic graphs. Let S1
n be the graph

obtained from an n-order star Sn by adding an edge. Obviously, S1
n is an unicyclic and

threshold graph (see Figure 1). A main result on the graph S1
n in [5] is as follow(see

Theorem 1). More results on L-borderenergetic graphs, we can refer to [5, 6, 18, 20–22].

Figure 1. The graph S1
n.

Theorem 1. [5] The graph S1
n is L-borderenergetic.
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It is interesting to construct more different connected L-borderenergetic graphs. In

this paper, we use the join of graphs to construct a class of L-borderenergetic graphs.

That is the graph K1∇(Kt∪pKt−1), which is shown in Figure 2. Moreover, one can check

that Theorem 1 is a directed corollary of our result(Theorem 3).

Kt

Kt−1

Kt−1

p

Figure 2. The graph K1∇(Kt ∪ pKt−1).

Similarly, this concept can be extended to signless Laplacian energy of a graph G [2],

denoted by QE(G), where QE(G) =
∑n

i=1 |qi−d|. Y. Hou et al. [14] proposed the concept

of Q-borderenergetic graphs. That is, if a graph has the same signless Laplacian energy

as the complete graph Kn, then it is called Q-borderenergetic. In fact, it is not hard to

find a Q-borderenergetic graph. When a connected regular graph G is L-borderenergetic,

we have E(G) = LE(G) = QE(G) = 2(n − 1). For example, H1 and H2 (see Figure 3)

are two 4-regular Q-borderenergetic graphs with 9 vertices. And their signless Laplacian

spectra are {2(3), 3(2), 5(2), 6, 8} and {2(4), 5(4), 8}, respectively. Furthermore, in section

3 of this paper, we consider that whether this kind of graphs K1∇(Kt ∪ pKt−1) are Q-

borderenergetic and we will present the corresponding results.

H1 H2

Figure 3. Two 4-regular Q-borderenergetic graphs H1 and H2.
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2 Laplacian borderenergetic graphs
In this section, we show that the graph K1∇(Kt ∪ pKt−1) is L-borderenergetic by using

Lemma 2.

Lemma 2. [20]. Let G1 and G2 be graphs on n1 and n2 vertices, respectively. Let L1

and L2 be the Laplacian matrices for G1 and G2, respectively, and let L be the Laplacian

matrix for G1∇G2. If 0 = α1 ≤ α2 ≤ · · · ≤ αn1 and 0 = β1 ≤ β2 ≤ · · · ≤ βn2 are the

eigenvalues of L1 and L2, respectively. Then the eigenvalues of L are {0, n2 + α2, n2 +

α3, · · · , n2 + αn1 , n1 + β2, n1 + β3, · · · , n1 + βn2 , n1 + n2}.

Theorem 3. For each integer p ≥ 1 and t ≥ 2, the graph K1∇(Kt ∪ pKt−1) is L-

borderenergetic.

Proof. For K1 and Kt∪pKt−1, their Laplacian spectra are respectively {0} and {0(p+1), t(t−1),

(t− 1)(p(t−2))}. By Lemma 2, the Laplacian spectrum of K1∇(Kt ∪ pKt−1) is

{0, (t+ 1)(t−1), 1(p), t(p(t−2)), 1 + t+ p(t− 1)}.

Note that the average degree of K1∇(Kt∪pKt−1) is t and the vertex number of K1∇(Kt∪

pKt−1) is t+ 1 + p(t− 1). So

LE(K1∇(Kt ∪ pKt−1)) = t+ (t− 1) + p(t− 1) + 1 + p(t− 1)

= 2((t+ 1) + p(t− 1)− 1).

Hence, K1∇(Kt ∪ pKt−1) is L-borderenergetic.

It is easy to check that K1∇(Kt ∪ pKt−1) ∼= S1
n as t = 2. Then we see that Theorem

1 is a directed corollary of Theorem 3.

Corollary 4. K1∇(K2 ∪ pK1)(∼= S1
n) is L-borderenergetic.

3 Signless Laplacian borderenergetic graphs

Moreover, in this section, we consider that whether the graph K1∇(Kt ∪ pKt−1) is Q-

borderenergetic. In fact, when t = 3, Y. Hou et al. [14] have proved that the graph

K1∇(Kt ∪ pKt−1) is Q-borderenergetic, which is also verified in the proof of Theorem 5.

But the cases t = 2 and t > 3 for the graph K1∇(Kt ∪ pKt−1) are not been discussed.

Then the corresponding cases will be given below.
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Theorem 5. For each integer p ≥ 1, when t = 2 or t > 3, the graph K1∇(Kt ∪ pKt−1)

is not Q-borderenergetic.

Proof. Through suitable labeling, Q(K1∇(Kt ∪ pKt−1)) has the form as follow

t+ p(t− 1) 1 1 1 · · · 1 1 · · · · · · 1
1 t 1 1 · · · 1
1 1 t 1 · · · 1
... . . . ...
1 · · · t
1 t− 1 1 · · · 1
1 1 t− 1 · · · 1
...

... . . . ...
1 1 · · · t− 1
... . . .
1 t− 1 1 · · · 1
1 1 t− 1 · · · 1
...

... . . . ...
1 1 · · · t− 1


And its signless Laplacian characteristic polynomial is |xI − Q(K1∇(Kt ∪ pKt−1))|,

that is, the determinant of the following matrix.

a1 −1 −1 −1 · · · −1 −1 · · · · · · −1
−1 b1 −1 −1 · · · −1
−1 −1 b1 −1 · · · −1
... . . . ...
−1 · · · b1
−1 c1 −1 · · · −1
−1 −1 c1 · · · −1
...

... . . . ...
−1 −1 · · · c1
... . . .
−1 c1 −1 · · · −1
−1 −1 c1 · · · −1
...

... . . . ...
−1 −1 · · · c1


where a1 = x− (t+ p(t− 1)), b1 = x− t and c1 = x− (t− 1).

Let Ci be the i-th column of the determinant of above matrix. Then we first compute

C1 +
1

x−2t+1
(C2 + C3 + · · ·+ Ct+1) so that we get |xI −Q(K1∇(Kt ∪ pKt−1))| is equal to

the determinant of below matrix.
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

a2 −1 −1 −1 · · · −1 −1 · · · · · · −1
0 b1 −1 −1 · · · −1
0 −1 b1 −1 · · · −1
... . . . ...
0 · · · b1
−1 c1 −1 · · · −1
−1 −1 c1 · · · −1
... ... . . . ...
−1 −1 · · · c1
... . . .
−1 c1 −1 · · · −1
−1 −1 c1 · · · −1
... ... . . . ...
−1 −1 · · · c1


where a2 = x− (t+ p(t− 1))− t

x−2t+1
, b1 = x− t and c1 = x− (t− 1).

Next we go on performing C1+
1

x−2t+3
(Ct+2+· · ·+C2t), C1+

1
x−2t+3

(C2t+1+· · ·+C3t−1),

· · · , C1 +
1

x−2t+3
(C3+p(t−1) + · · · + C1+t+p(t−1)). Then directly expanding along the first

column, it arrives at

|xI −Q(K1∇(Kt ∪ pKt−1))|

= [x− (t+ p(t− 1))− t

x− 2t+ 1
− (t− 1)p

x− 2t+ 3
]

(x− 2t+ 1)(x− t+ 1)t−1(x− 2t+ 3)p(x− t+ 2)p(t−2)

= [x3 − (pt+ 5t− p− 4)x2 + (4pt2 + 8t2 − 9pt− 13t+ 5p+ 3)x

−2(t− 1)(2pt2 + 2t2 − 5pt− 3t+ 2p)]

(x− t+ 1)t−1(x− 2t+ 3)p−1(x− t+ 2)p(t−2).

We can see that the cubic polynomial x3−(pt+5t−p−4)x2+(4pt2+8t2−9pt−13t+5p+

3)x−2(t−1)(2pt2+2t2−5pt−3t+2p) is as a factor of above signless Laplacian characteristic

polynomial. Set x1, x2 and x3 are its eigenvalues, respectively. Since a signless Laplacian

matrix is positive semidefinite, all its eigenvalues are nonnegative real numbers. Then we

have xi ≥ 0 (i = 1, 2, 3). By Vieta theorem, it attains x1 + x2 + x3 = pt + 5t − p − 4.

From the signless Laplacian characteristic polynomial of K1∇(Kt ∪ pKt−1), its signless

Laplacian spectrum is

{x1, x2, x3, (t− 1)(t−1), (2t− 3)(p−1), (t− 2)(p(t−2))}.
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By the definition of signless Laplacian energy, we get

QE(K1∇(Kt ∪ pKt−1)) = |x1 − t|+ |x2 − t|+ |x3 − t|+

|t− 1|+ |(t− 3)(p− 1)|+ |2p(t− 2)|. (1)

Then for the integer t, we discuss the following cases.

Case 1. t = 2. Then we have

|xI −Q(K1∇(K2 ∪ pK1))|

= [x3 − (p+ 6)x2 + (3p+ 9)x− 4](x− 1)p. (2)

If K1∇(K2 ∪ pK1) is Q-borderenergetic, we have

QE(K1∇(K2 ∪ pK1)) = 2(2 + p). (3)

Suppose x1 ≥ x2 ≥ x3 and note that x1 > 2 and x1 ≤ p + 2. By (2), we see that xi 6= 0,

(i = 1, 2, 3) and x1 + x2 + x3 = p + 6. Based on the relations between x2, x3 and the

average degree of K1∇(K2 ∪ pK1), we distinguish the following cases.

Subcase 1.1. x2 ≥ 2 and x3 ≥ 2. Then QE(K1∇(K2 ∪ pK1)) = x1 + x2 + x3 − 6+ p =

2p < 2(2 + p).

Subcase 1.2. x2 ≥ 2 and x3 < 2. Then QE(K1∇(K2 ∪ pK1)) = x1 + x2 − x3 − 2+ p <

x1 + x2 + x3 − 2 + p = 2(2 + p).

Subcase 1.3. x2 < 2 and x3 < 2. Then QE(K1∇(K2 ∪ pK1)) = x1 − x2 − x3 +2+ p =

2x1 − p− 6 + 2 + p = 2x1 − 4 < 2(2 + p).

Thus, all above subcases make a contradiction with (3), which means that K1∇(Kt ∪

pKt−1) is not Q-borderenergetic as t = 2.

Case 2. t = 3. It is easy to check that its signless Laplacian spectrum is

{p+ 9

2
± 1

2

√
4p2 − 4p+ 9, 1(p), 2(3), 3(p−1)},

and QE(K1∇(K3 ∪ pK2)) = 4p + 6 = 2((2p + 4) − 1). Thus, K1∇(Kt ∪ pKt−1) is Q-

borderenergetic as t = 3.

Case 3. t ≥ 4. If t = 4 and p = 1, we can find that QE(K1∇(K4∪K3)) ≈ 14.74 6= 2(8−1),

i.e., K1∇(K4∪K3) is not Q-borderenergetic. Otherwise, we suppose that K1∇(Kt∪pKt−1)

is Q-borderenergetic. So by (1), we get

QE(K1∇(Kt ∪ pKt−1)) = 2((1 + t+ p(t− 1))− 1)
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≥ |x1 + x2 + x3 − 3t+ (t− 1) + (t− 3)(p− 1) + 2p(t− 2)|

= 2(2pt+ t− 4p− 1). (4)

Hence, we obtain 3+ 1
p
≥ t from (4), which is a contradiction. Thus, K1∇(Kt ∪ pKt−1) is

not Q-borderenergetic in the case of t ≥ 4.
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