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Abstract

It is shown how a connected graph and a tree with partially prescribed spectrum
can be constructed. These constructions are based on a recent result of Salez that
every totally real algebraic integer is an eigenvalue of a tree. Our result implies that
for any (not necessarily connected) graph, there is a tree such that the characteristic
polynomial of the graph divides the characteristic polynomial of the tree.

1 Introduction

Graph eigenvalues have been studied intensively [1–3], and they are very special real

numbers. Indeed, they are totally real algebraic integers, i.e., roots of totally real algebraic

polynomials. Recall that a totally real algebraic polynomial is a monic integral polynomial

with only real roots. It is natural for one to wonder whether the converse is true. Forty

years ago, Hoffman [6] conjectured that this is true, which eventually was confirmed by

Estes [4] in 1992.

∗Corresponding author

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 80 (2018) 415-421
                         

                                          ISSN 0340 - 6253 



Theorem 1. [4] Every totally real algebraic integer is an eigenvalue of a (connected)

graph.

Recently, Salez [7] strengthened the result with a simpler proof.

Theorem 2. [7] Every totally real algebraic integer is an eigenvalue of a tree.

The next natural question is which collection of totally real algebraic integers forms

the spectrum of a graph. Of course, there are many necessary conditions on such a

collection. Below, we list just a few.

Lemma 3. If S = {λ1 ≥ λ2 ≥ · · · ≥ λn} is the spectrum of a graph of order n, then

1. S contains all the conjugates of each λi,

2. λ1 + · · ·+ λn = 0,

3. λ2
1 + · · ·+ λ2

n ≤ n(n− 1),

4. λ1 ≤ n− 1,

5. |λn| ≤ λ1.

Unfortunately, these conditions are far from being sufficient, as the next example

shows.

Example 4. The set {2, 1,−1,−2} satisfies all the conditions listed in Lemma 3, but it

is not the spectrum of any graph of order 4.

Proof. Suppose that there is a graph G of order 4 with the spectrum

Spec(G) = {2, 1,−1,−2} .

Then G is bipartite because Spec(G) is symmetric about 0. Hence the number of edges of

G is at most 4 because G is a bipartite graph of order 4. On the other hand, the number of

edges of G, computed by means of its eigenvalues, would be 1
2

[
22+12+(−1)2+(−2)2

]
= 5,

a contradiction!

The problem of finding necessary and sufficient conditions for a set of totally real

algebraic integers to be the spectrum of a graph seems intractable! Instead, we tackle its

following modification:
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Problem 5. Construct a connected graph such that its spectrum contains a given set of

totally real algebraic integers.

In Section 2, we accomplish such a construction via Knonecker product of matrices.

In Section 3, we strengthen the result by constructing a tree via an appropriate graph

operation. Then we discuss the unimodalization of totally real algebraic polynomials.

2 Construction of connected graphs

Recall some facts about the Kronecker product of matrices:

Fact 1: Spec(A⊗B) = {αβ : α ∈ Spec(A), β ∈ Spec(B)}.

Fact 2: Spec(A⊗ I + I ⊗B) = {α + β : α ∈ Spec(A), β ∈ Spec(B)}.

Fact 3: If A and B are adjacency matrices, then A⊗B is also an adjacency matrix.

Fact 4: If A and B are adjacency matrices, then A ⊗ I + I ⊗ B is also an adjacency

matrix.

In view of Facts 3 and 4, we introduce two graph products as follows:

Definition 6. Given two graphs G and H, define a new graph G + H such that its

adjacency matrix is given by A(G+H) = A(G)⊗ I + I ⊗ A(H).

Definition 7. Given two graphs G and H, define a new graph G × H such that its

adjacency matrix is given by A(G×H) = A(G)⊗ A(H).

Using Facts 1 and 2, we have

Spec(G+H) = Spec(G) + Spec(H)

and

Spec(G×H) = Spec(G) · Spec(H) .

Moreover, if G and H are connected, then G+H is also connected. It is well known that

G × H is connected if and only if both G and H are connected, and one of G and H

contains a cycle of odd length, i.e., one of them is non-bipartite.

Lemma 8. Given a connected graph G such that α ∈ Spec(G). Then there is a connected

graph H such that 0, α ∈ Spec(H).
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Proof. Consider the graph F = P5 + C3, where the path P5 of order 5 has Spec(P5) =

{
√
3, 1, 0,−1,−

√
3}, and the cycle C3 of order 3 has Spec(C3) = {2,−1,−1}. Then F has

eigenvalues 0 = 1 + (−1) and 1 = (−1) + 2. Moreover, F is connected and non-bipartite

since it contains an odd cycle C3. Now take H = F × G. Then H is connected and

0, α ∈ Spec(H).

Remark 9. In the proof of Lemma 8, it is possible to use another F of smaller order

and size with the required properties: connected, non-bipartite, and 0, 1 ∈ Spec(F ). For

example, take F to be the graph obtained by attaching two pendent vertices and a 2-vertex

path to the same vertex of a triangle.

Theorem 10. Let α1, . . . , αp be totally real algebraic integers. Then there is a connected

graph H such that {α1, . . . , αp} ⊆ Spec(H).

Proof. We prove, by induction on p, a stronger statement: There is a connected graph

H such that {0, α1, . . . , αp} ⊆ Spec(H).

Consider p = 1. By Theorem 1, there is a graph G such that α1 ∈ Spec(G). Without

loss of generality, we can assume that G is connected. Now, by Lemma 8, there is a

connected graph H such that 0, α1 ∈ Spec(H).

Consider p > 1. By the induction assumption, there is a connected graph K such

that {0, α1, . . . , αp−1} ⊆ Spec(K). Applying the case p = 1, we have a connected graph

G such that 0, αp ∈ Spec(G). Take H = K + G. Then H is connected because both K

and G are connected. Moreover,

0, α1, . . . , αp−1, αp ∈ {0, α1, . . . , αp−1}+ {0, αp} ⊆ Spec(K) + Spec(G) = Spec(H).

3 Construction of trees

We start this section with a lemma on the spectrum of a special type of block matrices.

Lemma 11. Let A and B be square matrices. Then

Spec

 A F F
E B 0
E 0 B

 = Spec(B)
∪

Spec

([
A 2F
E B

])
.
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Proof. Note that  I 0 0
0 I 0
0 I I

 =

 I 0 0
0 I 0
0 −I I

−1

.

Then the following matrix identity is in fact a similarity transformation: I 0 0
0 I 0
0 −I I

 A F F
E B 0
E 0 B

 I 0 0
0 I 0
0 I I

 =

 A 2F F
E B 0
0 0 B

 .

Therefore,

 A F F
E B 0
E 0 B

 and

 A 2F F
E B 0
0 0 B

 have the same spectrum, and so the con-

clusion follows.

Given disjoint graphs G, Hi, and H ′
i such that Hi and H ′

i are isomorphic for i =

1, 2, . . . , p. Let xi , i = 1, 2, . . . , p, be vertices of G (not necessarily different). Let vi be a

vertex of Hi, and v′i a vertex of H ′
i. Construct a graph G ◦ [H1, · · · , Hp] by connecting xi

to both vi and v′i with new edges, for i = 1, 2, . . . , p.

Lemma 12. Spec(H1 ∪ · · · ∪Hp) ⊆ Spec(G ◦ [H1, · · · , Hp]).

Proof. Let H = H1 ∪ · · · ∪Hp and H ′ = H ′
1 ∪ · · · ∪H ′

p. Since Hi and H ′
i are isomorphic,

H and H ′ are also isomorphic. Hence, by a suitable labeling, we have A(H) = A(H ′) and

A(G ◦ [H1, · · · , Hp]) =

 A(G) ET ET

E A(H) 0
E 0 A(H)

 .

Consequently, by Lemma 11,

Spec(H1 ∪ · · · ∪Hp) = Spec(H)

= Spec(A(H))

⊆ Spec(A(G ◦ [H1, · · · , Hp]))

= Spec(G ◦ [H1, · · · , Hp]) .

Theorem 13. Let α1, . . . , αp be totally real algebraic integers. Then there is a tree T

such that {α1, . . . , αp} ⊆ Spec(T ).
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Proof. For each totally real algebraic integer αi, by Theorem 2, there is a tree Ti whose

spectrum contains αi. Take G to be any tree (say, just a singleton). By Lemma 12,

Spec(T1 ∪ · · · ∪ Tp) ⊆ Spec(G ◦ [T1, · · · , Tp]) and so

{α1, . . . , αp} ⊆ Spec(G ◦ [T1, · · · , Tp]) .

Moreover, T = G ◦ [T1, · · · , Tp] is a tree because G and Ti are all trees.

Example 14. Note that Spec(K2) = {1,−1}, and Spec(K1,4) = {2, 0, 0, 0,−2}. Hence,

by the construction in the proof of Theorem 13, K1 ◦ [K2, K1,4] is a tree whose spectrum

contains {2, 1,−1,−2}.

A k-matching of a graph G is a set of k edges such that any two distinct edges in the

set do not have a common end-point. The matching polynomial PM(G, x) of G is defined

as

PM(G, x) =
∑
k≥0

(−1)km(G, k)xn−2k

where m(G, k) denotes the number of k-matchings in G with the convention m(G, 0) = 1.

For matching polynomials, we know [2,5] that for any (not necessarily connected) graph

G, the roots of PM(G, x) are totally real algebraic integers, and moreover, there is a

tree T such that PM(G, x) is a divisor of PM(T, x). The next result says that a similar

statement holds for the characteristic polynomials of graphs.

Corollary 15. For any (not necessarily connected) graph G, there is a tree T such that

the characteristic polynomial P (G, x) of G divides the characteristic polynomial P (T, x)

of T , i.e., P (G, x) is a divisor of P (T, x).

Proof. Since all the roots of P (G, x) are totally real algebraic integers, by Theorem

13 there is a tree T whose spectrum contains all the roots of P (G, x), and hence the

conclusion follows.

A real polynomial is said to be unimodal if the sequence of its coefficients is unimodal,

i.e., first increases and then decreases with only one peak.

Corollary 16. For any totally real algebraic polynomial f(x), there is another totally

real algebraic polynomial g(x) such that f(x)g(x) is unimodal.
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Proof. From Theorem 13, we know that f(x) is a divisor of the characteristic polynomial

of a tree. Thus, we can choose a totally real algebraic polynomial g(x) so that f(x)g(x) is

the characteristic polynomial of a tree. It is well known that the sequence of coefficients

of the characteristic polynomial of any tree is unimodal [8]. The conclusion follows

immediately.

This result means that any totally real algebraic polynomial can be unimodalized.

For example, the characteristic polynomial of an arbitrary graph is usually not unimodal,

but it can be unimodalized by another totally real algebraic polynomial. It could be

an interesting question to ask how to unimodalize a totally real algebraic polynomial by

using a totally real algebraic polynomial with the lowest possible degree.
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