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Abstract

Let G be a simple, connected graph with n vertices and eigenvalues λ1 > λ2 ≥
· · · ≥ λn. Let H = bn+1

2 c and L = dn+1
2 e, then the HOMO–LUMO separation of G

is defined to be
∆(G) = λH − λL.

It is well known that HOMO–LUMO separation plays an important role in chemistry
and physics. In this paper, limit points of HOMO–LUMO separation for acyclic
molecular graphs (or trees) are studied. It is shown that the set of limit points is

{β1, β2, · · · , βn, · · · , }
⋃[

0,

√
6 +

√
5−

√
2 +

√
5

]
,

where β1 = 2(
√
2− 1) and (βn) is monotone decreasing and approaches

√
6 +

√
5−√

2 +
√
5. Moreover, we show that, except the combs, for each tree T with maximum

degree at most 3 (the molecular graph of alkenes) and order not less than 11,

∆(T ) ≤
√

6 +
√
5−

√
2 +

√
5 ≈ 0.8116.

1 Introduction

In 1952, Fukui et al. proposed Frontier Molecular Orbital Theory (FMO Theory) [6],

which is concerned with the frontier orbitals, and in particular the effects of the High-

est Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital
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(LUMO) on reaction mechanisms. For example, it was found that the reactivity of a

molecule is reciprocally proportional to the energy gap between the HOMO and LUMO

levels [11]. In the Hückel molecule orbital model [12], the energies of these orbits are

in linear relationship with eigenvalues of the corresponding molecular graph, and there-

fore, Fukui defined the HOMO–LUMO separation of a molecule as follows [7]. Let G be

a (molecular) graph of order n, and let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its

adjacency matrix. The HOMO–LUMO separation of G is

∆(G) = λH − λL,

where

H =

⌊
n+ 1

2

⌋
and L =

⌈
n+ 1

2

⌉
.

Motivated by the problem about HOMO–LUMO separation, related quantities, such as

the eigenvalues λH , λL (called the median eigenvalues ofG) themselves and max{|λH |, |λL|}

(the HL-index introduced by Fowler and Pisanski [8, 9], see also Jaklic̆ et al. [15]) at-

tracted much attention of researchers from both chemical and mathematical literatures.

For more recent papers, see Li, et al. [17] and [2,16,18-20].

In this paper, we shall study limit points of HOMO–LUMO separation of acyclic

molecular graphs. Note that, for an acyclic molecular graph (or a tree), say T , the

eigenvalues of T are symmetric with respect to 0 and T has either a Kekulé structure

(or perfect matching) or none. In the latter case the HOMO–LUMO separation is zero

and the molecule has extremely high chemical reactivity, so it is very unstable. In the

former case the HOMO–LUMO separation is non-zero. In practice, we are normally

interested only in this case. An acyclic molecule with a Kekulé structure is called an acyclic

Kekulean molecule. Let T2k denote the set of all acyclic Kekulean molecular graphs with

2k vertices, then for any T ∈ T2k, ∆(T ) = 2λk > 0. In [10], Godsil proved that among all

acyclic Kekulan molecular graphs in T2k, the path P2k has the minimum HOMO–LUMO

separation. On the other hand, Shao and Hong proved in [21] that the comb C2k has

the maximum HOMO–LUMO separation. Since the HOMO–LUMO separation of C2k is

decreasing monotonically from 2 to 2(
√
2− 1) as k runs from 1 to ∞, we have ∆(T ) ≤ 2

for any tree T . More recently, Zhang and Chang [25] determined all trees T in T2k with

∆(T ) > 2(
√
2 − 1). In [26], Zhang and Chen further determined all trees T in T2k with
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∆(T ) >
√

6 +
√
5 −

√
2 +

√
5 ≈ 0.8116. They also gave an asymptotic ordering of trees

in T2k with respect to the HOMO–LUMO separation.

Recalling that a real number ξ is said to be a limit point of real number set C if there

is an infinite sequence of distinct real numbers ξn ∈ C such that ξ = limn→∞ ξn. Let

4 = {∆(T )| T ∈ T2k, k = 1, 2, · · · }, in this paper, we shall consider limit points of the set

4. The study of limit points of graph eigenvalues was initiated by Hoffman [13] in 1972.

Since then, many interesting results have been obtained on this topic. For example, the

set of limit points of the largest eigenvalues of all graphs (or all trees)[13,22] is

{a1, a2, . . .}
⋃[√

2 +
√
5,+∞

)
,

where (an) is an increasing sequence with a1 = 2 and limn→∞ an =
√

2 +
√
5. And every

real number is a limit point of eigenvalues of graphs [23]. For other miscellaneous results

on limit points of eigenvalues, see [1,4,5,14,24].

The rest of the paper is arranged as follows. In Section 2, we shall give some lemmas

we need. Then in Section 3, we shall completely determine the set of limit points of

the HOMO–LUMO separations of acyclic Kekulean molecular graphs. As a by product,

we also show that, except the combs, for each acyclic Kekulean molecule with maximum

degree at most 3 (the molecular graph of alkenes) and order not less than 11, its HOMO–

LUMO separation is not larger than
√

6 +
√
5−

√
2 +

√
5 ≈ 0.8116.

2 Preliminaries

For simplicity, we use tree instead of acyclic molecular graph in the following. For any

tree T of order k, the new tree of order 2k obtained by attaching a new pendant edge to

each vertex of T is called the expanded tree of T and denoted as T̆ [26]. Clearly T̆ ∈ T2k,

furthermore, we have the following result.

Lemma 2.1.[25] For any tree T of order k, the HOMO–LUMO separation of T̆ is

2λk(T̆ ) =
√

λ1(T )2 + 4− λ1(T ),

where λ1(T ) is the largest eigenvalue of T .

Now we define two families of trees. Let Pn(n ≥ 1);Zn(n ≥ 3);Wn(n ≥ 5); and

Ti(i = 1; 2; · · · ; 6) be trees depicted in Figure 1, the set of these trees is denoted by Ω1,
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which includes the Dynkin graphs Pn, Zn, T1, T2, T3, (λ1(G) < 2) and the Euclid graphs

(λ1(G) = 2) except the cycles [3].

……Pn
……Zn

……Wn

T4

T2

T6

T1

T5

T3

Figure 1. Trees in Ω1.

Let T (a; b; c) denote the tree with a vertex v of degree 3 such that T (a; b; c) − v =

Pa∪Pb∪Pc and Q(a; b; c) denote the tree obtained from the path with vertices 1; 2; · · · ; a+

b + c − 1 (in order) by attaching a pendant edge at each of the vertices a and a + b,

respectively (see Figure 2).

b

c

…

a-1{

…

{ …

{ c-1

…

{

…

{

a

…

{

1 2 a a+1 a+b a+b+c-1

T(a,b,c)

Q(a,b,c)

b-1

Figure 2. T (a; b; c) and Q(a; b; c).

The set of trees of the following types is denoted by Ω2:
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(a) T (a; b; c) for

a = 1; b = 2; c > 5 or

a = 1; b > 2; c > 3 or

a = 2; b = 2; c > 2 or

a = 2; b = 3; c = 3.

(b) Q(a; b; c) for (a; b; c) ∈ {(2; 1; 3); (3; 4; 3); (3; 5; 4); (4; 7; 4); (4; 8; 5)}

or a > 1; b > b∗(a; c); c > 1 where (a; c) 6= (2; 2) and

b∗(a; c) =


a+ c, for a > 3;

2 + c, for a = 3;

−1 + c, for a = 2.

Lemma 2.2.[26] For k ≥ 6, let

V2k =

{
T : T ∈ T2k,∆(T ) >

√
6 +

√
5−

√
2 +

√
5

}
.

Then V2k = {T̆ : T ∈ Ω1 ∪ Ω2}.

Lemma 2.3.[13] Let Λ = {λ1(T ) : T ∈ Ω1 ∪ Ω2}, then limit points of Λ are

2 = α2 < α3 < · · · < αn < αn+1 < · · · < α∞ =

√
2 +

√
5,

where αn = υ
1/2
n + υ

−1/2
n with υn as the largest real root of the polynomial

fn(υ) = υn − (υn−2 + · · ·+ υ + 1).

Lemma 2.4.[22] Every real number not less than
√

2 +
√
5 is a limit point of the largest

eigenvalues of trees.

3 Main results

Theorem 3.1. Let 4 = {∆(T )| T ∈ T2k, k = 1, 2, · · · } denote the set of HOMO–LUMO

separations of trees with a Kekulé structure. Then the set of limit points of 4 is

{f(α2), f(α3), · · · , f(αn), · · · , f(α∞)}
⋃[

0,

√
6 +

√
5−

√
2 +

√
5

]
,

where f(x) =
√
x2 + 4− x. Moreover 2(

√
2− 1) = f(α2) > f(α3) > · · · > f(αn) > · · · >

f(α∞) =
√

6 +
√
5−

√
2 +

√
5.
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Proof. Note that f(x) =
√
x2 + 4 − x is a strictly decreasing and continuous function

of the variable x. So, first by Lemma 2.1-3, the only limit points of 4 not less than√
6 +

√
5−

√
2 +

√
5 are f(α2), f(α3), · · · , f(αn), · · · , f(α∞), which is decreasing in this

order and approaches f(α∞). Second, for any real number r ∈
(
0,
√

6 +
√
5−

√
2 +

√
5
]
,

f−1(r) ∈ [
√

2 +
√
5,+∞). Thus by Lemma 2.4, there exists a tree sequence (Tk) such

that limk→∞ λ1(Tk) = f−1(r), then by Lemma 2.1, limk→∞ ∆(T̆k) = f(f−1(r)) = r. Fi-

nally, it is known that ∆(P2k) = 4 cos kπ
2k+1

, which approaches 0 as k → ∞. Now the proof

is complete.

Since for a tree T /∈
⋃∞

k=1 T2k, ∆(T ) = 0, we immediately deduce the following results.

Theorem 3.2. The set of limit points of HOMO–LUMO separation for all trees is

{f(α2), f(α3), · · · , f(αn), · · · , f(α∞)}
⋃[

0,

√
6 +

√
5−

√
2 +

√
5

]
.

Now we turn our attention to trees with maximum degree at most 3 (the molecular

graph of alkenes). For this special class of trees, we can give a more precise result about

its HOMO–LUMO separation.

Theorem 3.3. Except the combs, for each tree T with maximum degree at most 3 and

order not less than 11, we have

∆(T ) ≤
√

6 +
√
5−

√
2 +

√
5 ≈ 0.8116.

Proof. By Lemma 2.2, the only trees with HOMO–LUMO separation not less than√
6 +

√
5−

√
2 +

√
5 are T̆ , T ∈ Ω1 ∪ Ω2. But these trees, except P̆k = C2k (the comb),

have maximum degree larger than 3. So the result follows.

From the above Theorem, we immediately deduce the following result since it is known

that, for the comb C2k [25],

∆(C2k) = 2

(√
cos2

π

k + 1
+ 1− cos

π

k + 1

)
.

Corollary 3.1. The limit points of HOMO–LUMO separation of all trees with maximum

degree at most 3 lie in[
0,

√
6 +

√
5−

√
2 +

√
5

]
∪
{
2(
√
2− 1)

}
.
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Then a natural problem pops up.

Problem 1. Is the HOMO–LUMO separation of all trees with maximum degree at most

3 (the molecular graph of alkenes) dense in
[
0,
√

6 +
√
5−

√
2 +

√
5
]
?
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[3] D. M. Cvetković, P. Rowlinson, The largest eigenvalue of a graph: a survey, Lin.

Multilin. Algebra 28 (1990) 3–33.

[4] M. Doob, The limit points of eigenvalues of graphs, Lin. Algebra Appl. 114/115

(1989) 659–662.

[5] M. Doob, Some new results on the limit points of eigenvalues of graphs, Amer. Math.

Soc. 12 (1991) 450–450.

[6] K. Fukui, T. Yonezawa, H. Shingu, A molecular orbital theory of reactivity in aro-

matic hydrocarbons, J. Chem. Phys. 20 (1952) 722–722.

[7] K. Fukui, Theory of Orientation and Stereoselection, Springer, Berlin, 1970.

[8] P. W. Fowler, T. Pisanski, HOMO–LUMO maps for fullerenes, Acta Chim. Slov. 57

(2010) 513–517.

[9] P. W. Fowler, T. Pisanski, HOMO–LUMO maps for chemical graphs, MATCH Com-

mun. Math. Comput. Chem. 64 (2010) 373–390.

[10] C. D. Godsil, Inverses of trees, Combinatorica 5 (1985) 33-39.

[11] A. Graovac, I. Gutman, N. Trinajstić, T. Živković, Graph theory and molecular
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