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Abstract
A “multiplet dormant” graph is defined as a (treggph which can generate infinite series of isospkec
(IS) pair graphs by adding the same graph fragmentsach of the two sets of “multiplet sprouts”
attached to the component vertices in it. In tlipgy a number of multiplet dormants are introdudée
highest multiplicity which has been found is nikdmost all the IS tree graph pairs composed of more
than eight vertices are shown to be generated frendormants, among which the smallest one has only
five vertices. Thus the conventionally proposedospectral graph is found to be just a singlet dotma
Almost all the findings in this work have been galrwithout computer search but by using Zhedex

andZ-counting polynomial proposed by the present author

1. Introduction

Although analysis of isospectral (or cospectral) graphs has been msmbgrs an
important issue not only in graph theory [1,2] but also in mathemateahistry [3], no
dramatic progress has been attained as to explore and widen tleptcohendospectral
graphs (ESG) [4-7] especially in the domain of tree graphs. For exaalffiough the
hitherto known smallest IS tree pairlisand2 of N=8 [8-10], and four and fivc IS pairs
were found folN=9 and 10 [10], respectively, only one péiand5 has been shown to be
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related to the smallest ES3zas shown in Fig. 1 [8].

(N=8) 1 2
smallest IS pair of tree graphs

smallest ESG

Figure 1. Smallest IS tree pair and smallest ESG.

Furthermore, although so many ESG’s have been discovered by computer sebrch,
sporadic discussions have been reported for them [1-9, 11].

However, very recently the present author showed that “topologicainszatibn” by
the aid of theZ-index andZ-counting polynomialQs(x) [12,13], is useful and practical for
analyzing and unifying chemico-mathematical features of IS graphsThdie we found
an interesting tree grapghwith two pairs of “sprout” vertices, * and # (See Fig. 2). By
adding an edge at both of * vertices one can obtain gfapimich is IS to8 obtained by
adding an edge at both of # vertices6ofThe Z-indices given here are found to have a
steering role for this kind of IS analysis. Incidentally thesedvephs,7 and8, have been
known as the smallest IS conjugated acyclic polyene pair, or tinematical term, as the
smallest pair of “cospectral” trees with a 1-factor [3]. téver, they have never been
discussed in the conventional theory of ESG’s, all of which carry only i gba
endospectral vertices to generate IS pairs.

Smallest IS pair of acyclic conjugated polyenes

[]
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Figure 2. Smallest IS pair of acyclic conjugated polyenas loe derived from “doublet dormant.”

"doublet dormant” %

=196 (N=12)

8

Let us call a graph such @sdoublet dormant” with two “doublet sprouts.” As will be
explained in detail in this paper, the smallest IS da@nd?2, were found to be derived
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from the triplet dormant dfi=5, which eventually works also as quadruplet, sextuplet, and
heptuplet dormants. In this sense all the ESG’s hitherto have beeissdid are nothing
else but singlet dormants with a pair of sprouts. Namely, tiadleshESG3 is now turned

out to be the smallest singlet dormant. Thus the concept of thepletullormant
encompasses that of the conventional ESG and the related discussions.

In this series of papers a number of multiplet dormants withsiets of multiplet (up
to nonuplet!) sprouts will be introduced and discussed. In |, “Factstiaty of multiplet
dormants and sprouts are introduced without sophisticated discussion gt omdy
Z-indices andZ-counting polynomial proposed by the present author [12,13]. In I,
“Theory,” mathematical analysis is given for singlet and doublet dosné&sitowed by
optimistic conjectures and expectations which were found to be usefdliscovering
highly multiplet dormants with entangled mathematical structure.

As almost all the results introduced here have been obtained by beckebddpe
calculations using th&-index, the present author is longing for the full support by
computer search and refinement by rigorous analysis in order to rfstuigcomplete but
throbbing problem. Extension to non-tree graphs is the next important tardieigl¢o the
basic discussion on the origin of aromaticity.

2. Analysis of dormant families by thez-index and Z-counting
polynomial

The spectrum of a graph is defined as the set of eigenvadus(X)=0}, wherePg(X)
is the characteristic polynomial defined in terms of thecadjay matrixA and unit matrix
E of graph G as

Pe(¥)=(-1)" det(A - xE) (1)

In 1971 the present author showed that for tree grBphg can be expressed in terms of
the non-adjacent numbexG k), ork-matchings for G [12,13] as

IN/2)
Ps(x)= 2 (-1p(G.k) XN (G Otree). 2

k=0

By adding all thga(Gk)'s for G the topological index (here we catindex) is defined as
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[N/2]
Z=Y p(GK). (3)
k=C
In order to discuss the isospectrality of tree graplis found to be very useful, but the

Z-counting polynomial

[N/2]
Qs(¥ =2 pGK)x
per 4
is crucial, since Egs. (2) and (4) are mathematically equivaderitefe graphs, whilg is
subordinate t@c(x) as
Z=Qs(). ®)
Now for checking the isospectrality of tree graphs we willZiss a steering role and
Q functionas the decisive role instead of being botheredPb{x) and the set of its
eigenvalues.
As an example consider the graph8. Luckily in this case the isospectrality ©and
8 can immediately be proved by noticing the two edges indicated by an bewayse the
Q functions (mathematically equivalent to the later proposed nmgtcpiolynomial
[15-17]) of this pair of graphs are shown to be the same by applyingdhesion formula
[12,13] as follows.
Hpre e b
Then we have
Q7(X) = Q8(X) = (L+5+6x2+x)(1+5x+5x24x7) + X(1+4x+3x%) (1+3x+x)
=1+ X+ 43 + 733 + 53¢ + 148 + X8, (6)
By puttingx=1 theirZ-indices can be obtained as

Z7=78=1+11+43+73+53+14+1=196. 7)

Further we can safely assert that infinite pairs of Eplgs can be generated fr@n
and10 by adding any tree or non-tree graph G.

© © 1S C? ©
T 9 TlO

Although details will be explained in Appendix 1, tQefunctions of the IS pair 0 and
10for any G can be given by
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QG(X) = (1+3+x9)2 G2 + x (1+3x+x?) (3+5) GH + 2 (14X) (2+5¢+9) H,  (8)
whereG represents th® of G, andH is theQ of graph H obtained from G by deleting its
root, the attaching vertex. In the cas€ @ind8, G=1+x andH=1, yielding Eq. (6).

The corresponding expression for #éndex of graph G can be obtained by putting
x=1in EqQ. (8) as

26 = (5G + 4H)% 9)
However, in this cas& andH are theZ-indices of graphs G and H. NameRz=28=196
can be derived by putting=2 andH=1into Eq. (9).

Now consider graphv as G whose bottom vertex is chosen as its heot. tfie
Z-indices ofG andH become, respectively, to be 3 and 1, yieldimg361, which are the
Z-indices of the IS pa® and 10'.

AV < 7-361 Y \VA
9 10'

We have found a number of doublet dormants bkesome of which are already
introduced in Ref. 14.

Now notice graptl in Fig. 3 with a pair of triplet sprouts (Sé& and11”), which
are found to generate the famous smallest tree pair of IS graphs [1-&78R.

triplet dormant ' = ’_{‘}_‘
dormant with
,_I_._. triplet sprouts ISpair Z=
11

Figure 3. The smallest IS tree pair is generated fromripéet dormant oN=5.

Here as will be shown in Appendix 2 tlgfunctions andZ-indices of11 and 11" are
obtained to be

Qur = Qu1r = 2G?H + (5x— 1) GH? + x(2x-1) H3 (10)
and

Z1r =711 =2G’H + 4GH? + H3, (11)
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3. Small IS graphs generated from dormants

As already mentioned, the abovg?) is the smallest IS tree pair NE8, and can be
generated from the dormati. Similarly all the five and four IS pairs &=9 and 10,
respectively, were found to be generated from dormants as shown in Figs. 4 and 5.

z IS pair Q Multiplet dormant Z andQ formulas

14
E% ©) ; 3G2 + 10GH + 4H2
12 © Q: (1+2)G? + 2x(2+3)GH
'_l%_'_'“ l»él—<5 + 23(1+x)H?
13 181710 0
16(Q) ®
{ 33 ©

36

Z: 2GPH + 5G2H?
Q: 2G3H — (1-60G2H?
—X(1-x)GH?

Z: 3G? + 10GH + 5H2
Q: (1+2)G? + 2x(2+3X)GH

20;

2._1@.@.1 } +X3(3+20H?
22 24
+ W } Z: (G +H)(G? + 4GH +H?)

37 1818 10 0

181
191 I I

39

23 { 1818120 - % Q: (G +xH)(G? + 4xGH

1 f + X2H2)

26 h 28 %

Z: 4G? + 10GH + 5H2

—t /"

41 Q: (1+x)2G2
27I 11 1818122 ZQQIQ + X(1+X)(4+x)GH
) 3 +X3(3+2)H2
32
SOI 1 ©) o Z: 5G2 + 10GH + 4H?

Q: (1+3x+x3)G?

31 181914 2 33 i +X(3+6x+x2)GH
+ 2C(1+x)H?

Figure 4. All the five IS pairs oN=9 can be generated from their dorma#ts36 pair has two dormants.

44

The arrows indicate that an intrinsic Ergan be generated. The general expressions for

Z-indices andQ-functions are given.
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z IS pair Q Multiplet dormant Z andQ formulas

34 36
Q Z: 2G3H + 4G?H? + 3GH3+ 2H4

3 19219040, Q: 2G%H — (1-%)G2H?
%L *". +X(1+2)GHS — x(1-3H4
401 ¥©f . ) Z:6G?H +8GH? + 33
n Q: 2(1+2)G2H
38 @%L«g — (1-3-63)GH?
FHL —X(1-2-23)H3
1921120

39 42
66 Z: 2GPH + 5G2H2 + 3GH3 + H4
©@©

43 Q: 2G3H — (1-6)G2H2
G‘Qe © —X(1-4)GH3 + x2H4

3

@l . ... z2G+2H

Q: (1+2)(1+4x+2)G

40

43

.—I—I—.—.—.—.—.4 .l.e. .. +X(2+10¢+13+4x3)H
n Yiozars 4@ g | Z9C2+1CH+ 5
3.1 .¢I . A Q: (1+2)2G2
45 + (1+2)(3+2))GH
©_I_’_@’_’_', +X3(2+3)H?
% 11 48
©+I@@ Z: 3G3 + 9G?H + 6GH2 + H3

73 1926289049 © Q: (1+2)G3 + x(4+5x)G2H
4n [ O.. @ +222GH2+xH3

Figure 5. All the four IS pairs oN=10 can be generated from their dormartst3 and 71 pairs have two

dormants. The arrows indicate that arnnsic IS pair can be generated.

Now we have realized that so many different dormants generaté ISniege pairs.
Then the results obtained up to now were carefully summarized B&. 6 just by
excluding the larger grapl@s-8, where an italic number indicates the multiplicity and the
parenthesized gothic numbers are those assigned to IS paitatefatiscussion tentative
codes for these dormants are given.

One can immediately imagine that (i) dormants are generallylimesr and
asymmetric. (ii) Several dormants can generate more than tveoeditflS pairs, whereas
(iii) several IS pairs, such a8,(), (12, 13), and 88, 39), can be generated from different



-400-

dormants.

Ne5 Dy e 0219, 3.

N=6 Dg; i i»(34, 39), i»(38, 39
Ds,2 S i»(zz, 23

N7 Dy, -l 2, (1819
D72 NS i»(26,27), i»(so, 31, i»(46,43
Drs 1o 2 (12,13, )3 (38 39

N8 Dg; +deeeee —2n(a5)

N=9 Dgy welow. . i»(45)]

Figure 6. lllustrative summary of the dormants introducedeh Itallic: multiplicity of dormants.

The items (i) and (ii) will be discussed in more detail e following sections.
However, before extending the discussion let us make a brief conumeht dormant.
According to our survey, out of about two hundredblefl trees 50 form two IS trios and
22 IS pairs, but about ten pairs cannot be related to a common doszntas the pairs

{11 1| HI% il

Q110 34 46 22 2 Q110 3238 14 0

below:

This means that behind the isospectrality of a pair of isomer g@phany complicated

factors seem to be entangled.

4. Adormant can generate many different series d& pairs

The smallest dormariDs,1(=11) already explained in Fig. 3 was found to generate
many other series of IS graphs as illustrated in Figure 7, whermgeneral expressions for
giving theZ-indices are also shown. Namel¥ can work not only as a triplet dormant but
also as quadruplet, sextuplet and septuplet dormants.
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quadruplet dormant
16 17 7 2G3H+5G2H2
8—%—'—69 @—?—% Q: 2G3H+(6x-1)G2H3+2x(x—1)H3
/ 50 51 sextuplet dormant
Z: AG*HZ+3G2H*
1 = %é% © % % Q: 4G*HZ+4(x-1)G3H3+(2x+1)G?H4 +2x(x-1)GH>
\ 52 53 septuplet dormant
§§‘% © % 8GAH3-2G?H5+2GHe-H
Q: 8GAH3+12(x—1)G3H*+2(3-4x)GPH5
+(8C—x—1)GHO—~(2-x)H7

Figure 7.The smallest dormant can work also as quadruggetpplet, and heptuplet dormants.

In the next paper “Theory” how these IS pairs were found will be explained.

Similarly, to the case afl the smallest ES@ (=Dg,1) was also found to work as
many different multiplet dormants with multiplicity of 3, 4, 5, and &l@wn in Fig. 8. As

a matter of fact, since further research is not yet finidtethis stage, there remains a
possibility of still higher multiplicity for this graph.

3=D
Multiplet dormant .—.—I—.—.—.—.—.g’l
multiplicity IS tree pair Z-index

. ) 3 1.9 e
50 51
3 (}—-—I@-—-@- -@I—-—@—-—-—{) 6G® + 18G°H + 19GH? + 7H3
3 ._8_1_@.__532 -@l—-—%—-—-iB 18G?H + 27GH? + 5H?
54 55  2G*+ 10G%H + 18G?H? + 15GH?
4 © @G @ ©@ © © +5H4

4G + 14G3H + 19G2H2 + 11GH3
+2H4

,i ©. %
Cl.@. . %

GG o ,: @ 59 265+8GH + 146%H? + 1567
3 © ©

+ OGH* + 2H°
© 60 ,_t @9 8
©] ©© 2G° + 9G*H + 16G°H? + 15G2H3
5 © ©,CQ =3 ©®© ., 7GHA + H5

@
@T @O 83 cb+565H + 11642 + 14633
© © 4126244 6GHS + HE

Figure 8. The smallest ESGg,1 can work as a dormant with many different multiies.
In this case the structures of the paiggl, 65), (56, 57), (58, 59), (60, 61), and 62,

63), are closely related among each other. Their mathematiegibred can be explained
well by following the discussion expanded in the next paper, “Theory.”
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The next example is a small dorm#@g,1 of N=6 with many different multiplicities
up to two kinds of nonuplet.

o—I—o—o—o D6,1

Multiplet dormant

multiplicity IS tree pair Z-index

@_1@37

2G8 + 4G?H + AGH? + H3

2G%H + 5G?H? + 3GHS + HA

2GPH + 4G2H? + 3GH3 + 2H*

16G3H3 - 8G2H* + 4GH® - H®

Q 66 Qe 67
C)NGE, ©)ES 0 H3(2G — H)(4G* + 4G3H
6@ © © © —G2H2 + 5GH3— H%)
Q) 68 Q) 69
Q]E.© QTGO 5  H(@G-H(UG! + 6H
©9 © © © + 4G2H2 + 3GH3— 2H4)
& 70 © @@A H4(2G —H)(8G* - 4G*H
9 @@Q ©® © @V@b#@VG + 6G2H2— GH3 + 2H4)
73
QQGG 2 Q| e H4(2G — H)(8G* — 8G3H
o @@Q © 9@@3 © + 14G2H2— 6GH3 + 3HA)

Figure 9. A small dormanDsg,1 of N=6 but with many different multiplicities.

It is interesting to observe that the grafih especially when G is substituted by an
edge, is IS to a rather asymmetric isom@r

5. Linear and symmetric dormants

As far as we have checked, the shortest linear dormant is folnedthe path graptsS
working as quadruplet as shown below.

@@ @ @ @ @E) @ 2G4 + 8G3H + 1262H2 + 9GHS3 + 314
74 75

Possibilities of its higher multiplicity and longer linear dormamésexpected to be found.
Anyway existence of linear dormant seems to be rare.

A little lower symmetric than linear but a series of ieting mirror-symmetric triplet
dormants which derive also mirror-symmetric IS pairs were foumdinaFig. 10.
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Incidentally all of them were found to be intrinsic as the arrows indicate.
24 76 78
%@T @ﬁg——@T ; e
IS I IS [ ISI
25 ? 77 T 7
ele. ..gle 0le. .. ...

f

Figure 10. A series of intrinsic and mirror symmetric triplormants

which generate also mirror symmetric IS paapis.

Although we have not yet grasped complete mathematical structuhe aformant
family, in the following paper let us disclose as honestly as pessilslsuccessful strategy
for discovering these interesting dormants without recourse to computer search.

AcknoledgementsThe author thanks lvan Gutman who gave him useful comments and
references to improve this manuscript.
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Appendix 1 How to derive the&) function for9 containing graph fragment G.

We are now going to obtain tigfunction for9 containing graph fragments G’s. Edge
| to be deleted fror is the one indicated by the arrow. The recursion formula can formally
be written down as

Q(9=Q(9-H)+xQ(90N), (A1)

where% is the subgraph & obtained by deleting edgiewhile 91 is obtained further by
deleting all the edges incidentltoNote that in this case one graph fragment G is also cut
to yield H (See the dotted circle in LHS of Eq. (A2)).
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O i Sl BRI CEREE)

0@ Qe Q(eel (A2)
The Q functions of the three graphs containing graph fragment G can be degreded i
follows.

)= (1+8) G + x(1+X) H

> ) = (1+8+x3) G + x(1+29 H
Q.. )=(1+85) G+ X1 H

Now by putting them into Eq. (A2) one gets
Q(9) = (1+3+x9)? G2 + X (1+3x+x?) (3+5x) GH + X2 (14xX) (2+5+x°) H2,(A3)
which is equal to Eq. (8). Exactly the same result can be obtained alsdlfor IS
The Z-indices for9 and 10 can be obtained just by puttizgl into Eq. (A3) aZo=
Zlo=(SG+4H)2. Further by putting>=1+x andH=1 into Eq. (A3) one gets Eq. (6), which
eventually gives Eq. (7), or th&indices of4 and5, by puttingx=1.
TheQ functions of9’ and10’ can be derived by puttif@=1+2x andH=1 to be
Q9) = Q(0) = 1 + 1 + 61X + 1253 + 116¢* + 39 + 448, (Ad)

Appendix 2 How to derive the&) function forll’ containing graph fragment G.
In this case formally th® function can be degraded into

% _ % 9 oxre .

In calculating this we need to know
*
(A6)

In order to get the) function of the twin G in the above-left equation, the following

% +XH2=2GH + (1) H? and{eA = @p— +xH=G+ 2 H.

relation is necessary.

% =HG + GH — H2= 2GH — H&.
(A7)

However, the above derivation can be obtained by Eg. (1) of the next paper.
By putting Eq. (A6) into Eq. (A5) we get Eq. (10).



