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Abstract

A numerical procedure is developed to obtain the solution of a mathematical
model that relates the concentrations of carbon substrate and oxygen within a
microbial floc particle. This model can be reduced to a system of two coupled
nonlinear singular differential equations. Our approach is based on sinc-collocation
method. Sinc based methods are characterized by exponentially decaying errors
associated with their approximations. Also, approximation by sinc methods handles
singularities in the problem. Properties of the sinc functions are utilized to reduce
the computation of this model to systems of algebraic equations. The method is
easy to implement and the results are compared with some well-known results which
show that they are accurate.

1 Introduction

Conventional activated sludge is one of the most widely used methods for treatment of or-

ganic wastes. Air or oxygen is introduced into the screened and primary treated sewage or

industrial wastewater combined with microorganisms to convert dissolved and suspended

biodegradable carbonaceous organic contaminants into biological floc (sludge), water and

CO2 gas. One of the challenging issues of conventional activated sludge is high sludge pro-

duction. The wide application of the process and more stringent wastewater regulations
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have amplified the problem of excess sludge management and hygienic disposal. About

50% to 60% of the total operating cost in a sewage treatment plant is accounted for excess

sludge storage, transport, digestion and disposal [17]. Several studies have shown that

carbon substrate and oxygen concentration are two main factors influencing excess sludge

production [1].

A mathematical model that relates the concentration of the carbon substrate and the

concentration of oxygen within a microbial floc particle is given in [1, 5, 7, 16] as

d2u

dx2
+

2

x

du

dx
= −α2 + F1(u(x), v(x)), (1)

d2v

dx2
+

2

x

dv

dx
= F2(u(x), v(x)), (2)

subject to boundary conditions:

u′(0) = 0, u(1) = 1, v′(0) = 0, v(1) = 1. (3)

Here, u(x) and v(x) are the dimensionless concentrations of carbon substrate and oxygen,

respectively. Also, x denotes the radius of a spherical floc particle and F1, F2 are given by

F1(u(x), v(x)) = α1
u(x)v(x)

(`1 + u(x))(m1 + v(x))
+ α3

u(x)v(x)

(`2 + u(x))(m2 + v(x))
, (4)

F2(u(x), v(x)) = α4
u(x)v(x)

(`1 + u(x))(m1 + v(x))
+ α5

u(x)v(x)

(`2 + u(x))(m2 + v(x))
, (5)

where `1, `2,m1,m2 and αi, i = 1, 2, .., 5 are some constants. For a complete model’s

description, we refer the interested reader to [1, 7].

In [7] the Adomian decomposition method is applied to derive a solution of this prob-

lem. In [5] the Adomian decomposition method combined with the Duan-Rach modified

recursion scheme is applied to solve this problem. Also, the authors of [16] used the vari-

ational iteration method for the solution of this problem. Moreover, for similar problems,

we refer to [3, 19–21].

The main purpose of this work is to develop sinc-collocation method for numerical

solution of problem (1)-(3). Our approach consists of reducing the solution of this prob-

lem to a set of algebraic equations by expanding u(x) and v(x) as sinc functions with

unknown coefficients. The properties of sinc functions are then used to evaluate the un-

known coefficients. A general review of sinc function approximation is given in [6,15]. As

pointed out in [6, 15], there are several advantages to approximate by sinc functions: (i)
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it may readily handle the singularity, (ii) sinc numerical methods are easily implemented

and give good accuracy. These methods are characterized by exponentially decaying er-

rors. In the last three decades or so, sinc methods are widely used in various problems

such squeezing flow [12], boundary value problems [14,18], fractional convection-diffusion

equations [13], Bagley-Torvik equation [2], Troesch’s problem [8], Volterra’s population

model [11], Thomas-Fermi equation [9], Falkner-Skan boundary-layer equation [10] and

Schrödinger equation [4].

The organization of this paper is as follows: in the next section, some preliminary

results of sinc functions are given. In Section 3, we apply the sinc-collocation method on

the studied model. Results and discussion of the proposed method is shown in Section

4. A brief conclusion is given in Section 5. Note that we have computed the numerical

results by Maple programming.

2 Sinc function approximation

The books [6, 15] have provided overviews of methods based on sinc functions. We recall

here the main properties of sinc functions required for our subsequent development.

The sinc function is defined on −∞ < x <∞, by

sinc(x) =

{
sin(πx)
πx

, x 6= 0,

1, x = 0.

For each k = 0,±1,±2, . . . and h > 0 the sinc basis functions are defined on the whole

real line by

S(k, h)(x) ≡ sinc

(
x− kh

h

)
=

{
sin[π

h
(x−kh)]

π
h
(x−kh) , x 6= kh,

1, x = kh.
(6)

The sinc functions form an interpolatory set of functions, i.e.,

S(k, h)(jh) = δkj =

{
1, k = j,

0, k 6= j.

If f is an analytic function defined over the whole real line, then the Whittaker cardinal

expansion of f is defined by

C(f, h)(x) =
∞∑

k=−∞

f(kh) Sinc

(
x− kh

h

)
,

whenever this series converges. The properties of the Whittaker cardinal expansion have

been studied in [6]. These properties are derived in the infinite strip DS on the complex
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w-plane, where for d > 0,

DS =
{
w = t+ is : |s| < d ≤ π

2

}
.

In this paper, we use approximations on the interval (0, 1). Here, we consider the confor-

mal mapping

w = φ(z) = ln

(
z

1− z

)
,

which transforms the eye-shaped domain, DE, in the z-plane, onto DS, where

DE =

{
z = x+ iy :

∣∣∣∣ arg( z

1− z

)∣∣∣∣ < d ≤ π

2

}
.

The sinc basis functions over (0, 1) are given by

Sk(x) ≡ S(k, h) ◦ φ(x) = sinc

(
φ(x)− kh

h

)
, (7)

where S(k, h) ◦ φ(x) is defined by S(k, h)(φ(x)). The inverse map of w = φ(z) is

z = φ−1(w) =
exp(w)

1 + exp(w)
.

Therefore, we may define the inverse images of the real line and the evenly spaced nodes

{kh}∞k=−∞ as

Γ = {ψ(t) ∈ DE : −∞ < t <∞} = (0, 1),

and

xk = ψ(kh) =
ekh

1 + ekh
, k = 0,±1,±2, . . . (8)

respectively.

Definition 2.1. Let B(DE) be the class of functions F which are analytic in DE, satisfy∫
ψ(t+L)

|F (z)dz| −→ 0 , t −→ ±∞,

where L =
{
iv : |v| < d ≤ π

2

}
, and on the boundary of DE, (denoted ∂DE), satisfy

N(F ) =

∫
∂DE

|F (z)dz| <∞.

The next theorem, whose proof can be found in [15], shows the exponential conver-

gence of the sinc approximation for function in B(DE).
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Theorem 2.2. If φ′F ∈ B(DE) then for all x ∈ Γ∣∣∣∣∣F (x)−
∞∑

k=−∞

F (xk)S(k, h) ◦ φ(x)

∣∣∣∣∣ ≤ N(Fφ′)

2πd sinh(πd/h)

≤ 2N(Fφ′)

πd
e−πd/h.

Moreover, if |F (x)| ≤ Ce−α|φ(x)|, x ∈ Γ, for some positive constants C and α, and if the

selection h =
√
πd/αN ≤ 2πd/ ln 2, then∣∣∣∣∣F (x)−

N∑
k=−N

F (xk)S(k, h) ◦ φ(x)

∣∣∣∣∣ ≤ C2

√
N exp(−

√
πdαN), x ∈ Γ,

where C2 depends only on F, d and α.

Also, we need derivatives of S(k, h)◦φ(x) at some points xj. The expressions required

for this paper are [6, 15]

δ
(0)
k,j = [S(k, h) ◦ φ(x)]|x=xj =

{
1, k = j,

0, k 6= j.
(9)

δ
(1)
k,j =

d

dφ
[S(k, h) ◦ φ(x)]|x=xj =

1

h

{
0, k = j,

(−1)j−k

j−k , k 6= j.
(10)

δ
(2)
k,j =

d2

dφ2
[S(k, h) ◦ φ(x)]|x=xj =

1

h2

{
−π2

3
, k = j,

−2(−1)j−k

(j−k)2 . k 6= j.
(11)

3 Discretization of problem (1)–(3)

In this section, we use sinc-collocation method to approximate solutions of problem

(1)-(3). The sinc basis functions Sk(x) are not differentiable when x tends to 0. Thus,

we modify the sinc basis functions as Sk(x)
φ′(x)

. Now the first derivative of the modified sinc

basis functions is defined as x approaches 0 and is equal to 0. We also add boundary basis

functions that are cubic polynomials. These polynomials, which are obtained by Hermite

interpolation at the nodes 0 and 1, are given by

µ1(x) = (2x+ 1)(1− x)2, µ2(x) = x2(3− 2x), µ3(x) = x2(x− 1). (12)

In order to discretize Eqs. (1)-(2) by using sinc-collocation method, first of all, we ap-

proximate u(x) and v(x) as

uN(x) = UN(x) + p(x), vN(x) = VN(x) + q(x), (13)
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where

UN(x) =
N∑

k=−N

ck
Sk(x)

φ′(x)
= x(1− x)

N∑
k=−N

ckSk(x), (14)

and

VN(x) =
N∑

k=−N

dk
Sk(x)

φ′(x)
= x(1− x)

N∑
k=−N

dkSk(x). (15)

Also, p(x) and q(x) are linear combination of µi(x), i = 1, 2, 3. Hence, the boundary terms

p(x) and q(x) corresponding to the boundary conditions (3) are chosen in the following

form, so that uN(x) and vN(x) satisfies Eq. (3):

p(x) = c−N−1µ1(x) + µ2(x) + cN+1µ3(x), (16)

q(x) = d−N−1µ1(x) + µ2(x) + dN+1µ3(x). (17)

In Eqs. (16) and (17), c−N−1, cN+1, d−N−1, dN+1 are constants to be determined. The

2N + 3 coefficients {ck}N+1
k=−N−1 and the 2N + 3 coefficients {dk}N−1

k=−N−1 are determined

by substituting uN(x) and vN(x) into Eqs. (1), (2) and evaluating the result at the sinc

points:

xj =
ejh

1 + ejh
, j = −N − 1, . . . , N + 1. (18)

Clearly, by using Eqs. (14), (15) and (9) we have{
UN(xj) = cj/φ

′(xj), VN(xj) = dj/φ
′(xj), j = −N, ..., N,

UN(xj) = VN(xj) = 0, j = −N − 1, N + 1.
(19)

Also, employing Eqs. (9), (10) and (14) we obtain

U ′
N(xj) =

N∑
k=−N

ck

[
d

dx

(
Sk(x)

φ′(x)

)]
x=xj

=
N∑

k=−N

ck

[(
−φ′′(x)

φ′(x)2

)
Sk(x) +

d

dφ
Sk(x)

]
x=xj

=
N∑

k=−N

ck

{(
−φ′′(xj)

φ′(xj)2

)
δ
(0)
kj + δ

(1)
kj

}
. (20)

In a similar way, we get

V ′
N(xj) =

N∑
k=−N

dk

{(
−φ′′(xj)

φ′(xj)2

)
δ
(0)
kj + δ

(1)
kj

}
. (21)

Moreover, by taking the second derivative from Sk(x)
φ′(x)

and using Eqs. (9)-(11), (14) and

(15) we obtain

U ′′
N(xj) =

N∑
k=−N

ck

{(
2φ′′(xj)

2 − φ′′′(xj)φ
′(xj)

φ′(xj)3

)
δ
(0)
kj −

(
φ′′(xj)

φ′(xj)

)
δ
(1)
kj + φ′(xj)δ

(2)
kj

}
,

(22)
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V ′′
N(xj) =

N∑
k=−N

dk

{(
2φ′′(xj)

2 − φ′′′(xj)φ
′(xj)

φ′(xj)3

)
δ
(0)
kj −

(
φ′′(xj)

φ′(xj)

)
δ
(1)
kj + φ′(xj)δ

(2)
kj

}
.

(23)

We are now ready to solve problem (1)-(3). Substituting Eq. (13) in Eq. (1) and

evaluating the results at xj, j = −N − 1, ..., N + 1, given in Eq. (18), we obtain

U ′′
N(xj) + p′′(xj) +

2

xj
(U ′

N(xj) + p′(xj)) = −α2 + F1 (UN(xj) + p(xj), VN(xj) + q(xj)) .

(24)

Similarly for Eq. (2) we get

V ′′
N(xj) + q′′(xj) +

2

xj
(V ′

N(xj) + q′(xj)) = F2 (UN(xj) + p(xj), VN(xj) + q(xj)) . (25)

Eqs. (24) and (25) gives 4N +6 nonlinear algebraic equations which can be solved for the

unknown coefficients ck and dk, (k = −N − 1, ..., N +1) by applying an iterative method,

like the well known Newton’s method. Consequently uN(x) and vN(x) given in Eq. (13)

can be calculated. Throughout this paper, we use the Maple’s fsolve command to find

unknown coefficients ck and dk from the nonlinear system (24)-(25).

4 Numerical results and discussion

Here, we report the results of our numerical calculations using sinc-collocation method

for solving problem (1)-(3). All the results presented in this study are obtained using

α = 1 and d = π/2 which leads, according to Theorem 1, to h = π/
√
2N . Also, we assign

m1 = `1 = m2 = `2 = 0.0001 as in [5, 7, 16].

In Figure 1, we plot the curves of the approximate solutions uN(x) and vN(x) for

α1 = 5, α2 = 1, α3 = 0.1, α4 = 0.1 and α5 = 0.05 with N = 8. Also, for such values for

the parameters, the following expressions are obtained by Wazwaz et al. [16].

u(x) = 0.3170218446 + 0.682978155 x2,

v(x) = 0.9750104464 + 0.02498955359 x2.

For the purpose of comparison in Table 1 the results of the sinc-collocation method with

N = 8 are compared with the variational iteration method (VIM) [16]. We observe from

Table 1 that the results obtained with the present method are in good agreement with

the results of [16].
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Table 1. Results for u(x) and v(x)

u(x) v(x)
x VIM [16] sinc-collocation VIM [16] sinc-collocation

N = 8 N = 8
0.1 0.32385162 0.32384926 0.97526035 0.97526027
0.2 0.34434097 0.34433211 0.97601003 0.97600977
0.3 0.37848987 0.37847159 0.97725951 0.97725898
0.4 0.42629835 0.42627014 0.97900878 0.97900793
0.5 0.48776638 0.48772986 0.98125784 0.98125679
0.6 0.56289398 0.56285247 0.98400669 0.98400546
0.7 0.65168114 0.65163952 0.98725533 0.98725411
0.8 0.75412786 0.75409236 0.99100376 0.99100272
0.9 0.87023415 0.87021223 0.99525199 0.99525134

Now, we choose N = 20 to examine the effects of the parameters α1, α2, α3, α4 and α5

to the solutions. The effect of α1 on uN(x) when α2 = 1, α3 = 0.1, α4 = 0.1 and α5 = 0.05

is shown in Figure 2. Moreover, the effect of α2 on uN(x) when α1 = 5, α3 = 0.1, α4 = 0.1

and α5 = 0.05 is shown in Figure 3. Figure 4 illustrate the the effect of α3 on uN(x) when

α1 = 5, α2 = 1, α4 = 0.1 and α5 = 0.05. It is found that in Figures 2-4, by increasing α1

or α3, the approximate solution uN(x) decreases, but uN(x) increases with the increasing

of α1. Also, we checked that the effects of α4, α5 on the approximate solution uN(x) and

the effects of α1, α2, α3 on the approximate solution vN(x) are very weak.

The effect of α4 on vN(x) when α1 = 5, α2 = 0.1, α3 = 0.1 and α5 = 0.05 is presented

in Figure 5. Also, Figure 5 illustrate the the effect of α5 on vN(x) when α1 = 5, α2 =

0.1, α3 = 0.1 and α4 = 0.01. According to Figure 5, we find that by increasing of α4 or

α5, the approximate solution vN(x) decreases.

In addition, to check the effect of the parameter `1 on the solutions, we assign α1 =

5, α2 = 1, α3 = 0.1, α4 = 0.1 and α5 = 0.05. The results are illustrated graphically in

Figure 6. From this figure, we can see that when `1 increases, both uN(x) and vN(x)

increases. Also, we checked that the increasing of parameters m1,m2 and `2 leads to

increasing of uN(x) and vN(x).

It is worthy to mention here that, the pictures in Figures 1-6 are almost the same as

the ones obtained in [5].
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Figure 1. Plot of the approximate solutions u8(x) (left) and v8(x) (right), for α1 =
5, α2 = 1, α3 = 0.1, α4 = 0.1 and α5 = 0.05.

Figure 2. Effect of α1 on uN (x) for α2 = 1, α3 = 0.1, α4 = 0.1 and α5 = 0.05.
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Figure 3. Effect of α2 on uN (x) for α1 = 5, α3 = 0.1, α4 = 0.1 and α5 = 0.05.

Figure 4. Effect of α3 on uN (x) for α1 = 5, α2 = 1, α4 = 0.1 and α5 = 0.05.
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Figure 5. Effects of α4 (left) and α5 (right) on vN (x).

Figure 6. Effect of `1 on uN (x) (left) and vN (x)(right) when m1 = m2 = `2 =
0.0001.
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5 Conclusion

In this paper a sinc-collocation method with modified sinc basis functions is successfully

used to solve the system of two coupled nonlinear singular differential equations, that

governs the concentrations of oxygen and the carbon substrate. This approach reduced

the computation of this problem to some algebraic equations. Moreover, the effects of

the various values of parameters αi, i = 1, 2, .., 5 and `1, `2,m1,m2 on the concentrations

of oxygen and the carbon substrate are discussed. These results will be beneficial in

excess sludge minimization by increase of oxygen concentration in activated sludge flocs.

Our results are in excellent agreement with those obtained by Adomian decomposition

method [5] and variational iteration method [16].
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