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Abstract

A new theoretical method for the virus identification has been proposed. The
2D-Dynamic Representation of DNA/RNA Sequences has been applied to the pre-
diction of influenza A virus subtypes. We have shown that the method can be
successfully combined with novel supervised machine learning algorithms, such as
C5.0. The descriptors of the 2D-Dynamic Representation of DNA/RNA Sequences
have been evaluated. High mean accuracy of predicting the subtype of the influenza
A virus has been obtained (over 90% of correct predictions). As a consequence, the
combination of the machine learning algorithms and the 2D-Dynamic Representa-
tion of DNA/RNA Sequences has been shown to constitute a simple and accurate
tool for the classification of unidentified virus strains.
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1 Introduction

Influenza is a deadly viral disease that has claimed millions of lives since the epidemic in

1918, the Spanish Flu, when over 20 million people succumbed to the illness [1]. The flu

virion is characterized by a segmented genome that permits new subtypes to form when

two or more varieties of the flu infect a single host cell. This characteristic has enabled

various subtypes to evolve and create pandemics over the last 100 years, the most recent

manifestation being the Swine Flu epidemic of 2009 that spread rapidly across the world

from Mexico where it was first reported to Singapore and beyond [2].

One feature that characterizes this virus to create epidemics every few years is its

ability to mutate to new strains through reassortments of its constituent genetic material.

Apparently, it transpires, the viral genome is composed of several genes grouped together

in individual segments. In a host cell during replication, it would be possible, even at a

low probability level, to reassemble individual virions that combine segments from two

or more viral elements as available and remain viable. New viruses could presumably, in

some instance, give rise to more intense ailments to humans not used to the novel strains

and cause epidemics [3].

Given that there are many possibilities of combinations among the two important

genes or RNA sequences coding for surface proteins, hemagglutinin and neuraminidase,

of the influenza virion, it is surprising to note that only a few combinations appear to

be functional in nature [4]. Several authors have opined on various aspects of this phe-

nomenon [4–9]. In an earlier paper of our group it was postulated that a coupling existed

between the hemagglutinin and neuraminidase constituents that precluded certain com-

binations [4].

Here, in the present paper, we carry this idea forward through a 2D-Dynamic Repre-

sentation of DNA/RNA Sequences using a supervised machine learning model and a set

of trainee sequences to predict, with over 90% accuracy, the subtypes of the remaining

influenza strains. We hope that this study may provide a guide for the future work on

influenza surveillance to control, if not to avoid, the upcoming epidemics. The presented

approach is also a methodological contribution – it constitutes a novel virus identification

tool.
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2 Materials and Methods
A DNA/RNA sequence is a succession of letters (A – adenine, C – cytosine, G – guanine,

T/U – thymine/uracil) that indicate the order of bases within a DNA/RNA chain. A class

of methods in bioinformatics called Graphical Representations allows for both graphical

and numerical similarity/dissimilarity analysis of such objects. Many examples of such

approaches with different applications may be found in the literature [10–27] (for reviews

see [28–30]). Within these methods one can create a large number of different types of

values which characterize numerically graphs representing the sequences. After [28] we

refer to these quantities as descriptors. The aim of these methods is the creation of both

graphs and descriptors in a unique way. An important requirement which should be
fulfilled by a new method is the lack of degeneracy1.

A popular technique used for the construction of graphs representing the DNA/RNA

sequences are walks in either two-dimensional space [31–33] or in three-dimensional space

[34–37]. The methods utilizing a space of a given dimension may differ from each other by

the way of assigning basis vectors to particular bases, by some details of the construction of

the graphs, or by the kind of descriptors representing the graphs. Each base is represented

by different basis vector in two or three-dimensional space. Starting from the origin of the

coordinate system a shift indicated by the basis vector representing the first base in the

sequence is performed. The end of this vector is the starting point for the next shift, as
indicated by the basis vector representing the second base in the sequence, and so on. As

a consequence, a two- or three-dimensional curve representing the sequence is obtained.

In the present work we apply the method called by us the 2D-Dynamic Representation

of DNA/RNA Sequences which is based on shifts in a two-dimensional space [38–42].

Within this approach, the sequence is represented by the 2D-dynamic graph which may

be interpreted as a set of material points in a two-dimensional space. After a unit shift the

point with the unit mass is localized. If the ends of the vectors during the shifts overlap

then the mass of this point increases accordingly. Descriptors proposed as a representation

of the 2D-dynamic graphs take into account different masses of the points of the graphs.

In this way, the so-called repetitive walks, i.e., shifts along the same trace can be taken

into account both graphically and numerically.
1A degeneracy (nonuniqueness) exists if several different sequences are represented by the same graph

or by the same descriptors.
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In the present work we consider the following descriptors of the 2D-dynamic graphs

[38, 41, 43]:

• Coordinates (µx, µy) of the centers of mass of the graphs.

µγ =
1

N

p∑
i=1

miγi, γ = x, y, N =

p∑
i=1

mi, (1)

where xi, yi are the coordinates of mass mi in the Cartesian coordinate system for

which (0, 0) is the origin of all the sequences and N is the length of the sequence

(equal to the total mass of the graph) and p is the number of the material points in

the graph.

• Principal moments of inertia (I11, I22) of the graphs.

The moment of inertia tensor is defined by the matrix

Î =

(
Ixx Ixy
Iyx Iyy

)
(2)

with elements

Ixy = Iyx = −
p∑

i=1

mix
µ
i y

µ
i , (3)

Ixx =

p∑
i=1

mi(y
µ
i )

2, (4)

Iyy =

p∑
i=1

mi(x
µ
i )

2, (5)

where xµ
i , yµi denote the coordinates of mass mi in the Cartesian coordinate system

with the origin at the center of mass of the graph. Principal moments of inertia are

equal to the solutions I = I11, I22 of equation∣∣∣∣ Ixx − I Ixy
Ixy Iyy − I

∣∣∣∣ = 0. (6)

• Other descriptors.

We also consider graph radius

gR =
√

µ2
x + µ2

y (7)

and four descriptors Dγ
k = Dx

1 , D
x
2 , D

y
1 , D

y
2 ,

Dγ
k =

µγ

Ikk
, k = 1, 2; γ = x, y, (8)

related to a relation between coordinates of the center o mass and moments of

inertia.
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Figure 1. Histogram of the collection years. Most strains in the dataset were col-
lected between 2000 and 2010.

In order to precisely evaluate these parameters using machine learning, it is recom-

mended to operate on relatively large, diverse yet proportionally distributed dataset. To

this end, 20 of the most prevalent subtypes of the influenza A virus were employed:

H1N1, H1N2, H2N2, H2N3, H3N2, H3N6, H3N8, H4N6, H5N1, H5N2, H6N1, H6N2,

H6N6, H7N2, H7N3, H7N7, H7N9, H9N2, H10N7, H11N9 [4]. For each subtype 25

strains (ω = 500 in total), with full coding RNA sequences, were prepared. Only 4th and

6th segment of the genome was considered. The segments code viral proteins, accordingly

hemagglutinin (HA) and neuraminidase (NA), which directly characterize the subtype of

the influenza A virus.

A collection of the data on the studied viruses are presented in Figure 1. The oldest

strain was collected in 19022. The newest ones are from 20173. The mean collection year

is 2000. The largest number of entries (50) correspond to 2005.
2A/chicken/Brescia/1902(H7N7).
3A/duck/NC/91347/01(H1N2) and A/Alaska/20/2017(H1N1).

-299-



LC032993

1

2

3

4

5

6

7

8

12 KT777810

1

2

3

4

5

6

7

8

9

10

12

CY079486

1

2

3

4

5

6

7

8

9 CY036873

1

2

3

4

5

6

7

10

11

-150

-100

-50

0

-150

-100

-50

0

-150

-100

-50

0

-150

-100

-50

0

-200 -100 0 -200 -100 0

-200 -100 0
x

x

-200 -100 0
x

x

y y

y y

Figure 2. 2D-dynamic graphs describing some selected sequences.
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Figure 3. Dataset organization.

Examples of the 2D-dynamic graphs describing several sequences are shown in Figure

2. After the graphs were constructed, the corresponding parameters (the descriptors of

the 2D-dynamic graphs) have been calculated. The general structure of the dataset is

pictured in Figure 3.

For every segment the appropriate 2D-dynamic graph was built. Each segment of the

influenza’s RNA genome has, in essence, been transformed into a set of 12 parameters:

µx, µy, gR, Ixx, Iyy, Ixy ≡ Iyx, I11, I22, D1
x, D1

y, D2
x, D2

y. We denote the set as D. Every
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influenza strain is therefore described by 26 parameters – half of them correspond to

hemagglutinin and the other half to neuraminidase.

In order to determine the predictive abilities of particular parameters, a supervised

machine learning algorithm has been applied. Using the C5.0 algorithm a decision tree,

based on the 80% of the randomly selected observations, has been built. The decision

tree has then been tested on the remaining 20% observations of the dataset.

We define accuracy as a following fraction:

ΘF
S =

s

a
, (9)

where s denotes the number of correctly classified subtypes, a is the number of all

classified subtypes (in this study a is always equal to 100), F corresponds to the collection

of the selected descriptors4 and S = {HA,NA,HN} represents the segment coding a

particular protein (hemagglutinin, neuraminidase, or both of them).

Because of the randomness of the dataset division, the accuracy of predictions is a

random variable as well. For every set of parameters the mean accuracy (defined below)

as well as its 95% confidence interval (95% ci) have been calculated. In all the calcu-

lations, 95% ci were calculated using the adjusted bootstrap percentile method with 10

000 replicates. In order to obtain such results, the process of splitting the data, creating

decision tree, testing the tree, and calculating the accuracy of the predicted outcome had

to be repeated n times (Figure 4).

The mean accuracy Θ̄F
S , which evaluates predictive capabilities of the descriptors, can

be, therefore, written as

Θ̄F
S =

1

n

n∑
i=1

ΘF
S,i, (10)

where ΘF
S,i is the accuracy of the tree constructed from F descriptors of the strain S in

the i-th iteration.
4One should remember that we have not tested every possible combination

of the descriptors, which would be 212 − 1 = 4095, but only some particular
sets: F = {µx, µy, gR, Ixx, Iyy, Ixy, I11, I22, D

1
x, D

1
y, D

2
x, D

2
y, I, Î, D

γ
k , all}, where all =

{µx, µy, gR, Ixx, Iyy, Ixy, I11, I22, D
1
x, D

1
y, D

2
x, D

2
y}.
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DATASET TRAINING SET TRAINING SET

TEST SET

1. A1 B1 C1 D1  -  H1N1

2. A2 B2 C2 D2  -  H5N1

3. A3 B3 C3 D3  -  H2N2

4. A4 B4 C4 D4  -  H6N1

5. A5 B5 C5 D5  -  H5N1

6. A6 B6 C6 D6  -  H7N9

7. A7 B7 C7 D7  -  H1N1

8. A8 B8 C8 D8  -  H3N8

9. A9 B9 C9 D9  -  H6N6

. . .

2. A2 B2 C2 D2  -  H5N1

3. A3 B3 C3 D3  -  H2N2

5. A5 B5 C5 D5  -  H5N1

6. A6 B6 C6 D6  -  H7N9

. . .

1. A1 B1 C1 D1  -  H1N1

4. A4 B4 C4 D4  -  H6N1

2. A2 B2 C2 D2  -  H5N1

3. A3 B3 C3 D3  -  H2N2

5. A5 B5 C5 D5  -  H5N1

6. A6 B6 C6 D6  -  H7N9

. . .

DECISION TREE

. . .

1. Split dataset into two

   subsets (80%/20%)

2. Choose particular

   descriptors, e.g. {A,C}

3. Create decision tree based

   on the chosen descriptors

4. Test the tree

A1 C1  -  ?

A4 C4  -  ?

A1 C1  -  H1N1

A4 C4  -  H5N1

               real       predicted 

A1  C1  -  H1N1  -  H1N1

A4  C4  -  H6N1  -  H5N1  

5. Evaluate the accuracy and calculate descriptors usage

Θ = 50%

6. Repeat 1-5 n times

Θ = 51.8%

7. Calculate mean accuracy and mean usage 

Θ = 52%

Θ = 50%

A=100%

C=65%

C=34%

A=51%

C=65%
A=43%

A = 97.2% C = 68.9%

Figure 4. A flowchart of the method.

In order to optimize the computation time and the accuracy of predictions, the number

of repetitions (n) and boosting trials have been adjusted. The results of the adjustment

are shown in Figure 5 and in Figure 6. As one can see, the mean accuracy is roughly
constant when the computation time increases due to the increasing number of repetitions

(Figure 5). Taking a big value of n is therefore unnecessary since it would not noticeably

improve the quality of the predictions, but would extend the computation time. On the

other hand, a very small n, seen as the statistical population size, may affect the bootstrap

method. It is assumed that for the considered application n = 30 is a reasonable estimate
of the optimal value.

The accuracy of the decision tree has been improved by an adjustment of the number

of boosting trials. The idea of the boosting trial itself is to create several classifiers instead
of only one. Later, in an iterative process, these classifiers converge to the final classifier.

On the other hand, the number of boosting trials distinctly affects the computation time.

From Figure 6 one may conclude that the improvement of the results is, in our case,
insignificant, yet computation time changes considerably. The number of boosting trials

equal to 10 seems to be a reasonable choice.

Since one of the goals of this study is to evaluate every descriptor alike, the winnowing
of the descriptors (which, for the sake of simplicity, dismisses some descriptors from the

decision tree) has not been considered. Other advanced parameters of C5.0, such us fuzzy
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Figure 5. The influence of the number of repetitions on the quality of the results.
Top panel: the accuracy versus the number of repetitions; bottom panel:
the computation time versus the number of repetitions. The vertical line
indicates the estimated optimum value of n.

threshold and global pruning, are of some secondary importance and have been set by

default (either tuned off or tuned on).

Another way of evaluating descriptors using the C5.0 algorithm is by calculating their
percentage usage in the process of classification. For example, the descriptor in the first

split (node) of the decision tree takes part in classifying all observations. Therefore its

usage is equal to 100%. Contrary, the terminal nodes, that cover only a minority of set

samples, have vastly smaller importance, that may be even close to 0%. The average

usage of every descriptor from n decision trees, based on the set of all parameters, has

also been calculated. In general, one may define the average usage as

Ψ̄F ,D
S,Ŝ =

1

n

n∑
i=1

ΨF ,D
S,Ŝ,i for ΨF ,D

S,Ŝ,i =
q

ω − a
, (11)

where ΨF ,D
S,Ŝ,i corresponds to the usage of the descriptor D and segment Ŝ = {HA,NA}

for the tree constructed from set F of segment S in the i-th iteration. Value q represents

number of observations that take part in classification by descriptor D and segment Ŝ in

the tree, and ω− a stands for the number of entries in the training set (in our case ω− a

is always equal to 400).
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Figure 6. Influence of the boosting trials. Top panel: the dependence of the ac-
curacy on the number of boosting trials; bottom panel: the dependence
of the computation time on the number of boosting trails. The vertical
line indicates the estimated optimum value of n.

Since within the scope of our interest is comparing descriptors on the same decision

tree, the set of all possible parameters can be significantly narrowed down. For our

purpose the equation (11) can be rewritten to

Ψ̄all,D
HN,Ŝ =

1

n

n∑
i=1

Ψall,D
HN,Ŝ,i,

which from now will be denoted as

Ψ̄D
Ŝ =

1

n

n∑
i=1

ΨD
Ŝ,i.

3 Results and discussion
From Figure 7 and Table 1 one may conclude that using the present method one may

obtain over 90% accuracy of the predictions (Θ̄all
HN = 91.89%). Therefore, the descriptors

of the 2D-dynamic graphs, especially their whole set, carry a lot of information about

the represented sequence. It is worth mentioning that some smaller sets of parameters

may give satisfactory results as well. For example, the accuracy is over 80% both for

Î and for Dγ
k (Θ̄Î

HN = 81.338%, Θ̄
Dγ

k
HN = 84.412%), and 76.036% for I. Most accurate
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decision trees with only one parameter from each protein are based on the D1
y, Ixx and µy

(Θ̄D1
y

HN = 63.654%, Θ̄Ixx
HN = 61.936% and Θ̄

µy

HN = 61.249%). As yet, it is not clear why for

some parameters the mean accuracy significantly differs among proteins. For example,

the accuracy for hemagglutinin’s descriptor D1
y is 41.1% and for neuraminidase’s only

18.7%.

The mean usage of descriptors is pictured in Figure 8 and Table 2. As one can see,

the most important descriptor is nauraminidaze’s Ixx. Its average usage Ψ̄Ixx
NA = 100%

means that for every decision tree this descriptor occurs in the very first node. Neu-

raminidaze’s D1
y and µy take part in almost every classification as well (Ψ̄D1

y

NA = 96.847%,

Ψ̄
µy

NA = 98.388%).

hemagglutinin (HA)

neuraminidase (NA)

both (HN)

100

80

60

40

20

0

Figure 7. Mean accuracy. Dashed line represents level of completely random pre-
dictions.

Table 1. The mean accuracy of the predicted subtypes

F Θ̄F
HA 95% ci Θ̄F

NA 95% ci Θ̄F
HN 95% ci

µx 24.113 23.014–25.166 27.580 25.698–29.521 59.571 57.925–61.959
µy 21.507 20.277–22.940 34.536 33.267–36.087 61.249 59.637–63.046
gR 27.093 25.733–28.621 25.928 24.303–27.570 48.713 46.829–50.556
Ixx 22.412 21.121–23.911 34.807 33.311–36.291 61.936 60.412–63.527
Iyy 20.738 19.676–21.908 25.434 23.716–26.954 51.112 49.537–52.933
Ixy 23.186 21.625–24.412 27.605 26.365–28.935 50.622 49.217–53.243
I11 26.736 25.826–27.822 32.698 31.002–34.232 55.255 53.954–56.932
I22 21.498 20.323–22.718 31.832 30.334–33.737 53.128 30.385–33.745
D1

x 17.648 15.908–19.003 26.305 24.973–27.848 50.338 48.249–51.908
D1

y 18.732 17.543–19.987 41.112 39.532–42.674 63.654 62.009–65.232
D2

x 17.865 16.712–18.741 28.658 27.011–30.546 53.034 51.436–55.328
D2

y 24.170 23.148–25.158 36.998 35.329–38.792 60.522 58.943–62.273
I 45.821 44.553–47.243 50.951 49.337–52.669 76.039 74.230–77.743
Î 51.235 49.642–52.903 60.843 58.932–62.505 81.338 80.038–82.480
Dγ

k 55.771 53.521–57.639 63.742 62.395–65.043 84.412 83.465–85.479
all 71.734 70.107–73.254 69.708 67.953–71.532 91.890 91.028–92.744
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Table 2. The mean usage of descriptors

HA NA
D Ψ̄D

HA 95% ci Ψ̄D
NA 95% ci

µx 70.938 67.799–74.707 62.706 57.764–67.665
µy 72.030 66.993–77.680 98.388 97.007–99.344
gR 34.800 29.798–40.333 67.303 62.921–71.009
Ixx 85.553 81.693–89.030 100.000 99.798–100.000
Iyy 73.042 69.785–76.393 31.282 25.266-40.038
Ixy 78.248 72.438–83.844 68.259 62.688–75.081
I11 26.778 21.590–33.939 50.781 45.659–58.121
I22 48.167 44.037–52.159 75.701 64.952–84.514
D1

x 63.637 59.196–67.706 25.713 22.072–29.785
D1

y 48.680 40.261–55.859 96.847 88.677–100.000
D2

x 37.842 33.513–42.062 63.158 58.061–68.156
D2

y 70.068 64.367–75.095 81.832 76.214–86.296

hemagglutinin (HA)

neuraminidase (NA)

100

80

60

40

20

0

Figure 8. The mean usage of descriptors.

4 Conclusions
Combining novel machine learning algorithms, such as C5.0, with the 2D-Dynamic Rep-

resentation of the DNA/RNA Sequences can set up simple yet accurate virus character-

ization tool. In the present study we have shown that such combination conserves its

promising properties even for viruses with diverse and complex lineages, i.e., influenza.

One can therefore use, or even extend, this approach by applying the 2D-Dynamic Rep-

resentation of the DNA/RNA Sequences, along with machine learning algorithms, to

characterize unknown virus strains.
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