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Abstract 

In the last ten years, the concept of activity cliff gained a lot of interest by medicinal chemists and QSAR 
modellers. The reason of this interest is its capacity to highlight problematic as well as interesting 
situations in analysing the activity/property of pairs of compounds, thus focusing the research on the 
reasons why two similar compounds show different activities. In the literature, activity cliffs as well as 
their dual aspect, i.e. structural cliffs, are calculated from activities represented by a continuous 
response.   
In this paper, the proposal is to estimate the activity cliffs of categorical responses, i.e. for compounds 
partitioned into different classes.  
 

1  Introduction 

The Activity Cliffs (AC) have been defined as the ratios of the difference in activity of two 

compounds to their dissimilarity in a given chemical space, i.e. pairs of structurally similar 

compounds having a significant difference in their activities [1]. Structure-Activity 

Relationships (SAR) information is directly related to activity cliffs, they being centres of 

discontinuity in activity landscapes of compound data sets and focal points in SAR analysis [2]. 
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The first quantitative expression to calculate activity cliffs was proposed by Guha and van Drie 

in 2008 [3], defined as: 
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where A are the activities of the compounds s and t and Sst their similarity. 

The definition of activity cliffs leaves two problems open: (a) the selection of a similarity 

measure and (b) the criterion defining a meaningful activity difference [4]. The distribution of 

activity cliffs often misses of invariance, being significantly dependent on the molecular 

representations and similarity measures used [1, 5, 6]. The similarity between two molecules 

can be quantified by comparing their binary fingerprints using a similarity metric such as the 

Tanimoto coefficient or other binary similarity measures [3, 7, 8]. In other cases, the similarity 

is calculated by using continuous molecular descriptors through distance measures such as 

Euclidean or Manhattan distances [8, 9]. Anyway, the availability of many different molecular 

representations adds further source of variance to the results [10].  

In several cases, for the activity cliffs exploration in medicinal chemistry, intuitive measures of 

inter-compound distance based on shared sub-structures were preferred as similarity criteria 

[11-14]. 

Furthermore, the considered activity measurement and the magnitude of activity difference 

influence the activity cliff identification [10]. As a heuristic criterion, assay-independent 

measurement and at least 100-fold difference in potency are generally preferred [4, 10]. 

Structural cliffs (SC) are the dual concept of activity cliffs. They highlight the pairs of 

compounds that are dissimilar molecular structures but show similar activity. The presence of 

such cases can be related to two different problems: (a) the need to modify the molecule 

description because inadequate or redundant, i.e. change the selected molecular descriptors, 

and/or (b) the underlying models need to account also for non-linearity [1]. The term “structural 

cliff” was suggested some years ago by our group to Jerry Maggiora (private communication) 

and used by him replacing the term “scaffold hopping”.  

The interest for the activity cliffs is highlighted by the number of papers dealing with this topic 

in the last 10 years. From the first concerns about the lack of neighborhood invariance in QSAR 

modelling [1], several studies were later performed by both medicinal chemists and QSAR 

modellers to quantitatively analyse the nature of Structure-Activity Relationships [2, 15] and, 

in particular, of ACs [3, 16-20]. 
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Studies were performed to provide graphical representations of the activity cliffs, such as 

Structural-Activity Maps, Network-like Similarity Graphs, and Activity Cliff Networks, which 

better point out the SAR topology and/or the activity cliffs features [21-24]. 

The activity landscape has been largely explored, also with the aid of geostatistical techniques 

[9,25,26], and its main attributes, such as cliff types, have been well characterized [15, 27].  

The discontinuities highlighted by the activity cliffs can provide useful information for 

medicinal chemists in drug discovery, but on the other side, they represent anomalies, which 

may affect computational methods [28]. 

In order to overcome the lack of invariance of the chemical space from the chosen molecular 

descriptors, consensus strategies, which consider different structural representations and 

similarity values, were applied [6, 29].  

Other studies are focused on multiple target activity, extending the ACs concept to pairs of 

structural analogues that are active against different numbers of targets, highlighting the 

existence of target promiscuity [21, 30, 31]. Another source of SAR information was provided 

considering also inactive compounds [28, 32].  

Furthermore, global attempts were made to find common patterns in ACs from which derive 

the concepts of “activity ridges” and “coordinated activity cliffs” [8, 12, 33, 34].  Recently, 

studies on activity cliffs have ranged from molecular modelling, such as docking and virtual 

ligand screening [29, 35], to machine learning models, like Support Vector Machine and Deep 

Neural Networks [8, 36, 37]. These machine learning approaches were employed to predict 

which molecules are most likely activity cliffs generators and to smooth the activity landscape 

by transforming input descriptors into higher dimensional spaces [8, 37].  Undoubtedly, ACs 

add useful information to the understanding of SARs especially when related to their dual 

complementary, i.e. structural cliffs, even though there is still evidence of under-utilization of 

ACs in practice of medicinal chemistry [10, 17,20]. 

Disregarding the different approaches to activity cliffs, all the studies have been focused on 

continuous activity values and only few of them considered explicitly structural cliffs in the 

ACs assessment [27]. 

In this paper, we simply tried to extend the concept of activity and structural cliffs from 

continuous responses (activities, properties) to categorical responses, where the compounds are 

partitioned into two or more classes. Thus, activity and structural cliffs are here related to 

classification models instead of regression models. Classification models are actually largely 

used in QSAR (perhaps more than regression models) and the evaluation of activity and 

structural cliffs should be very useful in checking the class partition of the compounds as well 
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as the model performances. It can be noted that the uncertainties of the experimental measures 

might be reduced by a clusterization of the compounds. 

 

2  Theory 

Given G classes, a comparison between two objects s and t allows only the two following cases: 

1 C C

0 C C
s t

st
s t

if

if

 ≠∆ =
 =

                                                                                                                       (2) 

where Cs and Ct indicate the class of the objects s and t, respectively, and 1st∆ =  indicates that 

the two compounds belong to different classes.  

Given a similarity measure Sst between the two objects s and t in the range [0, 1], the measures 

for activity and structural cliffs can be defined as the following: 

1 0 1 718stS
st st stAC e AC . = ∆ ⋅ − ≤ ≤ 

                                                                                 (3) 

( ) ( )11 1 0 1 718stS
st st stSC e SC .− = − ∆ ⋅ − ≤ ≤

 
                                                                                 (4) 

The two quantities can be also straightforwardly scaled between [0, 1] as: 

* *0 1
1.718

st
st st

AC
AC AC= ≤ ≤                                                                                                              (5) 

* *0 1
1.718

st
st st

SC
SC SC= ≤ ≤                                                                                                               (6)  

The unscaled definition will be used from now on. 

In the case where 0st∆ = , i.e. when the classes of the two objects coincide, the activity cliff 

between s and t is always zero, i.e. 

0 0st stAC∆ = ⇒ =  

In this case, the structural cliff only depends on the degree of similarity between the two objects. 

Considering the two extreme cases, if 1stS =  the structural cliff is equal to zero, i.e. 

( ) ( ) ( ) [ ]11 1 1 0 1 1 0stS
st stSC e − = − ∆ ⋅ − = − ⋅ − =

 
 

while if 0stS =  the structural cliff reaches its maximum value equal to 1.718, i.e. 
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( ) ( ) ( ) [ ]11 1 1 0 2 718 1 1 1 718 1 718stS
st stSC e . . .− = − ∆ ⋅ − = − ⋅ − = ⋅ =

 
 

In the case where 1st∆ = , i.e. when the classes of the two objects not coincide, the structural cliff 

between s and t is always zero, i.e. 

1 0st stSC∆ = ⇒ =  

In this case, the activity cliff only depends on the degree of similarity between the two objects. 

Considering the two extreme cases, if 0stS =  the activity cliff is equal to zero, i.e. 

[ ]1 1 1 1 0stS
st stAC e = ∆ ⋅ − = ⋅ − = 

 

while if 1stS =  the activity cliff reaches its maximum value equal to 1.718, i.e. 

[ ]1 1 2 718 1 1 718stS
st stAC e . . = ∆ ⋅ − = ⋅ − = 

 

In Table 1, values of activity and structural cliffs are reported for some similarity values for the 

two cases of s t∆ . 

Table 1. AC and SC unscaled values for different similarity values and the two cases of s t∆ . 

similarity 0st∆ =  1st∆ =  
 AC SC AC SC 
0 0 1.718 0.000 0 

0.1 0 1.460 0.105 0 
0.2 0 1.226 0.221 0 
0.3 0 1.014 0.350 0 
0.4 0 0.822 0.492 0 
0.5 0 0.649 0.649 0 
0.6 0 0.492 0.822 0 
0.7 0 0.350 1.014 0 
0.8 0 0.221 1.226 0 
0.9 0 0.105 1.460 0 
1 0 0.000 1.718 0 

 

 

2.1  Extension to ordered classes 

In several cases, the classes are obtained by the discretization of a continuous response. For 

example, given toxicity measures of a set of compounds, they can be distributed into G classes 

(G > 2) based on some arbitrarily selected G - 1 thresholds. This provides ordered classes, such 

as, for example, non-toxic (C1), toxic (C2), very toxic (C3).  
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In this case, a pair of compounds s and t belonging to adjacent classes are less different from 

two compounds one belonging to C1 and the other to C3. 

Thus, the numerical difference between the classes of the two objects s and t is meaningful and 

can be defined as: 

C Cst s tδ = −                                                                                                                                          (7) 

The quantity s t∆  is obtained by the following simple expression: 

1
st

st G

δ
∆ =

−
                                                                                                                                             (8) 

The activity and structural cliffs are then obtained by the same formulas (3) and (4), 

respectively. 

For example, according to formulas (7) and (8), for a 3-class case (G = 3), { }0,1,2stδ =  and 

{ }0,0.50,1t∆=  and for a 4-class case (G = 4), { }0,1,2,3stδ =  and { }0,0.33,0.67,1t∆ = . 

For the cases where 0st∆ =  or 1st∆ = , activity and structural cliffs assume the same values 

already reported in Table 1. The values of activity and structural cliffs for the cases 

{ }0.33,0.50,0.67st∆ =  are collected in Table 2, for different similarity values.  

Table 2. AC and SC unscaled values for different values of similarities and different values of s t∆ . 

Similarity 0.33st∆ =  0.50st∆ =  0.67st∆ =  
 AC SC AC SC AC SC 
0 0 1.146 0 0.859 0 0.572 

0.1 0.035 0.974 0.053 0.730 0.070 0.486 
0.2 0.074 0.817 0.111 0.613 0.148 0.408 
0.3 0.117 0.676 0.175 0.507 0.233 0.338 
0.4 0.164 0.548 0.246 0.411 0.328 0.274 
0.5 0.216 0.433 0.324 0.324 0.433 0.216 
0.6 0.274 0.328 0.411 0.246 0.548 0.164 
0.7 0.338 0.233 0.507 0.175 0.676 0.117 
0.8 0.408 0.148 0.613 0.111 0.817 0.074 
0.9 0.486 0.070 0.730 0.053 0.974 0.035 
1 0.572 0.000 0.859 0.000 1.146 0.000 

  

3  Simulated example 

A simulated data set of 15 objects (Table 3) was prepared as the following. The objects are 

described by 2 variables (x, y) and were generated in such a way that objects are partitioned 

into 3 clusters, each constituted by 5 objects; cluster 1 is constituted by objects {1 – 5}, cluster 
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2 by {6 – 10}, and cluster 3 by {11 – 15}. The ordered classes (column A) were assigned as the 

following: for each cluster, the last two objects are assigned to the other two classes; for 

example, the first 5 objects belonging to cluster 1 are assigned to the classes as {1 1 1 2 3}. The 

chosen class partition allows a quick detection of activity/structural cliffs of the pairs. 

 

Table 3. The simulated data set of 15 objects distributed into 3 classes (A) and 2 classes (B). 

id x y A B 
1 1 2 1 1 
2 3 1 1 1 
3 1.5 4 1 1 
4 2.5 3.5 2 1 
5 4 1 3 1 
6 11 13 2 1 
7 12 14 2 1 
8 13 12 2 1 
9 15 14 1 2 
10 14 12 3 2 
11 21 25 3 2 
12 24 22 3 2 
13 23 23 3 2 
14 22 23 1 2 
15 25 23 2 2 

 

The similarity matrix between all the pairs of objects was calculated as the following: (1) the 

two variables x and y are range scaled, (2) the average Euclidean distance matrix D is calculated, 

(3) the similarity matrix S is obtained as 1= −S D.  

The obtained maximum similarity between pairs of different objects is 0.979, while the 

minimum similarity is 0.336. The AC and SC values of the 105 pairs are shown in Figure 1. 

All the objects belonging to the same class are located on the horizontal axis in correspondence 

to an activity cliff equal to zero by definition (equations (2) and (3)) and to the corresponding 

values of structural cliffs (equation (4)). On the right side of the structural cliff axis (set A in 

Figure 1) are located the objects that, although belonging to the same class, show a low 

similarity. This happens for all the pairs of objects belonging to the same class but located in 

different clusters. For example, the pairs 5 – 11, 5 – 12, 5 – 13, 1 –  14, 2  – 14 and 3 – 14, 

which belong to opposite clusters, i.e. cluster 1 and cluster 3, with SC values around 0.85. An 

analogous behaviour of the structural cliffs is also observed, but in a lower measure, for the 
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pairs belonging to the same class but located in the adjacent clusters C1 – C2 and C2 – C3. For 

example, the pairs 1 – 9, 10 – 11, 10 – 13, and so on. 

 
Figure 1. The scatter plot of all the 105 pairs of the 15 objects of the data shown in Table 3, 

classified according to column A (unscaled results). Some pairs are manually shifted 
from the bulk of pairs and others are deleted. The meaning of the sets A – E are 
discussed in the text.  

All the pairs belonging to the same class and to the same cluster are located on the left side of 

the horizontal axis (set B in Figure 1), i.e. these pairs belong to the same class and are very 

similar (1 – 2; 6 – 7, 11 – 12, etc.). These pairs do not have neither structural cliffs nor activity 

cliffs. 

All the objects located on the vertical axis having structural cliffs equal to zero (by definition, 

by expressions (2) and (4)) are pairs of objects belonging to different extreme classes (in this 

example, belonging to class 1 and 3, C1 – C3). High values of activity cliffs (set C in Figure 1) 

highlight pairs having high similarity (they belong to the same cluster) although located in 

different extreme classes. These are the pairs 1 – 5, 2 – 5, 3 – 5, 11 – 14, 12 – 14, 13 – 14, with 

AC values around 1.6. A second set of activity cliffs, with AC values between [1.0 – 1.2] are 

the pairs still belonging to different extreme classes but located in adjacent clusters (1 – 10, 2 – 

10, 3 – 10, 1 – 11, 2 – 11, and so on). Low values of the activity cliffs (set D in Figure 1) are 

obtained for pairs belonging to different extreme classes but also located in very different 

clusters, namely clusters 1 and 3, such as, for example, 2 – 13. 
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Figure 2. Plots of the activity cliffs (on the top) and structural cliffs (on the bottom) from data 
of Table 1 for a 2-class case, i.e. using a class partition as defined by column B 
(unscaled results). 

 

Pairs of objects belonging to different but adjacent classes (C1 – C2 and C2 – C3) show values 

greater than zero both for AC and SC (set E in Figure 1). In particular, the pairs belonging to 

the subset E1 are those pairs belonging to adjacent clusters presenting quite high similarities, 

while the pairs belonging to the subset E2 are those presenting quite low similarities. 

If the class partition is performed using column B of Table 1, i.e. partitioning the data in two 

classes, the scatter plot of the pairs (Figure 2) is constituted only by pairs projected along the 

two axes (one for activity and one for structural cliffs). 

It can be easily noted that the pairs on the right side of the activity cliff plot are the pairs having 

high similarity, i.e. objects belonging to the same cluster but assigned to different classes (e.g. 

8 – 10); these pairs show quite high activity cliff values (1.6∼ ) . In the second plot, structural 

cliffs, on the right side are located all the pairs belonging to the same class but to different 

clusters (e.g. 2 – 7), thus having low similarity.  

 

4  Conclusions 

In this paper the classical approach to activity/structural cliffs based on a continuous property 

is modified to deal with categorical responses, restricted to ordered classes when the classes are 
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more than two. The kind of information that can be extracted by the activity/structural cliffs 

approach here proposed is closely similar to that of the classical approach based on continuous 

responses and then it can be extended to the literature applications. 

In multi-class cases, but when the classes are not ordered, the same approach could be applied 

comparing separately all the pairs of classes. 

Finally, the function (4) for the calculation of the structural cliffs can be also used to check the 

final results provided by any clustering method. Indeed, for all the pairs of objects belonging to 

the same cluster, the pairs showing high or relatively high values of structural cliffs are pairs 

having low similarity although located into the same cluster.  
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