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Abstract

In the last ten years, the concept of activityf géined a lot of interest by medicinal chemistd @SAR
modellers. The reason of this interest is its cipao highlight problematic as well as interesting
situations in analysing the activity/property ofrpaof compounds, thus focusing the research on the
reasons why two similar compounds show differetivaies. In the literature, activity cliffs as wels
their dual aspect, i.e. structural cliffs, are oldted from activities represented by a continuous
response.

In this paper, the proposal is to estimate theviigicliffs of categorical responses, i.e. for canpds
partitioned into different classes.

1 Introduction

The Activity Cliffs (AC) have been defined as the ratios of the difference in activitwf
compounds to their dissimilarity in a given chemical spacepags of structurally similar
compounds having a significant difference in their activities [ljucBire-Activity

Relationships (SAR) information is directly related to agtidtiffs, they being centres of
discontinuity in activity landscapes of compound data sets anddoicds$ in SAR analysis [2].
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The first quantitative expression to calculate activityfclifas proposed by Guha and van Drie
in 2008 [3], defined as:

cS _ ‘&_A‘
101§,

0<S§, <1 (1)

whereA are the activities of the compourglandt andS« their similarity.

The definition of activity cliffs leaves two problems open: (a) $ieéection of a similarity
measure and (b) the criterion defining a meaningful activity eiffee [4]. The distribution of
activity cliffs often misses of invariance, being significantlgpendent on the molecular
representations and similarity measures used [1, 5, 6]. The #iynilatween two molecules
can be quantified by comparing their binary fingerprints using dasityimetric such as the
Tanimoto coefficient or other binary similarity measures [3, 7lr8dther cases, the similarity
is calculated by using continuous molecular descriptors through distaraumes such as
Euclidean or Manhattan distances [8, 9]. Anyway, the availability of many differelecular
representations adds further source of variance to the results [10].

In several cases, for the activity cliffs exploration in meditthemistry, intuitive measures of
inter-compound distance based on shared sub-structures were prafesiedlarity criteria
[11-14].

Furthermore, the considered activity measurement and the magoftadévity difference
influence the activity cliff identification [10]. As a heuristariterion, assay-independent
measurement and at least 100-fold difference in potency are generallygut ¢dert0].
Structural cliffs 8C) are the dual concept of activity cliffs. They highlight the pafs
compounds that are dissimilar molecular structures but show seutiaity. The presence of
such cases can be related to two different problems: (a) #t toemodify the molecule
description because inadequate or redundant, i.e. change the selelgedlar descriptors,
and/or (b) the underlying models need to account also for non-linegrifiyhje term “structural
cliff” was suggested some years ago by our group to Jerry Maggioratépcivamunication)
and used by him replacing the term “scaffold hopping”.

The interest for the activity cliffs is highlighted by the numbepagers dealing with this topic
in the last 10 years. From the first concerns about the lack of nefigidabinvariance in QSAR
modelling [1], several studies were later performed by both medichehists and QSAR
modellers to quantitatively analyse the nature of StructureAficiRelationships [2, 15] and,
in particular, ofACs [3, 16-20].
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Studies were performed to provide graphical representations ofctivéyacliffs, such as
Structural-Activity Maps, Network-like Similarity Graphs, andt#ity Cliff Networks, which
better point out the SAR topology and/or the activity cliffs features [21-24].

The activity landscape has been largely explored, also withidta# geostatistical techniques
[9,25,26], and its main attributes, such as cliff types, have been well characfe&za7].

The discontinuities highlighted by the activity cliffs can provide usaifdrmation for
medicinal chemists in drug discovery, but on the other side, they repessemalies, which
may affect computational methods [28].

In order to overcome the lack of invariance of the chemical dpawwethe chosen molecular
descriptors, consensus strategies, which consider differentusducepresentations and
similarity values, were applied [6, 29].

Other studies are focused on multiple target activity, extending@seconcept to pairs of
structural analogues that are active against different numbetargsts, highlighting the
existence of target promiscuity [21, 30, 31]. Another source of SAR information was provided
considering also inactive compounds [28, 32].

Furthermore, global attempts were made to find common patteSsifirom which derive
the concepts of “activity ridges” and “coordinated activityfslif8, 12, 33, 34]. Recently,
studies on activity cliffs have ranged from molecular modelling, sisctiocking and virtual
ligand screening [29, 35], to machine learning models, like Support Vector Machineegmd De
Neural Networks [8, 36, 37]. These machine learning approaches wpleyethto predict
which molecules are most likely activity cliffs generators @nsimooth the activity landscape
by transforming input descriptors into higher dimensional spaces [8,.B¥]oubtedly ACs
add useful information to the understanding of SARs especially wheeddtaitheir dual
complementary, i.e. structural cliffs, even though there is stdlemce of under-utilization of
ACs in practice of medicinal chemistry [10, 17,20].

Disregarding the different approaches to activity cliffstleél studies have been focused on
continuous activity values and only few of them considered explicithetstral cliffs in the
ACs assessment [27].

In this paper, we simply tried to extend the concept of activity structural cliffs from
continuous responses (activities, properties) to categorical resparege the compounds are
partitioned into two or more classes. Thus, activity and structlifisl are here related to
classification models instead of regression models. Claggificenodels are actually largely
used in QSAR (perhaps more than regression models) and the evabfa#otivity and
structural cliffs should be very useful in checking the classtiparof the compounds as well
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as the model performances. It can be noted that the uncertairtfiesexperimental measures

might be reduced by a clusterization of the compounds.

2 Theory

GivenG classes, a comparison between two obatslt allows only the two following cases:

1 ifC=G
Ay= o @

0 ifC=¢G
where G and Gindicate the class of the objestandt, respectively, and , =1 indicates that
the two compounds belong to different classes.
Given a similarity measur@: between the two objectsandt in the range [0, 1], the measures
for activity and structural cliffs can be defined as the following:

ACy =4, e -1] 0< AC, <1718 (3)
C,=(1-8,)fe ¥ -1] oS, <171 4

The two quantities can be also straightforwardly scaled between [0, 1] as:

. AC .
AC, == 0<AC, <1 5
S 1.718 - ©)
. .
L = 0<C, <1 6
% 1.718 - ©)

The unscaled definition will be used from now on.

In the case wheee, =0, i.e. when the classes of the two objects coincide, the gotiifit

betweers andt is always zero, i.e.
A,=0 = AC, =0

In this case, the structural cliff only depends on the degree oésimithetween the two objects.

Considering the two extreme casessjf=1 the structural cliff is equal to zero, i.e.

S, =(1-8,) o)1)= (- 9 - 3= «

while if s, = 0 the structural cliff reaches its maximum value equal to 1.718, i.e.
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C, =(1-8,)fé" ¥ ~1]=(1- 92718 J= D1718 171

In the case whew, =1, i.e. when the classes of the two objects not coincide, tnsstal cliff

betweers andt is always zero, i.e.
Ay=1 = SC,=0

In this case, the activity cliff only depends on the degree ofagiityilbetween the two objects.

Considering the two extreme casessjf= 0 the activity cliff is equal to zero, i.e.
AC, =4, (fe* -1]=11-]= 0

while if s, =1 the activity cliff reaches its maximum value equal to 1.718, i.e.
AC, =4, (e* -1]=1(2718- }= 171t

In Table 1, values of activity and structural cliffs are regbfte some similarity values for the

two cases of , .

Table 1. AC andSC unscaled values for different similarity valuesidne two cases of , .

similarity Ag=0 Ag=1

AC s AC sC

0 0 1.71¢ 0.00¢ 0
0.1 0 1.46( 0.10¢ 0
0.2 0 1.22¢ 0.221 0
0.2 0 1.01¢ 0.35( 0
0.4 0 0.827 0.49: 0
0.t 0 0.64¢ 0.64¢ 0
0.€ 0 0.49: 0.822 0
0.7 0 0.35( 1.01¢ 0
0.8 0 0.221 1.22¢ 0
0.€ 0 0.10¢ 1.46( 0
1 0 0.00¢ 1.71¢ 0

2.1 Extension to ordered classes

In several cases, the classes are obtained by the discoetiadth continuous response. For
example, given toxicity measures of a set of compounds, they can be distiitioG classes
(G > 2) based on some arbitrarily seledidl thresholds. This provides ordered classes, such

as, for example, non-toxic (i toxic (&), very toxic (G).
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In this case, a pair of compounslandt belonging to adjacent classes are less different from
two compounds one belonging te &d the other toL
Thus, the numerical difference between the classes of the twassbgeit is meaningful and

can be defined as:

8 =|C,—C (7)

The quantitya _, is obtained by the following simple expression:
6$

Aa=g (8)

The activity and structural cliffs are then obtained by the s&mmulas (3) and (4),
respectively.

For example, according to formulas (7) and (8), for a 3-class(Gase3), O, :{0.1.? and
2 ={0,050,} and for a 4-class casé € 4), &, ={0,1,2, 3 and A ={0,0.33,0.67}1,

For the cases wherg, =0 or A =1, activity and structural cliffs assume the same values

already reported in Table 1. The values of activity and structlitié for the cases

A, ={0.33,0.50,0.7 are collected in Table 2, for different similarity values.

Table 2. AC andSC unscaled values for different values of similastand different values of _, .

Similarity Ay =0.33 A, =0.50 A, =0.67
AC S AC s AC s

0 0 1.14¢ 0 0.85¢ 0 0.572
0.1 0.03¢ 0.97¢ 0.05:¢ 0.73( 0.07( 0.48¢
0.2 0.07¢ 0.817 0.1117 0.61: 0.14¢ 0.40¢
0.2 0.11% 0.67¢ 0.17¢ 0.507 0.23¢ 0.33¢
0.4 0.16¢ 0.54¢ 0.24¢ 0.411 0.32¢ 0.27¢
0.t 0.21¢ 0.43: 0.32¢ 0.32¢ 0.43: 0.21¢
0.€ 0.27¢ 0.32¢ 0.4117 0.24¢ 0.54¢ 0.16¢
0.7 0.33¢ 0.23: 0.50: 0.17¢ 0.67¢ 0.11%
0.8 0.40¢ 0.14¢ 0.61: 0.111 0.81; 0.07¢
0.¢ 0.48¢ 0.07¢ 0.73C 0.05: 0.97¢ 0.03¢

1 0.572 0.00(¢ 0.85¢ 0.00¢ 1.14¢ 0.00¢

3 Simulated example

A simulated data set of 15 objects (Table 3) was prepared &slltveing. The objects are
described by 2 variables (x, y) and were generated in such a wabjbetls are partitioned
into 3 clusters, each constituted by 5 objects; cluster 1 &itidad by objects {1 — 5}, cluster
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2 by {6 — 10}, and cluster 3 by {11 — 15}. The ordered classes (coA)mrere assigned as the
following: for each cluster, the last two objects are assidgoeithe other two classes; for
example, the first 5 objects belonging to cluster 1 are assigneddiasses as {1 1 1 2 3}. The

chosen class partition allows a quick detection of activity/structuffsl of the pairs.

Table 3. The simulated data set of 15 objects distributéal 3 classes (A) and 2 classes (B).

id X y A B
1 1 2 1 1
2 3 1 1 1
3 1.t 4 1 1
4 25 3.E 2 1
5 4 1 3 1
6 11 13 2 1
7 12 14 2 1
8 13 12 2 1
9 15 14 1 2
1C 14 12 3 2
11 21 25 3 2
12 24 22 3 2
13 23 23 3 2
14 22 23 1 2
15 25 23 2 2

The similarity matrix between all the pairs of objects walsudated as the following: (1) the
two variablex andy are range scaled, (2) the average Euclidean distance Béroalculated,
(3) the similarity matrixS is obtained a$=1-D.

The obtained maximum similarity between pairs of different objést0.979, while the
minimum similarity is 0.336. ThAC andSC values of the 105 pairs are shown in Figure 1.
All the objects belonging to the same class are located dvotimontal axis in correspondence
to an activity cliff equal to zero by definition (equations (2) anjl 48d to the corresponding
values of structural cliffs (equation (4)). On the right side ofsthectural cliff axis (set A in
Figure 1) are located the objects that, although belonging to the dass show a low
similarity. This happens for all the pairs of objects belongintdpéosame class but located in
different clusters. For example, the pairs 5 -11,5-12,5-13, 12 444 and 3 - 14,
which belong to opposite clusters, i.e. cluster 1 and cluster 33@itkalues around 0.85. An

analogous behaviour of the structural cliffs is also observed, bulowea measure, for the
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pairs belonging to the same class but locateddrathiacent clustersiG G and G — Gs. For
example. the pairs 1 — 9. 10 — 11, 10 — 13. arwhso
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Figure 1. The scatter plot of all the 105 pairs of the 1feots of the data shown in Table 3,
classified according to columk (unscaled results). Some pairs are manually shifte
from the bulk of pairs and others are deleted. fkaning of the sets A — E are
discussed in the text.

All the pairs belonging to the same class and ¢écstime cluster are located on the left side of
the horizontal axis (set B in Figure 1), i.e. thpsés belong to the same class and are very
similar (1 -2; 6 — 7, 11 — 12, etc.). These padirsiot have neither structural cliffs nor activity
cliffs.

All the objects located on the vertical axis havatigictural cliffs equal to zero (by definition,
by expressions (2) and (4)) are pairs of objectsrigeng to different extreme classes (in this
example, belonging to class 1 and 3-Cs). High values of activity cliffs (set C in Figulg
highlight pairs having high similarity (they belotg the same cluster) although located in
different extreme classes. These are the pairs,2— 5, 3 -5, 11 — 14, 12 — 14, 13 — 14, with
AC values around 1.6. A second set of activity cliffsth AC values between [1.0 — 1.2] are
the pairs still belonging to different extreme skas but located in adjacent clusters (1 — 10, 2 —
10, 3-10, 1 - 11, 2 — 11, and so on). Low vabfeke activity cliffs (set D in Figure 1) are
obtained for pairs belonging to different extrent@sses but also located in very different
clusters, namely clusters 1 and 3, such as, fanpbka 2 — 13.
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Figure 2. Plots of the activity cliffs (on the top) anduwttural cliffs (on the bottom) from data
of Table 1 for a 2-class case, i.e. using a clastitipn as defined by colunid
(unscaled results).

Pairs of objects belonging to different but adjacent classes and G — Gs) show values
greater than zero both f&C andSC (set E in Figure 1). In particular, the pairs belonging to
the subset E1 are those pairs belonging to adjacent clusters ipgesgite high similarities,
while the pairs belonging to the subset E2 are those presenting quite lowitssila

If the class partition is performed using coluBiof Table 1, i.e. partitioning the data in two
classes, the scatter plot of the pairs (Figure 2) is comstitutly by pairs projected along the
two axes (one for activity and one for structural cliffs).

It can be easily noted that the pairs on the right side of thétactiff plot are the pairs having
high similarity, i.e. objects belonging to the same cluster but assigrifflerent classes (e.g.
8 — 10); these pairs show quite high activity cliff valuesL(6) . In the second plot, structural
cliffs, on the right side are located all the pairs belonging tes#me class but to different
clusters (e.g. 2 — 7), thus having low similarity.

4 Conclusions

In this paper the classical approach to activity/structurffis ddased on a continuous property
is modified to deal with categorical responses, restricted toemdtasses when the classes are
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more than two. The kind of information that can be extracted by thetgistitictural cliffs

approach here proposed is closely similar to that of the ddsgiproach based on continuous

responses and then it can be extended to the literature applications.

In multi-class cases, but when the classes are not orderednteeapproach could be applied

comparing separately all the pairs of classes.

Finally, the function (4) for the calculation of the structural cliffs caalbe used to check the

final results provided by any clustering method. Indeed, for all the gfaitgects belonging to

the same cluster, the pairs showing high or relatively high valudsuofwsal cliffs are pairs

having low similarity although located into the same cluster.
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