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Abstract
A (4,5,6)-fullerene graph is a plane cubic graph all of whose faces are only quadri-

laterals, pentagons and hexagons. For a (4,5,6)-fullerene graph F , an even face (or
cycle) is called resonant if its boundary (or itself) is an M -alternating cycle for some
perfect matching M of F . In this paper, we prove that every (4,5,6)-fullerene graph
with at least one pentagon is cyclically 4-edge connected, and thus bicritical. We
mainly show that each quadrilateral face of a (4,5,6)-fullerene graph is resonant and
all hexagonal faces are resonant except for three classes of (4,5,6)-fullerene graphs
which are characterized as nanotubes with three quadrilaterals and six pentagons.
Further, we show that all the resonant 6-cycles in (4,5,6)-fullerenes are just formed
from all hexagonal faces except for one hexagon in the mentioned-above three types
of nanotubes, and from all pairs of quadrilaterals with a common edge.

1 Introduction

Since the first fullerene, Buckministerfullerene C60, was discovered by Kroto et al. [16]

in 1985, fullerenes have aroused great interest and extensive attention among researchers

and lead to the formation of fullerene science. It is generally accepted that fullerenes or

classical fullerenes in chemical literature are plane (or spherical) cubic graphs in structures

whose faces are pentagons and hexagons [20], which are thus called (5,6)-fullerenes. By

Euler’s polyhedron formula, every fullerene with n atoms has exactly 12 pentagons and

(n/2− 10) hexagons.

However, several theoretical studies demonstrated that non-classical fullerenes with

four-membered rings cannot be dismissed in advance. Gao and Herndon [13] investigated
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non-classical fullerenes with quadrilaterals by the SCF-UHF calculations and molecular

mechanics and found that some non-classical fullerene isomers with fewer than 60 carbon

atoms may actually be stabilized by incorporation of two four-membered rings. Babić and
Trinajstić [3] systematically generated all fullerenes with four-membered rings on from 20

to 60 carbon atoms by modifying the well-known spiral code method. One can see that

the presence of four-membered rings greatly enriches the world of fullerenes. They used

the topological resonance energy (TRE) method [1,14] and the conjugated circuits model

(CC) [19] to select the most stable isomers, which contain at least one four-membered

ring except for Buckministerfullerene C60. The results are only qualitative as none of the

models accounts for strain. Further, Fowler et al. [10] and Zhao et al. [32] respectively

computed energies of all fullerene isomers with four-membered rings of C40 and C32 and

obtained similar conclusions.

In addition, boron-nitrogen fullerenes and nanotubes have emerged in experimental

evidence, see [4, 7, 9, 21]. The former has (4,6)-fullerene graph as molecular graph with

exactly six quadrilateral faces and other hexagonal faces.

The structural properties and isomer stabilities of (5,6)-fullerenes and (4,6)-fullerenes
were extensively investigated from both chemical and mathematical points of view. For

mathematical aspects of fullerenes, one can refer to a recent survey [2] and references

within it. In particular, (5,6)-fullerenes have the cyclical edge-connectivity 5 and (4,6)-fu-

llerenes have the cyclical edge-connectivity 4 or 3 [8, 18]. Both (5,6)-fullerenes and

(4,6)-fullerenes with the cyclical edge-connectivity 4 are 2-extendable graphs [28,30]. For

benzenoid systems and fullerenes, conjugated or resonant hexagons (alternate in single

and double bonds within a Kekulé structure) play an important role in Clar’s aromatic

sextet theory [6] and Randić’s conjugated circuit model [19]. It is known that all hexagons

and quadrilaterals in (4,6)- and (5,6)-fullerenes are resonant [25, 28]. For other works on

resonant faces of various plane graphs, see refs. [5, 12, 15, 23, 24, 26, 27, 29, 31, 33].

To our knowledge, a systematic study on non-classical fullerenes with four-, five-

and six-membered rings has not been found in mathematics. Precisely, we can de-

fine a (4,5,6)-fullerene (graph) to be a plane (or spherical) cubic graph whose faces

are only quadrilaterals, pentagons and hexagons, which obviously includes all (4,6)- and

(5,6)-fullerenes.

In this paper we start such a study on general (4,5,6)-fullerene graphs. In the next
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section we recall some concepts and results needed in our discussions. In Section 3,

we will prove that each (4,5,6)-fullerene graph is 3-connected. This confirms that the

(4,5,6)-fullerene graphs can be polyhedral graphs. Further, every (4,5,6)-fullerene graph

with at least one pentagon is cyclically 4-edge connected, and thus bicritical (the removal

of any pair of distinct vertices results in a subgraph with a perfect matching). The latter

shows a chemical consequence that every derivative of a (4,5,6)-fullerene graph with a

pentagon by substituting any two carbon atoms permits still a Kekulé structure. In

Section 4 we show that every quadrilateral face of a (4,5,6)-fullerene graph is resonant

and find actually some examples of (4,5,6)-fullerenes with a non-resonant hexagonal face.

Our main result is to determine all the three types of (4,5,6)-fullerenes with a non-resonant

hexagonal face h as zigzag nanotubes by adding the same cap consisting of one hexagon h

and the six pentagons along it on one end and three distinct caps with three quadrilaterals

on the other end. For details, see Theorem 4.3 and Fig. 3. Finally, we present structures

of all 6-cycles in (4,5,6)-fullerene graphs as the boundaries of four patches (see Lemma

5.1). Further, we show that all the resonant 6-cycles of (4,5,6)-fullerenes are just formed

from all hexagonal faces except for the hexagon h in the mentioned-above three types of

nanotubes, and from all pairs of quadrilaterals with a common edge.

2 Preliminaries

Throughout this paper, we only consider finite, simple and connected plane graph G =

(V (G), E(G), F (G)), where V (G) denotes the vertex set, E(G) the edge set and F (G) the

face set of G. We follow the definition and terminology in [17] unless otherwise stated.

For a (4,5,6)-fullerene G with n vertices, let pi denote the number of faces (including

exterior faces) with i-sides of G, i = 4, 5, 6. Fowler et al. [10] got the following equalities,

|F (G)| = n/2 + 2, (1)

2p4 + p5 = 12, (2)

p6 = (n− p5)/2− 4. (3)

What’s more, G has |F (G)| = p4 + p5 + p6 ≥ p4 + p5 = 6 + p5
2

≥ 6 faces. Thus,

n = 2(|F (G)| − 2) ≥ 8 by Eq. (1). As we know, a (4,6)-fullerene exists for all even

number n ≥ 8 except n = 10 [9], while a (5,6)-fullerene exists for every even number

n ≥ 20 except n = 22 [11]. For the other special case p6 = 0, a (4,5)-fullerene graph has
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n = 8 + p5 ≤ 20 vertices by Eq. (3). We can show that there are only six (4,5)-fullerene

graphs, see Fig. 1. Hence, a (4,5,6)-fullerene graph with n vertices exists for every even

number n ≥ 8, and the cube is the smallest (4,5,6)-fullerene graph.

10=n 16=n14=n12=n 20=n8=n

Figure 1. The six (4,5)-fullerene graphs.

The degree of any vertex v ∈ V (G), denoted by dG(v) (or d(v) for short), is the

number of all neighbors of v. If dG(v) = 1, then we call v a pendent vertex of G and the

edge incident with v a pendent edge. For a subset E0 ⊆ E(G), G − E0 is the subgraph

of G by deleting the edges of E0. H is called a subgraph of G, written by H ⊆ G, when

V (H) ⊆ V (G) and E(H) ⊆ E(G). For H ⊆ G, G−H is the subgraph of G obtained by

deleting the vertices of V (H) together with the edges incident with vertices in H.

An edge set M of a graph G is called a matching if any two edges of M have no an

endvertex in common. A perfect matching (or Kekulé structure in chemical literature) of

G is a matching such that every vertex is incident with one edge of it. A bipartite graph

G is said to be elementary if it is connected and each edge lies in a perfect matching of

G. A connected graph G with at least 2k + 2 vertices is said to be k-extendable if it has

a matching with size k and each such matching can be always contained in some perfect

matching of G. If G− x− y has a perfect matching for any two distinct vertices x and y

of G, then G is bicritical. An even cycle of G is called resonant if there exists a perfect

matching M such that it is an M-alternating cycle (i.e., the edges of the cycle alternate

in M and E(G) \M). For a plane graph G, a face is called resonant if its boundary is a

resonant cycle, and a cycle is a facial cycle if it is the boundary of a face.

Let S ⊆ V (G) and S = V (G) \ S. Denoted by [S, S] the set of edges of G with one

endvertex in S and the other one in S. If both S and S are nonempty, then we call [S, S]

a k-edge cut of G if |[S, S]| = k. The edge connectivity of a graph G, denoted by κ′(G),

is equal to the minimum cardinality of edge cuts. An edge cut of G is called trivial if all

edges of it are incident with a common vertex. A l-cycle means a cycle with length l.

An edge cut E1 of a connected graph G is called a cyclical edge cut if at least two
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components of G − E1 contain cycles. The cyclical edge-connectivity of G, denoted by

cλ(G), is the minimum number of any cyclical edge cut. Graph G is called cyclically

k-edge connected if cλ(G) ≥ k.

3
T

Figure 2. Illustration for a (4,6)-fullerene graph T3.

A (k,6)-cage (k ≥ 3 is an integer) is a 3-connected cubic planar graph whose faces

are only k-gons and hexagons. Let Tn denote the (4,6)-fullerene graph that consists

of n concentric layers of hexagons and capped on each end by a cap T 0 formed by three

quadrangles with one common vertex. For example, see T3 in Fig. 2. Let T = {Tn|n ≥ 1}.

Došlić gave the following result.

Theorem 2.1 ( [8]). Let G be a (k,6)-cage. Then G only exists for k = 3, 4 and 5.

Moreover, cλ(G) = 3 if G ∈ T , otherwise, cλ(G) = k.

3 Preliminary results

For a (4,6)-fullerene graph, it was proved that it has the connectivity 3 [28]. Hence

a (4,6)-fullerene graph is always a (4,6)-cage. By an analogous manner, we have the

following general result.

Lemma 3.1. Every (4,5,6)-fullerene graph F has the connectivity 3.

Proof. Since every cubic graph has an equal vertex and edge connectivity, it suffices to

prove that κ′(F ) = 3. Since every edge of F belongs to a quadrilateral, pentagon or

hexagon, there is no cut edge in F . That is, κ′(F ) ≥ 2. This implies that F has no

3-cycles since every 3-cycle of F must be a facial cycle, a contradiction.

Suppose κ′(F ) = 2. Then F has a 2-edge cut. So we choose one E0 = {e1, e2} such

that |V (F1)| is as small as possible, where F1 and F2 are the two components of F −E0.

Obviously, F1 does not contain any 2-edge cut of F . Let Ci be the boundary of the face
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of Fi but not a face of F and ||Ci|| the length of the walk along Ci, i = 1, 2. Let uj and vj

be the endvertices of ej lying on C1 and C2, respectively, for j = 1, 2. Then, F1 (resp. F2)

has exactly two vertices u1 and u2 (resp. v1 and v2) with degree 2 and the other vertices

with degree 3. So both F1 and F2 have a cycle. We have that u1 is not adjacent to u2;

otherwise, the two edges of F1 incident with u1 and u2 other than u1u2 will be a 2-edge

cut of F , a contradiction. If u1 and u2 have the same two neighbors in F1, then either

the two neighbors are adjacent and a triangle face happens or two edges incident with the

two neighbors form a 2-edge cut of F , which would be both impossible. So, ||C1|| ≥ 5.

On the other hand, the total size of two faces of F whose boundaries contain both e1 and

e2 can be expressed as ||C1|| + ||C2|| + 4 ≤ 12 as there is no face of F with more than 6

sides, which implies that ||C2|| ≤ 3 and a triangle happens, a contradiction.

Therefore, κ′(F ) ≥ 3, and the desired result κ′(F ) ≤ 3 holds since the three edges

incident with any vertex of F form an edge cut of F .

Lemma 3.2. Let F be a (4,5,6)-fullerene graph. Then F has no 3-cycles and every 4- or

5-cycle of F is a facial cycle.

Proof. From Lemma 3.1 and its proof we know that κ′(F ) = 3 and F has no 3-cycles

respectively. Let C be a l-cycle of F , where l = 4 or 5. We claim that C is a facial cycle.

Otherwise, both E1 and E2 are not empty, where E1 and E2 denote the sets of edges

pointing towards the interior and exterior of C, respectively. Further no edge of E1 and

E2 connects two vertices of C, otherwise a triangle happens, a contradiction. Hence both

E1 and E2 are edge cuts of F and |E1| + |E2| = l ≤ 5, which implies that one of E1 and

E2 contains at most two edges, contradicting κ′(F ) = 3.

Next, we will study that the cyclical edge-connectivity of (4,5,6)-fullerene graphs with

at least one quadrilateral and one pentagon (for the other cases, see Theorem 2.1), which

is critical for proving our main results.

Theorem 3.3. Let F be a (4,5,6)-fullerene graph with at least one quadrilateral and one

pentagon. Then cλ(F ) = 4.

Proof. By Lemma 3.1, F is 3-edge connected, and thus cλ(F ) ≥ 3. On the other hand,

cλ(F ) ≤ 4 as F contains faces with 4 sides and F has at least 6 faces. It suffices to show

that cλ(F ) 6= 3.
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Suppose, to the contrary, that F has a cyclical 3-edge cut E0. Let F1 and F2 be the

two components of F − E0. We may suppose that the outer face of F is just the outer

face of F2. Then F1 lies in an inner face f of F2. Let C1 the boundary of the outer face

of F1 and C2 the boundary of f . From the 3-connectivity of F we know that E0 is a

matching of F which is between C1 and C2, Ci (i = 1, 2) are cycles, and both F1 and F2

are 2-connected.
It is obvious that each Ci (i = 1, 2) has exactly three vertices incident with the edges

in E0. Let k1 and k2 be the number of additional vertices on C1 and C2, respectively.

Since F has no face with more than 6 sides, the three faces of F bounded by two edges

in E0 each has at most two additional vertices on C1 and C2. Hence k1 + k2 ≤ 6.

Claim 1. k1 = k2 = 3.

To get the claim it suffices to prove that k1 ≥ 3 and k2 ≥ 3. Suppose to the contrary

that k1 ≤ 2. Since F has no triangles by Lemma 3.2, k1 ≥ 1. If k1 = 1, then there is a

cut edge of F in the interior of C1, a contradiction. If there are two additional vertices

on C1, then there must be no edge connecting them, otherwise there would be a triangle,

a contradiction. Hence, there are two edges from the two additional vertices towards the

interior of C1, which form a 2-edge cut, contradicting the 3-connectedness of F . Similarly,

we have that k2 ≥ 3. So the claim is confirmed.
From Claim 1 and the restriction on faces of F we immediately obtain that the three

faces of F between C1 and C2 are hexagons. Let E ′
0 denote the set of edges from the 3

additional vertices on C1 pointing towards the interior of C1. Since F is 3-connected, E ′
0

is a 3-edge cut of F . If E ′
0 is a trivial 3-edge cut of F , then F1 is a cap formed by three

quadrilaterals with one common vertex, and the three additional vertices on C1 (also on

C2) are pairwise nonadjacent by Lemma 3.2.

Now we may choose the above E0 as a cyclical 3-edge cut of F such that |V (F1)|

is as small as possible in the sequel. From the above discussions we know that E ′
0 is a

3-edge cut of F . We assert that E ′
0 is a trivial 3-edge cut. Otherwise, let F ′

1 denote one

component of F − E ′
0 contained in the interior of C1. By the above choice we know that

F ′
1 is a tree. If |V (F ′

1)| ≥ 2, then there are at least four edges between F ′
1 and C1 since

there are at least two pendent vertices in F ′
1, a contradiction. So the assertion holds and

F1 is formed by three quadrilaterals with one common vertex.

We now consider F2. Let E1 be the set of edges of F2 incident with the three additional

-233-



vertices on C2 and towards the exterior of C2. If E1 is not a cyclical edge cut, then, similar

as the analysis of E ′
0, we can get that E1 is a trivial edge cut, i.e., there is only one vertex

in the exterior of C2. Thus, F2 is formed by three quadrilaterals with one common vertex.

Hence, F = T1 ∈ T . But if E1 is a cyclical 3-edge cut, then similar as the analysis of

C1 or C2, we can get that the boundary C3 of the face of F3 but not a face of F is a

cycle, where F3 is one component of F −E1 contained in the exterior of C2. By Claim 1,

we can get that the three faces of F between C2 and C3 are hexagons and there is also

another 3-edge cut E2 of F incident with the three additional vertices on C3 and towards

the exterior of C3. If E2 is not a cyclical edge cut, then, similar as the analysis of E ′
0, we

can get that E2 is also a trivial edge cut, i.e., there is only one vertex in the exterior of C3.

Thus, F3 is formed by three quadrilaterals with one common vertex. Hence, F = T2 ∈ T .

But if E2 is a cyclical 3-edge cut, then similar as the analysis of C1 or C2, we can also

get that the boundary C4 of the face of F4 but not a face of F is also a cycle, where

F4 is one component of F − E2 contained in the exterior of C3. Then, by Claim 1, we

can also get that the three faces of F between C3 and C4 are hexagons and there is also

another 3-edge cut E3 of F incident with the three additional vertices on C4 and towards

the exterior of C4. Thus, by the finiteness of F , we can do this operation repeatedly until

the mth step such that Em is a 3-edge cut but not a cyclical edge cut of F . Then, similar

as the analysis of E ′
0, we can get that there is exactly one vertex in the exterior of the

cycle Cm+1, i.e., F = Tm ∈ T . In conclusion, if cλ(F ) = 3, then F ∈ T , a contradiction

to the hypothesis.

Combining Theorems 2.1 and 3.3, we can easily get the following result.

Corollary 3.4. A (4,5,6)-fullerene graph is cyclically 4-edge connected if and only if it

does not belong to T .

Corollary 3.5. Every 3-edge cut of a (4,5,6)-fullerene graph but not in T is trivial.

Proof. Let F be such a (4,5,6)-fullerene graph and E0 be any 3-edge cut of F . By Lemma

3.1, F is 3-connected. Assume that G1 and G2 are the two components of F −E0. Since

F is 3-regular, |V (Gi)| is odd, where i = 1, 2. Suppose, to the contrary, that |V (Gi)| ≥ 3

for i = 1, 2. Then, |E(Gi)| = 3|V (Gi)|−3
2

= |V (Gi)| + |V (Gi)|−3
2

≥ |V (Gi)|, i.e., there is a

cycle in Gi, i = 1, 2. Hence, cλ(F ) = 3, a contradiction by Corollary 3.4.

Lemma 3.6 ( [28]). Every (4,6)-fullerene graph is 1-extendable.

-234-



Lemma 3.7 ( [17]). For some integer k ≥ 3, if G is k-regular, cyclically (k + 1)-edge-

connected and has an even number of points, then G is bicritical or elementary bipartite.

Corollary 3.8. Every (4,5,6)-fullerene graph is 1-extendable. Further, every (4,5,6)-fu-

llerene graph with at least one pentagon is bicritical.

Proof. It is immediate from Corollary 3.4 and Lemmas 3.6 and 3.7.

4 Main results

Let F i
n be the (4,5,6)-fullerene graph consisting of caps P0 and Pi (1 ≤ i ≤ 3), and n

concentric layers of hexagons between them; see Fig. 3. We mention that the cap P0 is

formed by a hexagon, say h, and six pentagonal faces around it. Let Fi = {F i
n|n ≥ 0},

1 ≤ i ≤ 3. Clearly, each F ∈ Fi has exactly six pentagonal and three quadrilateral faces

which lie in caps P0 and Pi, 1 ≤ i ≤ 3.

h

0
P

3
P

2
P

1
P

1

n
F

3

n
F

2

n
F

h h

h

Figure 3. Illustration for graphs F 1
n , F

2
n and F 3

n .

To get our main result, we first state Tutte’s Theorem [17] as follows.

Theorem 4.1. A graph G has a perfect matching if and only if c0(G− S) ≤ |S| for any

set S ⊆ V (G), where c0(G− S) is the number of odd components of G− S.

Lemma 4.2 ( [28]). Every face of F ∈ T is resonant.

Theorem 4.3. Let F be a (4,5,6)-fullerene graph. Then
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(i) each quadrilateral face in F is resonant, and

(ii) each hexagonal face in F is resonant if and only if F /∈ F1 ∪ F2 ∪ F3.

Proof. By Lemma 4.2, we only need to consider the case F /∈ T , that is, F is cyclically

4-edge connected by Corollary 3.4.

By Lemma 3.1, we have that F is 3-connected. Let C = u1u2 · · ·ulu1 be the facial

cycle of an even face f in F and F0 = F − V (C). Then, |V (F0)| is even. Suppose

that f is not resonant. By Theorem 4.1, there exists a set X0 ⊆ V (F0) such that α =

c0(F0 − X0) ≥ |X0| + 1. Since α and |X0| have the same parity, α ≥ |X0| + 2. Let

G1, . . . , Gα+β be the components of F0 −X0, where Gi (1 ≤ i ≤ α) are odd components

and Gj (α+1 ≤ j ≤ α+β) are even components. Let mi be the number of edges between

Gi and X0, γi be the number of edges between Gi and C and γ0 be the number of edges

between X0 and C, 1 ≤ i ≤ α+β. Then
∑α+β

i=0 γi = l and mi+γi ≥ 3 as F is 3-connected,

1 ≤ i ≤ α + β.

Therefore,

3(α + β) ≤
α+β∑
i=1

(mi + γi) =
( α+β∑

i=1

mi + γ0
)
+

α+β∑
i=0

γi − 2γ0

≤ 3|X0|+
α+β∑
i=0

γi − 2γ0 (4)

≤ 3(α− 2) + l − 2γ0 = 3α + l − 6− 2γ0.

(i) If f is a quadrilateral, then we have l = 4. Hence, by Ineq. (4), we have

3(α + β) ≤ 3α− 2− 2γ0,

i.e., 3β ≤ −2− 2γ0, a contradiction. Hence, every quadrilateral face of F is resonant.

(ii) Suppose that f is a hexagon. Then l = 6. Thus, by Ineq. (4), we have

3(α + β) ≤ 3α− 2γ0,

which implies that β = 0, γ0 = 0 and all equalities in Ineq. (4) always hold. The first

equality in Ineq. (4) holds if and only if mi + γi = 3, 1 ≤ i ≤ α. Then, by Corollary

3.5, we have |VGi
| = 1, 1 ≤ i ≤ α. Without loss of generality, let Y0 denote the set of all

singletons Gi, 1 ≤ i ≤ α. The second equality in Ineq. (4) holds if and only if there is

no any edge in the subgraph F0[X0], which implies that X0 is an independent set of F0.

Hence, F0 = (X0, Y0) is bipartite. And the third equality in Ineq. (4) holds if and only
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if α = |X0| + 2. For the sake of clarity, we color the vertices of X0 and Y0 by white and

black, respectively.

By Corollary 3.5 and the 3-connectedness of F , we can easily get that F0 is connected.

By Lemma 3.2 and Corollary 3.5, the set of edges between C and F0 is a matching of

F , i.e., no two edges of this set share an endvertex. So, F0 has exactly six vertices with

degree 2 and the remaining vertices with degree 3. Since γ0 = 0, we have that all vertices

of F0 with degree 2 belong to Y0. Without loss of generality, we can assume that vi is the

vertex of F0 with degree 2 and adjacent to ui in F , 1 ≤ i ≤ 6.

Since the distance between vi and vi+1 in F0 is even, the face along the path viuiui+1vi+1

is a pentagonal face as every face of F is at most 6 sides, i.e., there is exactly one vertex

xi ∈ X0 adjacent to vi and vi+1, where the subscripts are taken mod 6, i = 1, 2, . . . , 6.

By Lemma 3.2, any two vertices xj and xk with j 6= k are different and there is no

edge connecting them as F0 is bipartite, 1 ≤ j, k ≤ 6. Let V ′ = {x1, . . . , x6} and

V ′′ = {v1, . . . , v6}. Then, H = F [V (C) ∪ V ′ ∪ V ′′] is a cap formed by a hexagon f and

six pentagons around f . What’s more, the outer face of H is of size 12 with six 2-degree

vertices and six 3-degree vertices alternating on its facial cycle, see Fig. 4.

Let H̄ = F − H. Then there is no isolated vertex in H̄. Otherwise, assume v is

an isolated vertex of H̄. Then, by the 3-connectedness of F , the neighbors of v in H

must be three successive vertices of V ′, say x1, x2 and x3. Thus, the face along the

path x6v1x1vx3v4x4 is at least 8 sides as the distance between x6 and x4 in H̄ is even, a

contradiction. If there is no pendent vertex in H̄, then, similarly as the above analysis

5
v

1
v

5
x

1
x

2
v

2
x

3
v

4
x

3
x

4
v

f

1
u

4
u

6
v

6
x

6
u

3
u

2
u

5
u

Figure 4. Illustration for induced subgraph H in Theorem 4.3.

of H at the beginning of (ii), we can get that the layer, say L1, along H consists of six

hexagons.

Let H1 = F [V (H) ∪ V (L1)]. Then, the outer face of H1 is also of size 12 with six
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2-degree vertices and six 3-degree vertices alternating on its facial cycle. Let H̄1 = F−H1.

Then, similar to H̄, there is also no isolated vertex in H̄1. If there is also no pendent vertex

in H̄1, then, similar as the analysis of H, we can also get that the layer L2 along H1 consists

of six hexagons. Let H2 = F [V (H)∩V (L1)∩V (L2)]. Then, the outer face of H2 is also of

size 12 with six 2-degree vertices and six 3-degree vertices alternating on its facial cycle.

Thus, we can do this operation repeatedly until the (m+1)th step such that the subgraph

H̄m = F−Hm has pendent vertices, where Hm = F [V (H)∪V (L1)∪· · ·∪V (Lm)]. We may

suppose that Cm = v′1x
′
1 · · · v′6x′

6v
′
1 is the facial cycle of the outer face of Hm and x′

i ∈ X0

and v′i ∈ Y0 are those vertices with degree 2 and 3 in Hm, respectively, 1 ≤ i ≤ 6. Similar

as the analysis of H̄, we can also get that H̄m has no isolated vertex and at most three

pendent vertices. Note that if v is a pendent vertex of H̄m, then by the 3-connectedness

and planarity of F , v must be adjacent to two successive vertices of {x′
1, . . . , x

′
6}. Next,

we proceed by considering the following possible cases.

Case 1. There are exactly three pendent vertices in H̄m. Then the three pendent

edges of H̄m form a 3-edge cut of F . By Corollary 3.5, we have H̄m
∼= K1,3. Thus, we can

get the other cap P1 of F , i.e., F = F 1
m ∈ F1.
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Figure 5. Illustration for the proof of Case 2 of Theorem 4.3.

Case 2. There are only two pendent vertices in H̄m, say y′1 and y′2. Without loss of

generality, we can suppose that y′1 is adjacent to x′
1 and x′

6. We claim that y′2 is adjacent

to x′
3 and x′

4.

Suppose, to the contrary, that y′2 is adjacent to x′
2 and x′

3. Assume that y′3 and y′4 are

the vertices of H̄m that are adjacent to x′
4 and x′

5, respectively, as depicted in Fig. 5(a).
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Since the face along the path y′2x
′
3v

′
4x

′
4y

′
3 is at most 6 sides and the distance between y′2

and y′3 in H̄m is even, there is a path y′2x
′
7y

′
3, where x′

7 ∈ X0. Moreover, y′1 is also adjacent

to x′
7 by considering the face along y′1x

′
1v

′
2x

′
2y

′
2x

′
7. But, in this case, the size of the face

along the path y′4x
′
5v

′
6x

′
6y

′
1x

′
7y

′
3 is at least 8, a contradiction. Similarly, y′2 is not adjacent

to x′
4 and x′

5. Thus, our claim is verified.

Hence, y′2 is adjacent to x′
3 and x′

4. In this case, we may assume that y′3 and y′4 in H̄m

are adjacent to x′
2 and x′

5, while x′
7 and x′

8 are adjacent to y′1 and y′2 in H̄m, respectively,

as depicted in Fig. 5(b). Obviously, x′
7 6= x′

8 by Lemma 3.1. Since the face along the path

x′
7y

′
1x

′
1v

′
2x

′
2y

′
3 is at most 6 sides and the distance between x′

7 and y′3 in H̄m is odd, x′
7 is

adjacent to y′3. Similarly, y′3 is also adjacent to x′
8 and y′4 is adjacent to both x′

7 and x′
8.

Thus, we get the other cap P2 of F , i.e., F = F 2
m ∈ F2.

Case 3. There is exactly one pendent vertex in H̄m, say y′1. Without loss of generality,

suppose that y′1 is adjacent to x′
1 and x′

6, see Fig. 6.
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Figure 6. Illustration for the proof of Case 3 in Theorem 4.3.

Suppose that y′i ∈ V (H̄m) is a neighbor of x′
i, 2 ≤ i ≤ 5. Since the face along the

path y′1x
′
1v

′
2x

′
2y

′
2 is at most 6 sides and the distance between y′1 and y′2 in H̄m is even,

there is a path y′1x
′
7y

′
2, where x′

7 ∈ X0. By the same reasoning, x′
7 is also adjacent to

y′5. Furthermore, y′i and y′i+1 also have a common neighbor, say x′
6+i, 2 ≤ i ≤ 4. By the

3-connectedness of F , any two vertices of {x′
8, x

′
9, x

′
10} are different and there is also no

edge connecting any two of them as H̄m ⊆ F0 is bipartite. Then, the three edges incident

with x′
8, x

′
9 and x′

10 form a trivial edge cut of F by Corollary 3.5. Thus, we get the other

cap P3, that is, F = F 3
m ∈ F3.

In conclusion, if a hexagonal face f of F is not resonant, then F ∈ F1 ∪ F2 ∪ F3.
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Conversely, suppose F ∈ F1 ∪ F2 ∪ F3. We will show that the hexagonal face h of

F , as depicted in Fig. 3, is not resonant, that is, F − h has no perfect matchings. Let

(X0, Y0) be the bipartition of bipartite graph F − h. Since F − h has exactly six 2-degree

vertices which belong to the same class, say X0, while the remaining vertices with degree

3, we have that |E(F − h)| = 3(|X0| − 6) + 12 = 3|Y0|. That is, |X0| = |Y0| + 2, which

implies that F − h has no perfect matchings by Theorem 4.1.

Therefore, statement (ii) of the theorem holds.

From the above proof, we can see that each graph in F1 ∪ F2 ∪ F3 has a unique

non-resonant hexagonal face h in the cap P0.

Since there are exactly six pentagons and three quadrilaterals in any (4,5,6)-fullerene

graph F ∈ F1 ∪ F2 ∪ F3, we get the following result immediately by Theorem 4.3.

Corollary 4.4. [25] Every hexagonal face of (5,6)-fullerene graphs is resonant.

5 Concluding remarks

From Lemma 3.2, we have that every 4-cycle is a facial cycle of a (4,5,6)-fullerene graph,

but not all 6-cycles are facial cycles. Now we give the possible structures of all 6-cycles in

a (4,5,6)-fullerene graph. In fact, all cases of 6-cycles of (4,6)-fullerene graphs have been

characterized [22]. However, all 6-cycles of (5,6)-fullerenes are boundaries of faces [25].

We call the three structures in Fig. 7 dual-square, square-cap and a square-cap with 2

hexagon-layers, respectively. In fact, we have a square-cap with k (k ≥ 1) hexagon-layers.

(a) dual-square (b) square-cap (c) a square-cap
with 2 hexagon-
layers

Figure 7. Illustration for three types of 6-cycle in (4,5,6)-fullerene graphs.

Lemma 5.1. Let F be a (4,5,6)-fullerene graph with a 6-cycle C. Then C is the boundary

of either a hexagonal face, or a dual-square, or a square-cap, or a square-cap with hexagon-

layers. Further, the later two cases appear only in a tube F ∈ T or the cube.
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Proof. Suppose that C is not a hexagonal facial cycle. If C has a chord (i.e., an edge e

whose endvertices both lie on C, but e dos not in C), then, by Lemmas 3.1 and 3.2, C

is the boundary of a dual-square. Otherwise, let E1 and E2 be the sets of edges pointing

towards the interior and exterior of C from C, respectively. By Lemma 3.1, both E1 and

E2 are 3-edge cuts of F .

If F is cyclically 4-edge connected, then both E1 and E2 are trivial 3-edge cuts by

Corollary 3.5. Thus, C is the boundary of a square-cap and F is a cube. Otherwise,

cλ(F ) = 3, at least one of E1 and E2 is a cyclical edge cut, and F ∈ T by Theorem

2.1 and Corollary 3.4. Further, by the proof of Theorem 3.3 we can see that C is the

boundary of a square-cap or a square-cap with hexagon-layers.

By Theorem 4.3, we know that not all hexagonal faces of (4,5,6)-fullerene graphs are

resonant. Next, we will give all resonant 6-cycles of (4,5,6)-fullerene graphs.

Theorem 5.2. Let F be a (4,5,6)-fullerene graph. Then a 6-cycle of F is resonant if and

only if it is either a facial cycle except for h in F ∈ F1 ∪ F2 ∪ F3, or the boundary of a

dual-square.

Proof. Let C be a 6-cycle. By Lemma 5.1, C is the boundary of either a hexagonal face,

or a dual-square, or a square-cap, or a square-cap with hexagon-layers.

For the case of dual-square, we can show that C is resonant in an almost the same

method as the proof (i) of Theorem 4.3. Here there are also four edges leaving from C.

For the boundary C of a hexagonal face, C is always resonant precisely except for h

in F ∈ F1 ∪ F2 ∪ F3 by Theorem 4.3.

For the other cases, we may suppose that C is the boundary of a square-cap with n

hexagon-layers, where n ≥ 0. Obviously, F − V (C) has an odd component with (6n+ 1)

vertices. This implies that F −V (C) has no perfect matchings, that is, C is not resonant.

Combining Lemma 5.1 with Theorem 5.2, we can get the following result.

Corollary 5.3. Let F be a (4,5,6)-fullerene graph. Then F contains a non-resonant

6-cycle if and only if F is a cube or F ∈ F1 ∪ F2 ∪ F3 ∪ T .
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