
Functions on Adjacent Vertex Degrees of
Graphs with Prescribed Degree Sequence∗

Guang–Jun Zhang1,†, Ya–Hong Chen2

1 School of Mathematics and Physics, Qingdao University of Science and Technology,

Qingdao, 266061, P.R. China

2 Department of Mathematics , Lishui University,

Lishui, 323000, P.R. China

(Received September 17, 2017)

Abstract

Zhang et al. [MATCH Commun. Math. Comput. Chem. 78 (2017) 307-322]
presented an escalating (de-escalating) function f(x, y) defined on N×N, which is a
bivariable function such that f(y, a)+ f(x, b) ≤ f(x, a)+ f(y, b) (f(y, a)+ f(x, b) ≥
f(x, a) + f(y, b)) for any x ≥ y and a ≥ b. The connectivity function Rf associated
with f is defined as Rf (G) =

∑
uv∈E(G)

f(d(u), d(v)). In this paper, we investigate the

properties of the extremal graphs which maximize (minimize) such functions in the
set of all simple connected graphs with a given degree sequence. These results are
used to characterize the unicyclic graphs which maximize (minimize) such functions
among all the unicyclic graphs with a given degree sequence.

1 Introduction

In this paper, we only consider simple connected graphs. Let G = (V (G), E(G)) be

a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G). Let N(v) and d(v)

denote the neighbor set and the degree of vertex v, respectively. A nonincreasing sequence

of nonnegative integers π = (d1, d2, · · · , dn) is called graphic degree sequence if there exists

a simple connected graph having π as its vertex degree sequence. Let Gπ and Uπ denote

the general graphs and unicyclic graphs with same degree sequence π, respectively.
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Graph invariants known as topological indices are useful tools for modeling physical

and chemical properties of molecules, for design of pharmacologically active compounds,

for recognizing environmentally hazardous materials, and so on (see [3], [5] and [6]). In

particular, chemical indices play an important role in the research of chemical graph

theory (see [1]). Among them, many indices defined on adjacent vertex degrees have

been studied extensively. An interesting question in the study of such invariants is to

characterize the extremal structures under certain constraints that maximize or minimize

a chemical index.

For example, the Randić index [2] is probably one of the most well known chemical

index, defined as

R(G) =
∑

uv∈E(G)

(d(u)d(v))−
1
2 .

Wang [12] characterized the extremal trees with given degree sequence for the Randić

index.

The concept of the Randić index can be naturally generalized to

Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α

for α 6= 0, which is called the connectivity index (see [2]). The extremal trees for general

trees [7], trees with restricted degrees [10] have been characterized in the past years.

The sum-connectivity index W (G) [15] and the general sum-connectivity index Wα(G)

[16] were also introduced as

W (G) =
∑

uv∈E(G)

(d(u) + d(v))−
1
2

and

Wα(G) =
∑

uv∈E(G)

(d(u) + d(v))α ,

respectively. Many interesting mathematical properties and extremal results on these two

indices can be found in [15,16] and the studies that follow. The third Zagreb index ( [11]),

defined as ∑
uv∈E(G)

(d(u) + d(v))2 ,

is a special case of the general sum-connectivity index with α = 2.

Recently, the Atom-Bond connectivity index ( [4]), defined as∑
uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
,
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has received much attention. Xing and Zhou [14] characterize the extremal trees with

fixed degree sequence for atom-bond connectivity index. Lin et al. [8] characterize the

extremal graphs with minimal atom-bond connectivity index among all connected graphs

with given degree sequence.

In fact, these different but similar invariants can be described by means of a function

associated with the degrees of adjacent vertices in a graph. Thus, the extremal structures

of graph under certain constraints can be characterized through a unified approach.

Let f(x, y) be a bivariable function defined on N × N. f(x, y) is called an escalating

function, if f(y, a)+ f(x, b) ≤ f(x, a)+ f(y, b) for any x ≥ y and a ≥ b, with the equality

if and only if x = y and a = b. Similarly, if f(y, a) + f(x, b) ≥ f(x, a) + f(y, b) for any

x ≥ y and a ≥ b, with the equality if and only if x = y and a = b, f(x, y) is called a

de-escalating function (see [13] or [17]).

Definition 1.1 ( [13] or [17])The connectivity function Rf associated with f is defined

as

Rf (G) =
∑

uv∈E(G)

f(d(u), d(v)),

where f(x, y) is a bivariable function defined on N× N.

It is easy to see that Rf (G) describes various chemical indices including the indices

mentioned above with different f .

Definition 1.2 ( [13]) With given vertex degrees, the greedy tree is achieved through the

following greedy algorithm:

(1) Label the vertex with the largest degree as v (the root);

(2) Label the neighbors of v as v1, v2, ..., assign the largest degrees available to them such

that d(v11) ≥ d(v12) ≥ . . .;

(3) Label the neighbors of v1 (except v) as v11,v12,...,such that they take all the largest

degrees available and that d(v11) ≥ d(v12) ≥ . . ., then do the same for v2, v3, ...;

(4) Repeat (3) for all the newly labeled vertices. Always start with the neighbors of the

labeled vertex with largest degree whose neighbors are not labeled yet.

In [13,17], the following is shown.
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Theorem 1.3 ( [13]or [17]) For any escalating function f , Rf is maximized by the greedy

tree among trees with given degree sequence.

Theorem 1.4 ( [13]or [17]) For any de-escalating function f , Rf is minimized by the

greedy tree among trees with given degree sequence.

Recently, Zhang et al. in [17] compare the extremal trees of different degree sequences.

A nonincreasing sequence of nonnegative integers π is called a unicyclic degree sequence

if there exists a unicyclic graph having π as its vertex degree sequence. Motivated by

the above results, we will characterize the extremal unicyclic graphs which maximize or

minimize Rf in Uπ.

Theorem 1.5 Given a unicyclic degree sequence π, Rf is maximized by U∗
π (defined in

Section 3) for any escalating function f and minimized by U∗
π for any de-escalating func-

tion f in Uπ.

The rest of this paper is organized as follows: In section 2, the properties of the

extremal graphs which maximize Rf associated with an escalating function f in Gπ are

studied. In section 3, the extremal graphs which maximize Rf associated with an escalat-

ing function f in Uπ are characterized. In section 4, the extremal graphs which minimize

Rf associated with a de-escalating function f in Uπ are characterized. In section 5, some

examples of the application of our findings to specific graph invariants are presented.

2 The extremal graphs in Gπ for escalating function

Let G − uv denote the graph obtained from G by deleting an edge uv in G and G + uv

denote the graph obtained from G by adding an edge uv. The following lemmas will be

used in our proof.

Lemma 2.1 Assume that f is an escalating function. Let G ∈ Gπ with uv, xy ∈ E(G)

and uy, vx /∈ E(G). Let G′ = G−uv−xy+uy+xv. If d(u) ≥ d(x) and d(y) ≥ d(v), then

Rf (G) ≤ Rf (G
′). Moreover, Rf (G) < Rf (G

′) if and only if both inequalities are strict.

Proof. From definition 1.1,

Rf (G)−Rf (G
′) =

∑
st∈E(G)

f(d(s), d(t))−
∑

st∈E(G′)

f(d(s), d(t))

= f(d(u), d(v)) + f(d(x), d(y))− f(d(u), d(y))− f(d(x), d(v))

≤ 0.
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So Rf (G) ≤ Rf (G
′). Moreover, Rf (G) < Rf (G

′) if and only if both inequalities are strict.

Theorem 2.2 For any escalating function f , there exists an extremal graph G which

maximizes Rf in Gπ such that the vertices of G can be relabeled as {v1, v2, · · · , vn} such

that the following hold:

(1) h(v1) ≤ h(v2) ≤ · · · ≤ h(vn), where h(v) is the distance between vertex v and root

v1;

(2) d(v1) ≥ d(v2) ≥ · · · ≥ d(vn);

(3) Suppose vivj, vsvt ∈ E(G) and vivt, vsvj /∈ E(G) with h(vj) = h(vt) = h(vi) + 1 =

h(vs) + 1. If i < s, then j < t.

Proof. Let H be an extremal graph which maximizes Rf in Gπ. Then the vertices of H

can be relabeled as V (H) = {v1, v2, · · · , vn} such that h(v1) ≤ h(v2) ≤ · · · ≤ h(vn) and

p < q if d(vp) > d(vq) and h(vp) = h(vq), where d(v1) is the maximum degree of H. In the

following, we will construct an extremal graph G ∈ Gπ which maximizes Rf in Gπ from

H such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).

If the condition (2) does not hold for H, there exists the smallest integer i in {1, 2, · · · ,

n} such that there is another integer j such that i < j and d(vi) < d(vj). Choose j such

that d(vj) ≥ d(vs) for all s ≥ j + 1. It is easy to see that d(v1) ≥ d(v2) ≥ · · · ≥ d(vi−1) ≥

d(vk) for all i ≤ k ≤ n. Since d(v1) is the maximum degree of H, we have i ≥ 2 and

h(vj) ≥ h(vi) ≥ 1. Assume h(vi) = h(vj). Since p < q if d(vp) > d(vq) and h(vp) = h(vq),

we have j < i, a contradiction. So we have h(vi) < h(vj).

Let uivi ∈ E(H) such that h(vi) = h(ui) + 1. Clearly, ui ∈ {v1, v2, · · · , vi−1} and

h(vj) > h(vi) ≥ 1. Note that i < j and d(vi) < d(vj). There is a vertex uj ∈ N(vj) such

that ui 6= uj and uivj, ujvi /∈ E(H). Clearly, d(ui) ≥ d(uj) if uj ∈ {vi+1, vi+2, · · · , vn}.

If uj ∈ {v1, v2, · · · , vi−1}, we also have d(ui) ≥ d(uj), since h(ui) < h(vi) ≤ h(uj). Let

G1 = H − uivi − ujvj + uivj + ujvi. Then we have G1 ∈ Gπ such that Rf (H) ≤ Rf (G1)

by Lemma 2.1. Let wi = vj, wj = vi and wk = vk for k 6= i, j. Then G1 is an extremal

graph which maximizes Rf in Gπ such that the vertices of G1 can be relabeled as V (G1) =

{w1, w2, · · · , wn} such that h(w1) ≤ h(w2) ≤ · · · ≤ h(wn), d(w1) ≥ d(w2) ≥ · · · ≥ d(wi) ≥

d(wk) for all k ≥ i + 1, and p < q if d(wp) > d(wq) and h(wp) = h(wq). If the condition

(2) does not hold for G1, we can repeat the above process, and finally get an extremal

graph G which maximizes Rf in Gπ such that (1) and (2) hold.
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Further, if there are four vertices satisfying vivj, vsvt ∈ E(G) and vivt, vsvj /∈ E(G)

with h(vj) = h(vt) = h(vi) + 1 = h(vs) + 1 and i < s, then j < t. Otherwise, without loss

of generality, assume that d(vt) > d(vj). Let G2 = G − vivj − vsvt + vivt + vsvj. Since

d(vi) ≥ d(vj) and d(vt) > d(vs), we have G2 ∈ Gπ with Rf (G) ≤ Rf (G2) by Lemma 2.1.

Repeat the above process, we can construct the new extremal graph which maximizes Rf

from G such that the above three conditions (1), (2) and (3) hold. The proof is completed.

3 The extremal graphs in Uπ for escalating function

Let π = (d1, d2, · · · , dn) be a unicyclic graphic degree sequence such that dn = 2. Clearly,

the cycle is the only graph having degree sequence π. So in the following we always

suppose dn = 1.

Lemma 3.1 For any escalating function f , there exists an extremal graph G which max-

imizes Rf in Uπ such that v1v2, v1v3, v2v3 ∈ E(G), where v1, v2 and v3 are three vertices

such that d(v1) ≥ d(v2) ≥ d(v3) ≥ d(x) for all x ∈ V (G) \ {v1, v2, v3}.

Proof. By Theorem 2.2, there is an extremal graph G which maximizes Rf in Uπ such

that the vertices of G can be relabeled as {v1, v2, · · · , vn} such that the following hold:

(1) h(v1) ≤ h(v2) ≤ · · · ≤ h(vn), where h(v) is the distance between vertex v and root

v1;

(2) d(v1) ≥ d(v2) ≥ · · · ≥ d(vn);

(3) Suppose vivj, vsvt ∈ E(G) and vivt, vsvj /∈ E(G) with h(vj) = h(vt) = h(vi) + 1 =

h(vs) + 1. If i < s, then j < t.

Let h(G) = max
v∈V (G)

h(v) and Wi = {v ∈ V (G)|h(v) = i} with |Wi| = ni for 0 ≤ i ≤

h(G). It is easy to see that W0 = {v1} and n1 = d(v1). In the following, we relabel the

vertices of G. Let v1 = v01. The vertices in W1 are relabeled as v11, v12, · · · , v1,n1 such that

d(v11) ≥ d(v12) ≥ · · · ≥ d(v1,n1), where v11 = v1 and v12 = v2. Assume that the vertices

in Wt have been already relabeled as vt1, vt2, · · · , vt,nt . Then the vertices in Wt+1 can be

relabeled as vt+1,1, vt+1,2, · · · , vt+1,nt+1 such that they satisfy the following conditions: if

vtkvt+1,i, vtkvt+1,j ∈ E(G) with i < j, then d(vt+1,i) ≥ d(vt+1,j); if vtkvt+1,i, vtlvt+1,j ∈ E(G)

with k < l, then i < j. Let CG be the only cycle of G. We consider two cases:

Case 1: d2 = 2. Then d(v01) = d1 ≥ 3. Clearly, v01 ∈ V (CG).
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If there are two vertices v1i, v1j with v1iv1j ∈ E(G) with 1 ≤ i < j ≤ n1, then

d(v1i) = d(v1j) = 2. The assertion holds.

If v1iv1j /∈ E(G) for any 1 ≤ i < j ≤ n1, there are three vertices v1s, v1t ∈ V (CG)

and v1r /∈ V (CG). It is easy to see that d(v1s) = d(v1t) = d(v1r) = 2. Then there are two

vertices v2k ∈ V (CG) and v2m /∈ V (CG) such that v1sv2k ∈ E(CG) and v1rv2m ∈ E(G).

Let G1 = G− v1sv2k − v1rv2m + v1sv1r + v2kv2m. Then G1 ∈ Uπ with Rf (G) ≤ Rf (G1) by

Lemma 2.1. The assertion holds.

Case 2: d2 ≥ 3. If v11v12 ∈ E(G), the assertion holds. In the following, we assume

v11v12 /∈ E(G).

Claim1: There is an extremal graph H which maximizes Rf in Uπ with the only cycle

CH such that v01 ∈ V (CH) and v01v11, v01v12 ∈ E(H).

Assume the Claim 1 does not hold for all extremal graphs which maximize Rf in

Uπ. Note that there is a path P = ux1x2 · · · xtv01v1ty1y2 · · · ym such that v01 is on the

path P , where u ∈ V (CG),x1 /∈ V (CG) and d(ym) = 1. Choose xy ∈ E(CG) with

x 6= u ,y 6= u and min{h(x), h(y)} ≥ 2. It is easy to see that d(v1t) ≥ max{d(x), d(y)}.

If d(x) ≤ d(ym−1), let H = G − xy − ym−1ym + xym + yym−1. Then H ∈ Uπ with

Rf (G) ≤ Rf (H) by Lemma 2.1 and v01 ∈ V (CH), a contradiction. If d(y) ≤ d(ym−1),

let H = G − xy − ym−1ym + yym + xym−1. Then H ∈ Uπ with Rf (G) ≤ Rf (H) by

Lemma 2.1 and v01 ∈ V (CH), a contradiction. So we have min{d(x), d(y)} > d(ym−1).

Similarly, we have min{d(x), d(y)} > d(ym−2). Repeating the above process, we have

min{d(x), d(y)} > d(v1t), a contradiction. So the Claim 1 holds.

Claim 2: There is an extremal graph H which maximizes Rf in Uπ with the only

cycle CH such that v01v11 ∈ E(CH) and v01v12 ∈ E(H).

Assume the Claim 2 does not hold for any extremal graph H which maximizes Rf

such that v01 ∈ V (CH) and v01v11, v01v12 ∈ E(H) in Uπ. If v11 /∈ V (CH), there is a path

P = v01v11w1w2 · · ·ws with w1 /∈ V (CH) and d(ws) = 1. Choose xy ∈ E(CH) with x 6= v01

and y 6= v01. Clearly, d(v11) ≥ max{d(x), d(y)}. The Claim 2 holds by the similar proof

with Claim 1.

Claim 3: There is an extremal graph H which maximizes Rf in Uπ with the only

cycle CH such that v01v11, v01v12 ∈ E(CH).

There exists an extremal graph G with v01v11 ∈ E(CG) and v01v12 ∈ E(G) by Claim 2.

If v01v12 /∈ E(CG), then v12 /∈ V (CG) such that there is a vertex y 6= v01 with v12y ∈ E(G).

There is also a vertices x 6= v01 such that v11x ∈ E(CG). Clearly, d(v12) ≥ d(x) and
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d(v11) ≥ d(y). Let H = G−v11x−v12y+v11v12+xy. Then H ∈ Uπ such that v12 ∈ V (CH)

and Rf (G) ≤ Rf (H) by Lemma 2.1.

Claim 4: There is an extremal graph H which maximizes Rf in Uπ with the only

cycle CH such that V (CH) = {v01, v11, v12}.

There is an extremal graph G which maximizes Rf in Uπ with the only cycle CG such

that v01v11, v01v12 ∈ E(CG) by Claim 3. Note that d(v11) ≥ 3. There are two vertices

x /∈ V (CG) and y ∈ V (CG) such that x 6= v01, v11x ∈ E(G) and v12y ∈ E(CG). Let

H = G − v11x − v12y + v11v12 + xy. Then H ∈ Uπ with Rf (G) ≤ Rf (H) by Lemma 2.1.

The proof is completed.

Let π = (d1, d2, · · · , dn) be a unicyclic graphic degree sequence such that d1 ≥ d2 ≥

· · · ≥ dn. We now construct a unicyclic graph as follows. Select a vertex v01 as a root and

begin with v01 of the zero-th layer. Let s1 = d1 and select s1 vertices v11, v12, · · · , v1s1 of the

first layer such that they are adjacent to v01, and v11 is adjacent to v12. In general, assume

that all vertices of the t-st layer have been constructed and are denoted by vt1, vt2, · · · , vt,st .

We construct all the vertices of the (t + 1)-st layer by the induction hypothesis. Let

st+1 = ds1+···+st−1+2+· · ·+ds1+···+st+2−st and select st+1 vertices vt+1,1, vt+1,2, · · · , vt+1,st+1

of the(t + 1)st layer such that vt1 is adjacent to vt+1,1, · · · , vt+1,ds1+···+st−1+1−1, · · · , vt,st
is adjacent to vt+1,st+1−ds1+···+st+2, · · · , vt+1,st+1 . Then we get a unicyclic graph U∗

π, with

degree sequence π (see Fig.1 for an example).u
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Figure 1 U∗
π with π = (4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1)

Theorem 3.2 For any escalating function f , Rf is maximized by U∗
π in Uπ.

Proof. By Lemma 3.1, there exists an extremal graph H which maximizes Rf in Uπ

such that v1v2, v1v3, v2v3 ∈ E(H), where v1, v2 and v3 are three vertices such that d(v1) ≥

d(v2) ≥ d(v3) ≥ d(x) for all x ∈ V (G) \ {v1, v2, v3}. By similar proof with Theorem 2.2,

there exists an extremal graph G which maximizes Rf in Uπ such that the vertices of G

can be relabeled as {v1, v2, · · · , vn} such that the following hold:
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(1) h(v1) ≤ h(v2) ≤ · · · ≤ h(vn), where h(v) is the distance between vertex v and root

v1;

(2) d(v1) ≥ d(v2) ≥ · · · ≥ d(vn);

(3) Suppose vivj, vsvt ∈ E(G) and vivt, vsvj /∈ E(G) with h(vj) = h(vt) = h(vi) + 1 =

h(vs) + 1. If i < s, then j < t.

(4) v1v2, v1v3,v2v3 ∈ E(G).

Clearly, G must be U∗
π . The proof is completed.

4 The extremal graphs in Uπ for de-escalating

function

We can get the corresponding results for de-escalating function by similar techniques as

above.

Theorem 4.1 For any de-escalating function f , there is an extremal graph G which

minimizes Rf in Gπ such that the vertices of G can be relabeled as {v1, v2, · · · , vn} such

that the following hold:

(1) h(v1) ≤ h(v2) ≤ · · · ≤ h(vn), where h(v) is the distance between vertex v and root

v1;

(2) d(v1) ≥ d(v2) ≥ · · · ≥ d(vn);

(3) Suppose vivj, vsvt ∈ E(G) and vivt, vsvj /∈ E(G) with h(vj) = h(vt) = h(vi) + 1 =

h(vs) + 1. If i < s, then j < t.

Theorem 4.2 For any de-escalating function f , Rf is minimized by U∗
π in Uπ.

Clearly, Theorem 1.5 follows from Theorem 3.2 and 4.2.

5 Applications

In this section we present the application of our results to specific graph invari- ants.

Lemma 5.1 ( [17]) The bivariable function f(x, y) = (x + y)α, defined on N × N, is

escalating for α ≥ 1 and de-escalating for 0 < α < 1.

Lemma 5.2 ( [17]) The bivariable function f(x, y) = xαyα, defined on N × N, is an

escalating (de-escalating) function for α > 0 (α < 0).
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Lemma 5.3 ( [17]) The bivariable function f(x, y) =
√

x+y−2
xy

, defined on N × N, is a

de-escalating function.

By Theorem 3.2 and 4.2, we get the following results.

Corollary 5.4 Given a unicyclic degree sequence π, U∗
π has the maximum general sum-

connectivity index for α ≥ 1 and connectivity index for α > 0 in Uπ, respectively.

Corollary 5.5 Given a unicyclic degree sequence π, U∗
π has the minimum Randić index,

general sum-connectivity index for 0 < α < 1, connectivity index for α < 0, and the

Atom- Bond connectivity in Uπ, respectively.
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