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Abstract

Balaban index is defined as J(G) = m
m−n+2

∑
1√

w(u)·w(v)
, where the sum is taken over

all edges of a connected graph G, n and m are the cardinalities of the vertex and the
edge set of G, respectively, and w(u) (resp. w(v)) denotes the sum of distances from u
(resp. v) to all the other vertices of G. In the paper we summarize known results, clarify
some ambiguities in the literature, and expose problems and conjectures on this molecular
descriptor with attractive properties. In parallel, we discuss a related sum-Balaban index.

1 Introduction

A molecular graph is a connected undirected graph corresponding to structural formula of

a chemical compound, so that vertices of the graph correspond to atoms of the molecule

and edges of the graph correspond to the bonds between these atoms. Molecular graphs

have fundamental applications in chemoinformatics, quantitative structure-property rela-

tionships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening

of chemical libraries, and computational drug design. QSPR, QSAR and virtual screening
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are based on the structure-property principle, which states that the physicochemical and

biological properties of chemical compounds can be predicted from their chemical struc-

ture. One of the simplest methods that have been devised for correlating structures with

biological activities or physical-chemical properties involve molecular descriptors called

topological indices.

Since physical properties or bioactivities are expressed in numbers whereas chemical

structures are discrete graphs, in order to associate graphs with numbers one has to rely on

graph-theoretical invariants such as local vertex invariants, e.g. vertex degree, distance

sum, etc. Hundreds of topological indices have been introduced so far. With respect

to the invariant which plays a crucial role in the definition, we can divide topological

indices into three types: degree-based indices, distance-based indices and spectrum-based

indices. Degree-based indices include (general) Randić index, Zagreb index, connective

eccentricity index, etc. Distance-based indices include Wiener index, Wiener polarity

index, Szeged index, Kirchhoff index, ABC index, Harary index and so on. Eigenvalues

of graphs, various graph energies, Estrada index etc. belong to spectrum-based indices.

There are also topological indices whose definition is based on both degrees and distances

such as degree distance, Gutman index, graph entropies. For more details about molecular

descriptors see [50], and for further recent topics and open problems in chemical graph

theory an interested reader is referred to [3, 34,36].

Balaban index, the main subject of this paper, is a distance-based topological index. It

was introduced by Alexandru T. Balaban over 30 years ago [7,8]. To present its definition

we need the following (standard) notation: for a graph G, by V (G) and E(G) we denote

the vertex and edge sets of a graph G, respectively. We set n = |V (G)| and m = |E(G)|.

For vertices, u, v ∈ V (G), we use dG(u, v) to denote the distance from u to v in G, and

for x ∈ V (G), the transmission of x (also known as the status or simply the distance of a

vertex) is defined as w(x) =
∑

y∈V (G) dG(x, y).

Balaban index J(G) of a graph G is defined as

J(G) =
m

m− n+ 2

∑
uv∈E(G)

1√
w(u) · w(v)

,

where the sum is taken over all edges uv of G. The denominator m − n + 2 in the

definition is used in order to have better comparability between acyclic and cyclic graphs

with the same number of vertices. Recall that the cyclomatic number µ of G, which is

the minimum number of edges that must be removed from G in order to transform it to
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an acyclic graph, is defined by µ = m − n + 1. Thus Balaban index (often also referred

to as J index) is sometimes given as

J(G) =
m

µ+ 1

∑
uv∈E(G)

1√
w(u) · w(v)

.

Balaban index was originally named the “average distance-sum connectivity index”.

Namely, it is based on a Randić type formula, today called the Randić index [45], and

known also as the connectivity index R(G), defined by

R(G) =
∑

uv∈E(G)

1√
deg(u) · deg(v)

,

where deg(u) denotes the degree of u in G. Note that in the definition of Balaban index,

vertex degrees are replaced by transmissions.

Another related topological index, the so called sum-Balaban index SJ(G), was intro-

duced in 2010 by Balaban et al. [12] and independently also by Deng [16]. As indicated

by the name itself, in computing sum-Balaban index we sum up the transmissions instead

of multiplying them, i.e., for a connected graph G:

SJ(G) =
m

m− n+ 2

∑
uv∈E(G)

1√
w(u) + w(v)

.

The Wiener index of a graph G, denoted by W (G), is the sum of distances between

all (unordered) pairs of vertices of G

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

In [9], Balaban index is compared with Wiener index regarding the alkanes, and it was

observed that Balaban index reduces the degeneracy of the later index and provides

much higher discriminating ability. Therefore Balaban index is also called a “sharpened

Wiener index”. Note that both descriptors assume that the graphs under consideration

are connected.

While the descriptive properties of Balaban index were widely discussed, its mathe-

matical properties are less studied, which could be due to the fact that Balaban index

is more difficult to handle theoretically than numerically. This also might be the reason

why quite some mathematically wrong arguments appeared in the literature on this topic.

The aim of this paper is to collect the existing knowledge, expose correct results and show

directions in which this useful molecular descriptor with attractive properties, as well as

its derived measure, sum-Balaban index, could be explored in more detail.

-687-



2 Balaban index of trees

From mathematical aspect, one direction to studying properties of each topological index

is to determine the extremal values of the index among a given class of graphs. Sun [49],

and also Dong and Guo [20] independently considered trees with given number of vertices.

Their results hold, however Deng [15] corrected mistakes in their proofs. In the following

theorem Pn and Sn denote a path and a star, respectively, on n vertices.

Theorem 1 If T is a tree on n ≥ 2 vertices, then

(n− 1)
n−1∑
i=1

1
√
wiwi+1

= J(Pn) ≤ J(T ) ≤ J(Sn) =

√
(n− 1)3

2n− 3
,

where wi =
(n−i+1)(n−i)

2
+ (i−1)i

2
. Moreover, the lower bound is attained if and only if T is

Pn, and the upper bound if and only if T is Sn.

The proof of Deng is based on so called path-sliding and edge-lifting transformations,

which enabled him to characterize also trees of given order with the second maximal

(minimal, respectively) Balaban index [15]. Both transformations increase Balaban index

and were introduced already in [19].

Theorem 2 Let G1 and G2 be two graphs with n1 and n2 vertices, respectively, n1, n2 ≥ 2.

If G is the graph obtained from G1 and G2 by adding an edge between a vertex u∗ of G1

and a vertex v∗ of G2, G
′ is the graph obtained by identifying u∗ of G1 to v∗ of G2 and

adding a pendant edge to u∗(v∗), then G′ is called the edge-lifting transformation of G

and we have J(G) < J(G′).

Theorem 3 Let G0 be a graph with n0 ≥ 2 vertices, and P = v1v2 . . . vr a path of length

r − 1 ≥ 2. If G (resp. G′) is the graph obtained by identifying a vertex v∗ of G0 to vk−1

(resp. vk) in P , 2 ≤ k ≤
⌊
r−1
2

⌋
, then G′ is called the path-sliding transformation of G

and we have J(G) < J(G′).

...

2n− 2

Figure 1. A double star Dn−2,2.
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A double star Da,b is a tree consisting of a + b vertices, two of which have degrees a

and b, while the remaining ones have degree 1 (by symmetry, we may assume that a ≥ b).

Deng proved that J(Dn−x,x), as a (continuous) function of x, is convex. To explain how

this result can be generalized (which was done in [38]), we need the notion of a discrete

convex function. This concept can be introduced in several different ways (an interested

reader should consult [43]), but generally a (discrete) function f is strictly convex if for

every x0 < x1 < x2 from the domain of f it holds

f(x1) <
x2 − x1

x2 − x0

f(x0) +
x1 − x0

x2 − x0

f(x2).

However, if the domain is the set of integers greater than or equal to b, then the above

property is equivalent to 2f(x0 + 1) < f(x0) + f(x0 + 2) for all x0 ≥ b.

Theorem 4 Let G be a graph with two distinct vertices u∗ and v∗. Let a ≥ 2 and

0 ≤ x ≤ a. Attach x pendant edges to u∗, attach a − x pendant edges to v∗, and denote

the resulting graph by Gx. Then J(Gx), as a (discrete) function of x, is strictly convex.

We remark that the fact that Sn and Dn−2,2 (see Figure 1) are trees of order n with

the largest and second largest, respectively, Balaban index (as originally proved by Deng)

is a direct consequence of Theorem 4. Moreover, this theorem enabled us to characterize

trees of order n with the third, fourth, . . . and seventh maximum value of Balaban index.

The results are summarized in Table 1, and in what follows we explain the notation in

the table. By Ti we denote a tree which has the i-th greatest value of Balaban index.

A caterpillar Ha1,a2,...,ad−1
is a tree consisting of a diametric path of length d (i.e., with

d + 1 vertices) and a couple of pendant edges, such that the degrees of vertices of the

diametric path are 1, a1, a2, . . . , ad−1, 1 (due to symmetry, we may assume that a1 ≥ ad−1

in Ha1,a2,...,ad−1
). See Figure 2 for an example.

3 7 2

Figure 2. A caterpillar H3,7,2.

Let n ≥ 7. Then by Rn we denote the graph obtained from a star on n − 3 vertices

by subdividing three distinct edges, see Figure 3 for R11.
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Figure 3. The graph R11.

n T1 T2 T3 T4 T5 T6 T7

2− 3

Sn

4

Dn−2,2

5 P5

6

Dn−3,3

H2,n−3,2 Hn−3,2,2
P6

7 H3,3,2 R7

8 D4,4 H2,5,2 Hn−3,2,2 H3,n−4,29

H2,n−3,2
Dn−4,4

10 D5,5 Hn−3,2,2

11
Hn−3,2,2

D6,5

12− 17
H3,n−4,218−∞ Hn−3,2,2 Dn−4,4

Table 1. First seven trees with maximal values of Balaban index.

It can be observed that for every k, J(T1)−J(Tk) is bounded by a constant depending

on k but not on n, see [38]. Moreover, we believe the following holds.

Conjecture 5 For every k, lim
n→∞

(
J(T1)− J(Tk)

)
is a constant.

As mentioned earlier, Deng [15] characterized trees of given order with the second

minimum Balaban index. Let T0 be a tree obtained by attaching a pendant vertex vn to

the vertex v2 of the path v1v2 . . . vn−1, see Figure 4.

Theorem 6 Let T be a tree with n ≥ 4 vertices. If T is not a path, then

J(T ) ≥ J(T0)

with equality if and only if T is T0.
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v1 v2 v3
...

vn−1

vn

Figure 4. A tree T0.

We believe that using Theorems 2, 3 and 4 further ranking of trees with small Balaban

index can be obtained.

Problem 7 Find trees of order n, with the third, fourth, etc. minimum Balaban index.

Regarding the sum-Balaban index, the basic observation on trees was given by Deng

[16], and Xing et al. [52]. They showed that the minimum and maximum value of sum-

Balaban index among all trees of order n is, as in the case of Balaban index, attained

precisely for Pn and Sn, respectively. In [52] also trees with the second-largest, and third-

largest (as well as the second-smallest, and third-smallest) sum-Balaban index among the

n-vertex trees for n ≥ 6 were determined. Their proof is based on specific transformations,

which increase sum-Balaban index. In [40] we presented an alternative proof as well as

additional tools which enabled us to give further ranking up to seventh maximum sum-

Balaban index. In fact we obtained almost the same table of results as for Balaban index.

The only differences are that T5 and T6 are interchanged for 18 ≤ n ≤ 22, and also T6

and T7 are interchanged for n = 11.

2.1 Trees satisfying certain conditions

In their study of trees with extreme Balaban index, Dong and Guo [20] discovered that

greedy trees play a crucial role. Greedy trees were used already in [51] and are (assuming

that degrees of the non-leaf vertices are given) achieved by the following ‘greedy algo-

rithm’:

(1) Label a vertex with the largest degree as v (the root);

(2) Label the neighbors of v as v1, v2, . . ., assign the largest degrees available to them

so that d(v1) ≥ d(v2) ≥ · · · ;

(3) Label the neighbors of v1 (except v) as v11, v12, . . . They take all the largest degrees

available so that deg(v11) ≥ deg(v12) ≥ · · · , then do the same for v2, v3, . . .;
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(4) Repeat (3) for all the newly labeled vertices, always start with the neighbors of the

labeled vertex with largest degree whose neighbors are not labeled yet.

Theorem 8 Given a degree sequence π = (d1, d2, . . . , dn), the greedy tree maximizes the

Balaban index among all trees with degree sequence π.

Note that extremal graphs play the opposite roles in the cases of Balaban (sum-

Balaban) and Wiener index (which is not surprising if we observe the role of distances in

the definitions). Namely, a star maximizes Balaban (sum-Balaban) index and it minimizes

Wiener index, while we have it vice-versa for a path. In this context we mention that

it is known that the greedy tree also minimizes the Wiener index among all trees with

given degree sequence, [56]. It would be interesting to explore whether greedy trees are

the solution of the following problem as well.

Problem 9 Find trees that maximize the sum-Balaban index among all n-vertex trees

with given degree sequence.

The problem of finding trees that maximize Wiener index among trees of given degree

sequence is still open, see [36]. There is also no literature on trees that minimize Balaban

(sum-Balaban) index among trees with given degree sequence.

v

v1 v2 v3 v4

v11 v12 v13 v21 v22

v111

v31 v32 v41 v42

Figure 5. A greedy tree with degree sequence (4, 4, 3, 3, 3, 2, 1, 1, . . . , 1).

Recall that a partition of n is a sequence λ = (λ1, λ2, . . . , λl) where the λi are weakly

decreasing and
∑l

i=1 λi = n. Suppose λ = (λ1, λ2, . . . , λl) and µ = (µ1, µ2, . . . , µl) are

partitions of n. Then λ dominates µ, if λ1 + λ2 + · · · + λi ≥ µ1 + µ2 + · · · + µi for all

1 ≤ i ≤ l and
∑l

i=1 λi =
∑l

i=1 µi. For the degree sequence (d1, . . . , dn) of any tree with n

vertices, we assume that d1 ≥ · · · ≥ dn. Then it can be seen as a partition of 2(n− 1). A
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degree sequence is called a dominating degree sequence in a tree set S, if it dominates the

degree sequence of any tree in S. Dong and Guo [20] noted that for greedy trees T and T ′

with degree sequences π and π′, respectively, where π dominates π′ it holds J(T ) ≥ J(T ′)

(and the equality holds if and only if T ′ is isomorphic to T ). Using this observation and

Theorem 8 they obtained the following.

Theorem 10 Let S be a set of some trees with n vertices, and let T be a greedy tree in

S with a dominating degree sequence. Then T has the maximum Balaban index in S.

The above theorem enabled the authors to derive a series of theorems on certain

families of n-vertex trees. These include a characterization of a tree with maximum

Balaban index among all n-vertex trees with given maximum degree, among starlike trees

(trees with just one branching vertex; i.e. vertex of degree at least three) on n vertices

and given number of pendant vertices, as well as among all chemical trees (i.e. trees in

which the maximum vertex degree is 4) of order n with k pendant vertices. See [20] for

details. The extremal graphs which attain the maximum sum-Balaban index among trees

with given number of vertices and maximum degree, are determined in [54].

Let T (n;n1, . . . , nk) denote a starlike tree on n vertices with the branching vertex u,

such that k components of T − u are paths of lengths n1 − 1, . . . , nk − 1. With S(n, k) we

denote a starlike tree T (n;n1, . . . , nk) where ni equals to
⌊
n−1
k

⌋
or
⌈
n−1
k

⌉
for 1 ≤ i ≤ k. It

seems that if T is a starlike tree T (n;n1, . . . , nk), then SJ(T ) ≤ SJ(S(n, k)), and equality

holds if and only if T is S(n, k). The following problem may have the same solutions as

for Balaban index.

Problem 11 Characterize trees that maximize sum-Balaban index among all n-vertex

chemical trees with k pendant vertices.

Figure 6. A comet C(10, 5).

Beside the above mentioned results regarding the extremal trees in the sense of max-

imum values, Dong and Guo also explored the minimum value of Balaban index among
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n-vertex trees with the maximum degree ∆. Let C(n,∆) denote a comet, i.e., a tree

obtained from a star with ∆ − 1 leaves and a path on n −∆ + 1 vertices by identifying

the central vertex of the star with an end-vertex of the path, see Figure 6 for C(10, 5).

Theorem 12 Let T be a tree with n vertices and the maximum degree ∆. Then J(T ) ≥

J(C(n,∆)) and the equality holds if and only if T is C(n,∆).

We believe that comets minimize also sum-Balaban index in the family of n-vertex

trees with given maximum degree, i.e., for a tree T with n vertices and the maximum

degree ∆, we have SJ(T ) ≥ SJ(C(n,∆)).

In earlier paper Dong and Guo [19] considered also n-vertex trees with given diameter

(i.e. the maximum distance between any two vertices) d. In Theorem 19 they claim

that the upper bound for this class of graphs is achieved for trees constructed from Pd+1

and Sn−d by identifying a central vertex of the path with the central vertex of the star

(recall that a central vertex in a graph is a vertex with minimum eccentricity). Our

computer experiments show that the result is probably correct, however the proof in [19]

is not correct as it indirectly (through Lemma 7) uses Lemma 6, which was disproved by

Deng [15]. Finding a correct proof is a possible task for the future.

In [53] the authors found a tree with the maximum sum-Balaban index among all trees

with n vertices and diameter d. In addition, they gave a new proof of the result that the

star Sn is the graph which has the maximum sum-Balaban index among all trees with n

vertices.

3 Balaban index of graphs with given order

Before we consider graphs with given order and their Balaban and sum-Balaban indices,

let us mention the following general property of the two indices from [16].

Proposition 13 Let G be a connected graph with order n ≥ 3. Then SJ(G) ≥ J(G) with

equality if and only if G = K3.

3.1 Upper bound

The study of extremal values of Balaban index in the class of connected graphs with n

vertices was initiated by Dong and Guo in [19]. They claimed that for such graphs the
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upper bound is attained by complete graphs, i.e.,

J(G) ≤ J(Kn) =
n3 − n2

2(n2 − 3n+ 4)

for any connected n-vertex graph G. But this is not true in general. The authors them-

selves observed a mistake and later stated in [20], that for a connected graph G with n

vertices

J(G) ≤ J(Sn) =

√
(n− 1)3

2n− 3
,

and the equality holds only for Sn. However, it was brought to our attention that two

years later (seemingly unaware of the paper by Dong and Guo), Aouchiche et al. [4] posed

a conjecture, which we state here as a theorem.

Theorem 14 For any connected graph G on n ≥ 2 vertices, we have

J(G) ≤
{

J(Kn), if n ≤ 7
J(Sn), if n ≥ 8.

It turned out that in their proof from [20], Dong and Guo neglect cases with small n. A

complete reasoning for the above theorem is given in [39]. We only mention that we used

the following general result from [39].

Theorem 15 Let G be a connected graph on n vertices with µ ≥ 1. Then

(1) J(G) is maximum if and only of G is the complete graph Kn;

(2) SJ(G) is maximum if and only of G is the complete graph Kn.

Using the above result, an analogous theorem was proved also for sum-Balaban index.

Theorem 16 For any connected graph G on n ≥ 2 vertices, we have

SJ(G) ≤
{

SJ(Kn), if n ≤ 5
SJ(Sn), if n ≥ 6.

In [4] the authors also posed a conjecture about the second maximum Balaban index,

which should be attained either by a complete graph with one edge missing or a comet.

Conjecture 17 For any connected graph G on n ≥ 2 vertices, such that G is different

from Sn and Kn, we have

J(G) ≤
{

J(Kn − e), if n ≤ 9,
J(C(n, n− 2)), if n ≥ 10.
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We believe that an analogous result holds for sum-Balaban index.

Conjecture 18 For any connected graph G on n ≥ 2 vertices, such that G is different

from Sn and Kn, we have

SJ(G) ≤
{

SJ(Kn − e), if n ≤ 5,
SJ(C(n, n− 2)), if n ≥ 6.

It was observed in [39] that for n big enough, the Balaban index of a double star

always exceeds the Balaban index of the complete graph on n vertices.

Theorem 19 Let a and b be positive integers such that a, b ≥ 2, a + b = n and n ≥ 70.

Then J(Da,b) > J(Kn).

The above theorem implies the following.

Corollary 20 For every k there exists n0 such that for every n ≥ n0 the first k graphs

of order n with the biggest value of Balaban index are trees.

Similar conclusions were derived for sum-Balaban index.

Theorem 21 Let a and b be positive integers such that a, b ≥ 2, a + b = n and n ≥ 8.

Then SJ(Da,b) > SJ(Kn).

Corollary 22 For every k there exists n0 such that for every n ≥ n0 the first k graphs

of order n with the biggest value of sum-Balaban index are trees.

In [20] the authors point out the importance of the coefficient |E(G)|
µ+1

in the definition

of Balaban index. This coefficient was neglected in an inaccurate lemma (Lemma 3

in [19]), which stated that removing an arbitrary edge from a graph results in strictly

smaller Balaban index (this statement led to the false conclusion that the upper bound

is attained by Kn). Since this does not hold in general (as one can see by comparing

Balaban indices of a star Sn, and a graph S+
n obtained from the star Sn by adding an

edge [4]), Dong and Guo posed the following problem.

Problem 23 Under what conditions J(G − e) ≤ J(G) (resp. J(G − e) ≥ J(G)) for an

edge e of a graph G?
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3.2 Lower bound

Using the AutoGraphiX software, Aouchiche, Caporossi and Hansen [4] showed that

among all connected graphs on n vertices, the path on n vertices is not a graph for which

the lower bound is attained, as claimed in [19]. For instance, C5 has smaller Balaban index

than P5, and the same is true for two other graphs on 5 vertices, whose Balaban index is

even smaler than that of C5. Thus the following problem regarding Balaban index from

Dong and Guo [19, 20] remains open, as well as an analogous problem for sum-Balaban

index.

Problem 24 Among n-vertex graphs, find those with the minimum Balaban (sum-Bala-

ban) index.

However, some general properties and potential candidates for extremal graphs were

presented in [32] and [33].

Theorem 25 Let G be a graph on n ≥ 4 vertices. Then

J(G) ≥ 4

n− 1
and SJ(G) ≥ 2

√
n

n− 1
.

In [35] a class of graphs Hn of order n is constructed, for which J(Hn) ≤ 32
n
. Hence

the minimum value of Balaban index is of order Θ(n−1) and it tends to zero. Using more

involved argument, we have proved the following lower bound in [32], which is for large n

roughly twice the bound of Theorem 25. Similar result for sum-Balaban index is from [33].

Theorem 26 Let G be a graph on n vertices, where n is big enough. Then

J(G) ≥ 8

n
+ o(n−1) and SJ(G) ≥ 4 + o(1) .

By the results and arguments from [32], one would expect that a graph with the

minimum Balaban index will have Θ(n) edges and vertices v with big value of w(v), and

analogous properties are expected also for sum-Balaban index. For small values of n the

extremal graphs for both indices were found in [32,33] and it was observed that they are

either dumbbell graphs (i.e. graphs obtained from a path and two complete graphs, which

are attached to the end-vertices of the path) or graphs similar to dumbbell graphs, see

Figure 7. Motivated by this we studied the Balaban and sum-Balaban index of dumbbell

graphs and graphs alike.
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n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

Figure 7. Graphs with the smallest value of sum-Balaban index for n ∈ {3, 4, . . . ,
10}. Some of the graphs contain a dotted edge. By removing such an
edge we obtain the graph with the minimum value of Balaban index.

3.2.1 Bounds for balanced dumbbell graphs

First we define dumbbell graphs more precisely. Let Ka and K ′
a′ be two disjoint complete

graphs on a and a′ vertices, respectively, and let Pb be a path on b vertices (v0, v1, . . . , vb−1)

disjoint from the cliques. The dumbbell graph Da,b,a′ is obtained from Ka ∪ Pb ∪ K ′
a′ by

joining all vertices of Ka with v0 and all vertices of K ′
a′ with vb−1. Thus, Da,b,a′ has

a + b + a′ vertices. In the literature, it is often assumed that a = a′, here we call such

graphs balanced dumbbell graphs. In what follows, we always assume a ≤ a′.

Considering small values of n (up to 200), our computer tests show that among dumb-

bell graphs Da,b,a′ on n vertices, the minimum value of Balaban (sum-Balaban) index is

achieved for those with

a′ = a or a′ = a+ 1. (1)

We strongly believe this is true in general, and henceforth, we state it as a conjecture,

see [32] and [33].

Conjecture 27 Among all dumbbell graphs Da,b,a′ on n vertices, the minimum value of

Balaban (sum-Balaban) index is achieved for those with a′ = a or a′ = a+ 1.

The only exception seems to be the case n = 13 in which the lowest sum-Balaban

index among all dumbbell graphs is attained by D2,7,4.

In the rest of this section we discuss the sizes of a and b for the optimal dumbbell

graphs. When dealing with large graphs, there is not much difference between the cases

a′ = a and a′ = a + 1, so for the sake of simplicity, we restrict ourselves to balanced
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dumbbell graphs. We denote such dumbbell graphs by D∗
a,b. Thus, D

∗
a,b stands for Da,b,a

and it has 2a+ b vertices. In [32] we proved the following statement.

Theorem 28 Let D∗
a,b be a balanced dumbbell graph on n vertices, where n is big enough,

with the smallest possible value of Balaban index. Then a and b are asymptotically equal

to 4
√
π/2

√
n and n, respectively. That is, a = 4

√
π/2

√
n+ o(

√
n) and b = n− o(n).

In [33] we observed the same for sum-Balaban index, except that the constant standing

by
√
n is slightly different. We got a = 4

√√
2 log

(
1 +

√
2
)√

n+ o(
√
n).

It is to be noted that π appears in Theorem 28 naturally, since the extremal balanced

dumbbell graphs contain a very long path, and it is known that limn→∞ J(Pn) = π,

see [11] (and Section 8 for more on asymptotic values of Balaban index). Theorem 28 and

analogous observation for sum-Balaban index yield the following consequences.

Corollary 29 Let D be a balanced dumbbell graph on n vertices, where n is big enough,

with the minimum value of Balaban index. Then

J(D) ∼ 1

n

[
π + 2

√
2π + 2

]
.
=

10.15

n
.

In the corollary below the constant Q equals
√
2 ln(1 +

√
2)

.
= 1.24650.

Corollary 30 Let D be a balanced dumbbell graph on n vertices, where n is big enough,

with the minimum value of sum-Balaban index. Then

SJ(D) ∼ 1√
2

√
r − 1−Q+

√
(r−1−Q)2 − 4Q

.
= 4.47934.

Comparing the above corollaries with the lower bound presented in Theorem 26, we see

that the asymptotic value of Balaban (resp. sum-Balaban) index for optimum balanced

dumbbell graph is only about 1.27 (resp. 1.12) times higher than our lower bound. Our

expectation is that the optimal balanced dumbbell graph is not much different from the

optimal graph. Namely, we have the following conjecture.

Conjecture 31 Dumbbell graphs asymptotically attain the minimum value of Balaban

(sum-Balaban) index among graphs on n vertices.
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3.2.2 Bounds for dumbbell-like graphs

Dumbbell-like graphs are obtained from dumbbell graphs by removing or attaching some

edges from or to the cliques. More precisely, a dumbbell-like graph, D`
a,b,a′ , is obtained

from the dumbbell graph Da,b,a′ by either inserting ` edges between v1 and Ka if ` > 0, or

by removing −` edges between vb−1 and K ′
a′ if ` < 0. Note that we assume a ≤ a′, so we

always add edges to the smaller clique and remove them from the bigger one. We have

the following conjecture which is supported by our computer experiments.

Conjecture 32 Dumbbell-like graphs attain the minimum value of Balaban (sum-Bala-

ban) index among graphs on n vertices.

3.3 Bounds in terms of various parameters

An upper bound on the Balaban index of a connected graph in terms of its order n,

size m and radius r (i.e., the minimum eccentricity of any vertex in a graph) is given by

Aouchiche et al. [4]. Here we add the bound for sum-Balaban index as well.

Theorem 33 Let G be a graph on n vertices and m edges with radius r. Then

J(G) ≤ 2m2

(m− n+ 2)(r(r − 1) + 2(n− 1))
and

SJ(G) ≤ m2

(m− n+ 2)
√
r(r − 1) + 2(n− 1)

.

The bounds are best possible as shown by the complete graph Kn.

Proof. Let u be an arbitrary vertex in V (G). By ecc(u) we denote its eccentricity. Then

w(u) ≥ 1+2+· · ·+ecc(u)+(n−ecc(u)−1) ≥ ecc(u)(ecc(u)− 1)

2
+n−1 ≥ r(r − 1)

2
+n−1.

From this the upper bound for sum-Balaban index easily follows. For the complete graph

Kn we have r = 1 and m = n(n−1)
2

. When we substitute these values into the derived

upper bound, we get exactly the sum-Balaban index of Kn.

Graphs with given number of vertices and diameter were first considered by Dong and

Guo in [19], where they stated a result regarding the upper bound. However, the authors

themselves observed a mistake in their proof and posed the problem of characterizing

graphs with the maximum Balaban index among graphs with n vertices and diameter

d, [20]. It seems that the for d ≥ 2, the graph constructed from Pd+1 and Sn−d by
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identifying a central vertex of the path with the central vertex of the star, is the answer.

If d = 1, the answer is of course the complete graph.

The same problem would be interesting also for sum-Balaban index.

Problem 34 Characterize graphs with the maximum sum-Balaban index among graphs

with n vertices and diameter d.

The following result from [4] improves the bound J(G) ≤ nm
2(m−n+2)

, given in [57].

Theorem 35 Let G be a graph on n vertices and m edges with maximum degree ∆. Then

J(G) ≤ m2

(m− n+ 2)∆
,

with equality if and only if G is the complete graph Kn.

A year earlier Xing et al. [52] proved this kind of bound for sum-Balaban index.

Theorem 36 Let G be a connected graph with n ≥ 2 vertices, m edges and maximum

degree ∆. Then

SJ(G) ≤ m

2(m− n+ 2)

√
nm∆

2n− 2−∆
≤ m

2(m− n+ 2)

√
nm,

with the first equality if and only if G is a regular graph with diameter at most two, and

with the second equality if and only if G is the complete graph.

Dong and Guo posed the problem of finding the lower bound for Balaban index [20].

Independently at the same time Ghorbani [27] showed that J(G) ≥ m
(m−n+2)d

, however,

this bound is really rough, so the following problem is still interesting.

Problem 37 Characterize graphs with the minimum Balaban (sum-Balaban) index am-

ong graphs with n vertices and diameter d.

The problems regarding the extremal graphs with respect to the minimum value seem

to be quite challenging. However, we think that (for Balaban as well as for sum-Balaban

index) for sufficiently large n they will have structure similar to dumbbell-like graphs

D`
a,b,a′ , whose diameter equals b+ 1.

Aouchiche et al. [4] obtained the lower bound for graphs where beside the number of

vertices and diameter also the number of edges is prescribed 1. To their result we add

an analogous inequality for sum-Balaban index, which can easily be derived using the

estimate of a vertex transmission from [4].

1There is a typographical error in Theorem 2 in [4], where the opposite inequality should be used.
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Theorem 38 Let G be a graph on n vertices with m edges and diameter d. Then

J(G) ≤ 2m2

(m− n+ 2)(2nd− d(d+ 1))
and

SJ(G) ≤ m2

(m− n+ 2)
√
2nd− d(d+ 1)

.

The equalities hold if and only if d = 1 and G is the complete graph Kn.

For more bounds in terms of parameters like spectral radius, Wiener index, clique

number, minimum degree of a graph, etc. see [4, 52,57].

4 Unicyclic graphs

Let G be a unicyclic graph (i.e., a graph containing exactly one cycle) on n vertices. Then

m = n, µ(G) = 1, and thus J(G) = n
2

∑
uv∈E(G)

1√
w(u)·w(v)

.

In [4] Aouchiche et al. stated a conjecture about the bounds on Balaban index for

unicyclic graphs. You and Dong [21], and independently Deng and Chang [17] proved the

conjecture for the upper bound. Let S+
n denote the graph, obtained from the star Sn by

adding an edge between two nonadjacent vertices of the star (see the left hand side graph

on Figure 8 for S+
6 ).

Figure 8. The graphs S+
6 and L7,3.

Theorem 39 Let G be a connected unicyclic graph on n ≥ 4 vertices. Then

J(G) ≤ n

2

(
1

2n− 4
+

2√
(2n− 4)(n− 1)

+
n− 3√

(2n− 3)(n− 1)

)
,

and the equality holds if and only if G is S+
n .

A star with an extra edge is also the extremal graph in the case of sum-Balaban

index, [21].

Theorem 40 Let G be a connected unicyclic graph on n ≥ 4 vertices. Then

SJ(G) ≤ n

2

(
1√

4n− 8
+

2√
3n− 5

+
n− 3√
3n− 4

)
,

and the equality holds if and only if G is S+
n .
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Recently Fang et al. [24] characterized unicyclic n-vertex graphs with the second largest

Balaban (sum-Balaban) index.

Recall that the girth g = g(G) is the length of a shortest cycle in G. Aouchiche et

al. [4] give the upper bound for the Balaban index of unicyclic graphs with given girth.

Theorem 41 Let G be a unicyclic graph on n ≥ 3 vertices with girth g. Then

J(G) ≤

{
2n2

g2
, if n is even,

2n2

g2−1
, if n is odd,

with equality if and only if G is the cycle Cn.

One can quickly check that an analogous result holds for sum-Balaban index.

Theorem 42 Let G be a unicyclic graph on n ≥ 3 vertices with girth g. Then

SJ(G) ≤

{ √
2n2

2g
, if n is even,

√
2n2

2
√

g2−1
, if n is odd,

with equality if and only if G is the cycle Cn.

Proof. One can check that for a cycle on at least 3 vertices we have SJ(Cn) =
√
2n
2

if n

is even, and SJ(Cn) =
√
2n2

2
√
n2−1

, if n is odd. Thus the equality holds if G is a cycle. Now

assume G is not a cycle, and let C be the unique cycle in G, and v ∈ V (G). If v ∈ V (C),

we obtain w(v) =
∑

w∈C d(v, w)+
∑

w/∈C d(v, w) >
∑

w∈C d(v, w), and if v /∈ V (C) and u is

the closest vertex to v that belongs to C, we have w(v) >
∑

w∈C d(v, w) >
∑

w∈C d(u,w)

(note that d(v, w) > d(u,w) for every w ∈ V (C)). This means that the transmission of

any vertex in G is bigger than g2

4
if n is even, and it is bigger than g2−1

4
if n is odd. From

this observation the bound for SJ(G) in each of the cases can be derived.

Since for unicyclic graphs m = n, using Theorem 33, the authors derived the upper

bound in terms of radius, [4].

Theorem 43 Let G be a unicyclic graph on n ≥ 3 vertices with radius r. Then

J(G) ≤ n2

r(r − 1) + 2(n− 1)
.

The conjecture from [4] regarding the lower bound remains unsolved. A lollipop Ln,g

is obtained from a cycle Cg and a path Pn−g by adding an edge between a vertex from

the cycle and an endvertex from the path (see the right hand side graph of Figure 8 for

L7,3). Our computer experiments support the conjecture that lollipops are the extremal

graphs for both Balaban and sum-Balaban indices.

-703-



Conjecture 44 Let G be a connected unicyclic graph on n ≥ 5 vertices. Then

J(G) ≥ J(Ln,3) and SJ(G) ≥ SJ(Ln,3),

and equalities hold if and only if G is Ln,3 .

It would also be interesting to find a characterization of connected unicyclic graph

with the minimum (maximum) Balaban (sum-Balaban) index among all unicyclic graphs

of order n and girth g with k pendant vertices.

5 Bicyclic graphs

A connected graph on n vertices is said to be bicyclic if it contains exactly n+1 edges or,

equivalently, it contains exactly two independent cycles. Also note that µ = 2 for such

graphs.

A double lollipop Ln,g1,g2, with n ≥ g1+g2 and g1, g2 ≥ 3, is the bicyclic graph obtained

from two cycles Cg1 and Cg2 and a path Pn−g1−g2 by adding an edge between a vertex from

the cycle Cg1 and an endpoint of the path and another edge between a vertex from the

cycle Cg2 and the other endpoint of the path. Denote by S++
n the bicyclic graph obtained

from the star Sn by adding two edges with a common vertex. See Figure 9 for S++
7 and

L14,6,5.

Figure 9. The graphs S++
7 and L14,6,5.

After numerical experiments using AutoGraphiX, Aouchiche et al. [4] conjectured

that double lollipops Ln,3,3 attain the minimum value of Balaban index. Our computer

investigations indicate that the same is true for sum-Balaban index.

Conjecture 45 Let G be a bicyclic graph on n ≥ 5 vertices. Then

J(G) ≥ J(Ln,3,3) and SJ(G) ≥ SJ(Ln,3,3).

The bounds are attained only for the double lollipop Ln,3,3.
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As we have seen so far, finding the lower bound for Balaban (sum-Balaban) index is a

challenging problem in case of many graph families. On the other hand, the authors of [4]

gave the conjecture on the upper bound, which turned out to be true. This was confirmed

by Deng and Chang [17] in the same year, although it seems that they were not aware of

the conjecture in [4]. It is surprising that three years later in the same journal the same

topic (beside sum-Balaban index) is studied by Chen et al. [14] and also Fang et al. [22],

who exposed some flaws in [14] and rediscovered the result of Deng and Chang (one can

find this result as Theorem 3.2 in [22], where it is clear from the context that bicyclic

graphs are under consideration, and not unicyclic graphs as stated by a mistake).

Theorem 46 The graph S++
n has the largest Balaban (sum-Balaban) index among all

n-vertex bicyclic graphs.

6 Graphs with high connectivity

The Balaban index of k-connected and k-edge-connected graphs of size n was first studied

in [19]. However, due to already mentioned false belief that J(G − e) < J(G) for any

edge e of a graph G, the upper bound given by Dong and Guo in [19] does not hold as

observed by the authors themselves in [20] and independently by Aouchiche et al. [4]. Thus

Dong and Guo posed a problem of characterizing graphs with the maximum (minimum)

Balaban index among k-connected (k-edge-connected) graphs with n vertices. Although

the case of the minumum Balaban index may be hard to solve, Theorems 14 and 15 yield

the following corollaries.

Corollary 47 Let G be a graph with the maximum value of Balaban index in the class of

k-connected (k-edge-connected) graphs of order n. Then we have:

(1) if k = 1 and, n = 2 or n ≥ 8, then G is the star Sn;

(2) if k = 1 and n ≤ 7, or k ≥ 2, then G is the complete graph Kn.

Analogously, by Theorems 15 and 16 we have:

Corollary 48 Let G be a graph with the maximum value of sum-Balaban index in the

class of k-connected (k-edge-connected) graphs of order n. Then we have:

(1) if k = 1 and, n = 2 or n ≥ 6, then G is the star Sn;
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(2) if k = 1 and n ≤ 5, or k ≥ 2, then G is the complete graph Kn.

The problem for the minimum from [19,20] remains open.

Problem 49 Characterize graphs with the minimum Balaban (sum-Balaban) index am-

ong k-connected (k-edge-connected) graphs with n vertices.

7 Balaban index of regular graphs

Regular graphs, more precisely their subclass, vertex transitive graphs, were first con-

sidered by Ghorbani in [27]. He gave a formula for Balaban index of a k-regular vertex

transitive graph with n vertices and m edges. After a minor correction this formula reads

as follows2 :

J(G) =
mn2k

4(m− n+ 2)W (G)
.

General r-regular graphs with r ≥ 3 were studied in [35], where an upper bound for

Balaban index for these graphs was obtained.

Theorem 50 Let G be an r-regular graph on n vertices with r ≥ 3. Then

J(G) ≤ r2(r − 1)2

2(r − 2)2blogr−1
(r−2)n+2

r
c
.

The bound itself can be improved, but we wanted to keep it in as elegant form as

possible, since the real value of this result can be seen from its corollary.

Corollary 51 Let r ≥ 3. For r-regular graphs G on n vertices it holds

lim
n→∞

J(G) = 0.

Namely, Balaban index of regular graphs which are really big in the number of vertices,

is close to 0. The number of such graphs is enormously large, and we conclude that the

Balaban index does not distinguish them well. There are many (cubic) graphs interesting

from the chemists point of view, for which the above observation apply; we devote to them

Section 10. From this perspective also a class of cubic multigraphs, so called annulenes, is

interesting. Hence, one could extend the study of Balaban index to multigraphs, see [11],

where two alternative definitions for Balaban index of multigraphs are discussed. The

following problem is interesting as well.

2We advise an interested reader to be alert when reading the paper as it contains several flaws,
starting with incorrect computations of Balaban index for stars and complete graphs, to not precisely
written definition of Randić index, etc.
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Conjecture 52 For graphs G on n vertices, such that the degree of every vertex lies in

the interval [a, b], a ≥ 3, it holds

lim
n→∞

J(G) = 0.

Regarding sum-Balaban index, the upper bound was given by Lei and Yang [42].

Theorem 53 Let G be an r-regular graph on n vertices with r ≥ 3. Then

SJ(G) ≤ r2(r − 1)
√
n

2(r − 2)
3
2

√
2blogr−1

(r−2)n+2
r

c
.

A natural problem is also the following.

Problem 54 For given r and n, find a graph on n vertices with maximum degree r which

has the maximum value of Balaban (sum-Balaban) index.

7.1 Cubic graphs with small value of Balaban index

Let n be even and n ≥ 10. If 4 - n, then Ln is obtained from (n− 10)/4 copies of K4 − e

joined into a path by edges connecting the vertices of degree 2, to which at the ends we

attach two pendant blocks, each on 5 vertices, see Figure 10 for L18. On the other hand, if

4 |n, then Ln is obtained from (n− 12)/4 copies of K4− e, joined into a path-like manner

by edges connecting the vertices of degree 2, to which ends we attach two pendant blocks,

one on 5 vertices and the other on 7 vertices, see Figure 11 for L20.

Figure 10. The graph L18.

Figure 11. The graph L20.

In [35] the following conjecture about Ln was proposed.

Conjecture 55 Among n-vertex cubic graphs, Ln has the smallest Balaban (sum-Bala-

ban) index.
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It would also be interesting to consider extremal graphs among n-vertex r-regular

graphs, where r > 3. If r is odd we expect that extremal graphs are similar to Ln, but

the case when r is even seems to be more challenging.

Problem 56 Let r ≥ 4. Characterize n-vertex r-regular graphs with the smallest Balaban

(sum-Balaban) index.

8 Asymptotic values

Unlike most other topological indices, owing to the factor m
m−n+2

, Balaban index does not

increase with the increasing number of vertices and cycles. It is thus interesting to explore

the behaviour of Balaban index for various infinite classes of graphs.

Using the results from Section 3, we can observe that there are classes of graphs

Gn and Hn such that limn→∞ J(Gn) = ∞ (take the star on n vertices for Gn) and

limn→∞ J(Hn) = 0 (see Corollary 51). In [11] Balaban et al. discussed various infinite

families of acyclic and cyclic graphs, and found many examples when J tends to a constant

finite value. Interestingly, as already mentioned, J has the asymptotic value π for a path

on n vertices, when n tends to infinity. They have found several examples of classes of

trees whose Balaban index tends to the value 2π. Moreover, they obtained several general

formulae for the asymptotic value for families of graphs with specific structure, and they

observed how one can tell from the structure that the asymptotic value is a rational

multiple of π.

In [37] it was proved that for every positive real number r there exists a sequence of

graphs {Gr
ni
}∞i=1, where |V (Gr

ni
)| = ni and {ni}∞i=1 is increasing, such that limni→∞ J(Gr

ni
)

= r. In fact, the sequence of corresponding graphs {Gr
ni
}∞i=1 is very simple. Let Qa,b be a

graph obtained from a clique Ka and a path Pb by joining one vertex of the clique with

an endvertex of the path (see Figure 12 for Q6,3). Then |V (Qa,b)| = a+ b.

Figure 12. The graph Q6,3.
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Theorem 57 Let r ∈ R, r > 0, and let {ba}∞a=1 be a sequence of integers such that

lima→∞ ba/a = 1/
√
r. Then lima→∞ J(Qa,ba) = r.

To fulfill the assumptions in Theorem 57 it suffices to choose ba =
⌊
a/

√
r
⌋
for every

a ∈ N. Consequently, every positive number is an accumulation point for Balaban index

of a class of graphs. However, the problem still remains open for specific classes of graphs,

such as the chemical ones:

Problem 58 Is it true that for every positive real number r there exists a sequence of

graphs {Gr
ni
}∞i=1, where |V (Gr

ni
)| = ni, {ni}∞i=1 is increasing and Gr

n has maximum degree

at most 4, such that

lim
ni→∞

J(Gr
ni
) = r ?

In [39] accumulation points of sum-Balaban index were considered. Recall that the

constant Q equals
√
2 ln(1 +

√
2)

.
= 1.24650, and 1 +Q+ 2

√
Q

.
= 4.47934.

Theorem 59 Let r ≥ 1 + Q + 2
√
Q. Further, let {Dai,bi}∞i=1 be a sequence of balanced

dumbbell graphs on ni = 2ai + bi vertices such that ni → ∞ and

lim
i→∞

ai√
ni

=
1√
2

√
r − 1−Q+

√
(r−1−Q)2 − 4Q.

Then limi→∞ SJ(Dai,bi) = r.

Although we have a conjecture that for graphs G on large number of vertices SJ(G) ≥

1+Q+2
√
Q (see Corollary 30 and Conjecture 27), it is proved only that SJ(G) ≥ 4+o(1)

(see Theorem 26). Hence, if our conjecture is false, then the problem of accumulation

points of sum-Balaban index for values in interval [4, 4.47934) remains open.

9 Balaban index vs. Randić index

In the class of trees, the star Sn maximizes the Balaban index (see Theorem 1) and

minimizes the Randić index [13]. Hence, for every tree T we have J(T )
R(T )

≤ n−1√
2n−3

, with

equality if and only if T is the star Sn. This observation was pointed out by Aouchiche

et al. [4], who proposed to study an extension of this bound to the class of all connected

graphs. Based on their computer experiments for n ≥ 5 they proposed the conjecture,

which turns out to be true, see the following result from [39].
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Theorem 60 For any connected graph G on n ≥ 2 vertices, we have

J(G)

R(G)
≤

{
n2−n

n2−3n+4
, if n ≤ 4

n−1√
2n−3

, if n ≥ 5,

with equality if and only if G is Kn for n ≤ 4, and for n ≥ 5 equality holds only if G is

Sn.

In the same paper a similar observation was done for the class of unicyclic graphs. For

this class Gao and Lu [26] proved that S+
n has the minimum Randić index, but on the

other hand it has the maximum Balaban index (see Theorem 39).

Theorem 61 For any connected unicyclic graph G on n ≥ 4 vertices, we have

J(G)

R(G)
≤ J(S+

n )

R(S+
n )

with equality if and only if G is S+
n .

10 Fullerenes and nanotubes

Balaban index was often and successfully used in QSAR/QSPR modeling [18, 50]. Some

recent uses can be found in [10,31,44,46,48]. In Section 2 we have already considered trees,

but there are other families of graphs interesting from chemists point of view. Dendrimers,

which are repetitively branched molecules, are an instance of such families. Balaban index

of some infinite classes of dendrimers is computed in [5] and [47]. Regular dendrimers

were considered in [28]. More recent studies are devoted to fullerene and nanotubical

graphs.

10.1 Fullerene graphs

Fullerenes [41] are polyhedral molecules made of carbon atoms arranged in pentagonal

and hexagonal faces, and their corresponding graphs, fullerene graphs, are 3-connected,

cubic planar graphs with only pentagonal and hexagonal faces. By Corollary 51, if G is

the class of fullerenes, then

lim
n→∞

{J(G); G ∈ G and |V (G)| = n} = 0.

We remark that the upper bound given in Theorem 50 is very rough. For instance, if G

is the well-known Buckminster fullerene, then the bound in the mentioned theorem with
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r = 3 gives J(G) ≤ 36
2blog2 62/3c = 4.5, while J(G) = 0.91. Nevertheless, in [35] we give a

better upper bound for the Balaban index of fullerene graphs, which tends to 0 for n → ∞

much faster.

Theorem 62 Let G be a fullerene graph on n ≥ 60 vertices. Then J(G) ≤ 25√
n
.

Sum-Balaban index of fullerene graphs was considered in [42].

Theorem 63 Let G be a fullerene graph on n ≥ 60 vertices. Then SJ(G) ≤ 9 4
√
n.

10.2 Nanotubical structures

Nanotubical graphs are obtained by wrapping a hexagonal grid into a tube so that

hexagons with coodrinates (x, y) and (x + k, y + l) are identified, and then possibly by

closing the tube with patches, also called caps, see [2]. In practice, the ratio

length of the cylindrical part : circumference of the cylindrical part

can be of order 100 000 000:1. It is a well known fact that in a nanotubical fullerene of type

(k, l) on n vertices, the circumference of the cylindrical part is (k+ l) and the diameter of

the cylindrical part is approximately n/(k + l), since when n is large enough comparing

to k + l, the caps are negligible small [1]. This encourages us to assume that nanotubical

fullerenes of type (k, l) on n vertices satisfy

k + l ∈ o(n) .

In [2], Balaban and sum-Balaban indices of infinite open nanotubes were considered.

The leading term depends on the circumference of the cylindrical part of the nanotubical

graph, but not on its specific type.

Theorem 64 Let G be a nanotubical graph (open or not) of type (k, l) on n vertices.

Then

J(G) ∼ 9π(k + l)

2n
and SJ(G) ∼ 9

√
2

2

√
k + l · log(1 +

√
2).

Exact formulae for special kinds of nanotubical structures were determined in [23,29,30,

55].
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11 Conclusion

The paper is a state-of-the-art presentation on mathematical properties of Balaban and

sum-Balaban indices. We exposed and corrected several flaws in the literature, included

some new observations, and what is more important, with the presentation of many open

problems in the field we would like to encourage further studies of structural properties

of Balaban and sum-Balaban indices, relations between the two indices as well as with

other topological indices.
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