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Abstract

Determining extremal values of graph entropies for some given classes of graphs
is intricate, because there is a lack of analytical methods to tackle this particular
problem. In this paper we apply the strong mixing variables method for this pro-
pose. We characterized the graphs which attain the minimum values of the graph
entropy, based on an arbitrary increasing convex information functional, among
certain classes of graphs, namely, trees, unicyclic graphs and bicyclic graphs.

1 Introduction

In the last fifty years, the investigations into the information content of graphs and net-

works have been based on the profound and initial works due to Shannon [24, 25]. In

order to measure the structural complexity of graphs and networks, the concept of graph

entropy has been proposed [23, 26]. Determining the complexity of the graphs, has been

used in various filed of sciences, including information theory, biology, chemistry and

sociology [1, 2, 9, 11].

However, there is still no general accepted description of the complexity of a graph that

would allow the foundation of a quantitative measure for its characterization. Therefore,

various types of graph entropies are present in scientific articles. For extensive overview
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on graph entropy measures and statistical analysis of topological graph measures we refer

the reader to [14] and [18], respectively. The definition of graph entropy, by using an

arbitrary information functional, is due to Dehmer [12,13].

Incidentally, let G = (V (G), E(G) be a connected simple graph and S be a certain set of

associated objects of G. Then a monotonous function f : S → R+ is called an information

functional of G. In addition, the corresponding entropy of G is defined as:

If (G) = −
|S|∑
i=1

f(si)∑|S|
j=1 f(sj)

log

(
f(si)∑|S|
j=1 f(sj)

)
.

Several sets, such as the sets of all vertices and independent vertices, vertex degree se-

quence, extended degree sequences (i.e., the second neighbor, third neighbor, etc.), eigen-

values and other roots of graph polynomials, [4–7, 13, 14, 16, 17, 19], have been used for

defining If .

As reported by Dehmer and Kraus [15], there are very little work to find the extremal

values of graph entropies; because Shannon’s entropy represents a multivariate function

and all probability values are not equal to zero when considering graph entropies [3].

A more studied example of If , denoted by Ik in [3], is the case that S = V (G) and

f(si) = deg(si)
k, where deg(v) denotes the degree of the vertex v in G.

Cao et al. [3] mostly analyzed the special case k = 1 and obtained results regarding the

maximum and minimum entropy by using certain families of graphs. Also for each k ≥ 1,

Ilic proved that the star Sn is unique tree on n vertices that minimizes Ik for k ≥ 1 [20].

The second minimum was reported in [10].

In this paper we apply the strong mixing variables (SMV) method for studding the ex-

tremal values of graph entropies, in general case. Next we will find the unicyclic and

bicyclic graphs that minimize If (G) in these classes of graphs, with fix number of ver-

tices.

The paper is organized as follows. In Section 2, some concepts and notations in graph

theory, majorization and graph entropy are introduced. In Section 3 we introduce the

SMV method and more properties of entropies of graphs. In Section 4 extremal properties

of graph entropies have been studied.
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2 Preliminaries

2.1 Graph theory

A graph G = (V (G), E(G)) is an ordered pair of sets V (G) and E(G), where the elements

of set V (G) are called vertices or nodes, and the set E(G) is composed of two-element

subsets uv of V (G) named edges. Two vertices u and v are called adjacent to each other

if uv ∈ E(G). Throughout this paper we suppose that any two vertices are connected

by at most one edge in G. The degree deg(v) of a vertex v is defined as the number

of vertices to which v is adjacent. A path is a finite sequence of edges that connect a

sequence of vertices, such that the end vertex of one edge in the sequence is the start

vertex of the next, and in which no vertex appears more than once. A cycle is a path

(with at least one edge) whose first and last vertices are the same. A graph is connected

if there exists at least one path between every pair of vertices. If connected graph G

has exactly n vertices and m edges with m − n + 1 = 0, 1, 2, then the graph G is called

tree, unicyclic and bicyclic, respectively. The path Pn is a tree of order n with exactly

two vertices of degree 1. The star of order n, denoted by Sn, is the tree with n − 1

vertices of degree 1. Let V (G) = {v1, v2, . . . , vn} and di = deg(vi), for i = 1, . . . , n. Then

D(G) = (d1, d2, . . . , dn) is called the degree sequence of G. Without loss of generality, we

assume that d1 ≥ d2 ≥ . . . ≥ dn. We use ∆ = ∆(G) to denote the maximum degree of G.

Actually; ∆(G) = d1.

2.2 Majorization and the degree sequences of graphs

Majorization is an important tool in deriving inequalities in mathematics [21]. We now

recall some definitions and results from this theory which will be kept throughout this

paper. At first, we consider non-increasing vectors in Rn; that means for any vector

x = (x1, . . . , xn) we assume that x1 ≥ x2 ≥ . . . ≥ xn.

Definition 1. For two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn,

x ≺ y if


k∑

i=1

xi ≤
k∑

i=1

yi, k = 1, 2, . . . , n− 1;

n∑
i=1

xi =
n∑

i=1

yi.

When x ≺ y, x is said to be majorized by y.
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Theorem 1. The inequality
n∑

i=1

f(xi) ≤
n∑

i=1

f(yi)

holds for all continuous convex functions f if and only if x ≺ y.

Proof. See [21], Theorem 4.B.1. �

Remark 1. Suppose I ⊂ R is an interval and f : I → R is a real-value function. If f
′′

exists and f
′′
(x) ≥ 0, for each x ∈ I, then f is a convex function.

Lemma 1. Let T be a tree with n vertices and ∆(T ) ≤ n− t, where 1 ≤ t ≤ n− 2. Then

D(T ) ≺ (n− t, t, 1, . . . , 1︸ ︷︷ ︸
n−2

).

Proof. Let D(T ) = (d1, d2, . . . , dn). Then d1 = ∆(T ) ≤ n − t and
∑k

i=1 di ≤ n + k − 2,

where 2 ≤ k ≤ n − 1. Furthermore,
∑n

i=1 di = 2|E(T )| = 2n − 2. Hence, D(T ) ≺

(n− t, t, 1, . . . , 1︸ ︷︷ ︸
n−2

). �

By a similar argument, one can obtain the following lemmas:

Lemma 2. Let G be a unicyclic graph with n vertices and ∆(G) ≤ n− t. Then D(G) ≺

(n− t, t+ 1, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

).

Lemma 3. Let G be a bicyclic graph with n vertices and ∆(G) ≤ n − t. Then D(G) ≺

(n− t, t+ 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−4

).

2.3 Graph entropies

The Shannon’s entropy of a probability vector p = (p1, p2, . . . , pn), namely, 1 ≥ pi > 0

and
∑n

i=1 pi = 1, is defined as:

I(P ) = −
n∑

i=1

pi log(pi).

In mathematics, monotonous functions are functions between ordered sets that preserve or

reverses the given order. As we defined in Introduction, monotonous functions from cer-

tain sets of associated objects of graphs into positive real numbers are called information

functional.
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To define the entropy of a graph G, with the set V (G) = {v1, v2, . . . , vn} of vertices, Cao

et al. [3] assigned a probability value to each vertex vi ∈ V (G) as:

p(vi) =
f(vi)∑n
j=1 f(vj)

,

where f represents an arbitrary information functional. They obtained the following

probability vector

(p(v1), p(v2), . . . , p(vn)).

By using the above vector, the entropy of G was defined as:

Definition 2. Let G = (V (G), E(G)) be a connected graph and f be an arbitrary infor-

mation functional. The entropy of G is defined as

If (G) = −
n∑

i=1

f(vi)∑n
j=1 f(vj)

log

(
f(vi)∑n
j=1 f(vj)

)
= log(

n∑
j=1

f(vj))−
n∑

i=1

f(vi) log(f(vi))∑n
j=1 f(vj)

.

By considering f(vi) = deg(vi)
k, where k is an arbitrary real number, Dehmer defined a

novel entropy which is based on degree powers of graphs [13]:

Ik(G) = −
n∑

i=1

dki∑n
j=1 d

k
j

log

(
dki∑n
j=1 d

k
j

)
= log(

n∑
j=1

dkj )−
n∑

i=1

dki log(d
k
i )∑n

j=1 d
k
j

.

3 Graph entropy and regularity

The SMV method (strong mixing variables method) is very useful in proving symmetric

inequalities with more than two variables that have either a too complicated or a too long

proof. In order to better describe the SMV method, we refer the reader to [8] and [22].

We now apply this method to study the graph entropies.

Lemma 4. (General mixing variables lemma) Let (x1, x2, . . . , xn) be an arbitrary real

sequence.

(1) Choose i, j ∈ {1, 2, . . . , n} , such that xi = min{x1, x2, . . . , xn} , xj = max{x1, x2, . . . ,

xn}.

(2) Replace xi and xj by it’s average
xi+xj

2
. (their orders don’t change). After infinitely

many of the above transformations, each number xi, i = 1, 2, . . . , n, tends to the same

limit t = x1+x2+...+xn

n
.

Proof. See [22]. �
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Theorem 2. ( SMV theorem) Let F : I ⊆ Rn → R be a symmetric, continuous, function

satisfying F (a1, a2, . . . , an) ≥ F (b1, b2, . . . , bn), where the sequence (b1, b2, . . . , bn) is a se-

quence obtained from the sequence (a1, a2, . . . , an) by some predefined transformation (a

Ω-transformation). Then we have F (x1, x2, . . . , xn) ≥ F (t, t, . . . , t), with t = x1+x2+···+xn

n
.

Proof. See [8]. �

The transformation Ω can be defined according to the current problem; for example it

can be defined as a+b
2
,
√

a2+b2

2
, etc.

Theorem 3. Let (x1, x2, . . . , xn) be a sequence of positive real numbers. Then we have

ln

(
n∑

i=1

xi

)
−
∑n

j=1 xj ln(xj)∑n
k=1 xk

≤ ln(n). (1)

Equality occurs iff x1 = x2 = · · · = xn.

Proof. Without loss of generality we may assume that x1 ≥ x2 ≥ · · · ≥ xn. First, let
h(x) = x ln(x). Then h

′′
(x) = 1

x
> 0, and thus h is strictly convex on (0,+∞). By

Jensen’s inequality we deduce that

h

(
x1 + xn

2

)
≤ 1

2
h(x1) +

1

2
h(xn) ⇔

(
x1 + xn

2

)
ln

(
x1 + xn

2

)
≤ 1

2
ln(x1) +

1

2
ln(xn), (2)

where equality holds if and only if x1 = xn.

Next, let g : I ⊆ Rn → R denotes g(y1, y2, . . . , yn) = ln(
∑n

i=1 yi)−
∑n

j=1 yj ln(yj)∑n
k=1 yk

. Then

g

(
x1 + xn

2
, x2, . . . , xn−1,

x1 + xn

2

)
− g(x1, x2, . . . , xn)

=
−2(x1+xn

2
) ln(x1+xn

2
) + x1 ln(x1) + xn ln(xn)∑n
i=1 xi

≥ 0 by (2).

Consequently,

g

(
x1 + xn

2
, x2, . . . , xn−1,

x1 + xn

2

)
≥ g(x1, x2, . . . , xn) (3)

and equality occurs if and only x1 = xn. Therefor, by the SMV Theorem, we obtain

g(x1, x2, . . . , xn) ≤ g(t, t, . . . , t) = ln(n),

where t = x1+x2+···+xn

n
.

Finally, suppose that g(x1, x2, . . . , xn) = ln(n) but x1 > xn. Similar to the above, we see

that ln(n) ≥ g(x1+xn

2
, x2, . . . , xn−1,

x1+xn

2
). Since x1 6= xn, (3) shows that

ln(n) ≥ g(
x1 + xn

2
, x2, . . . , xn−1,

x1 + xn

2
) > g(x1, x2, . . . , xn) = ln(n),

a contradiction. It follows that x1 = xn. Therefor, x1 = x2 = · · · = xn. �
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Let us mention three important consequences of Theorem 3.

Corollary 1. Let G be a connected graph and f be an arbitrary information functional.

Then

If (G) ≤ ln(n).

Equality occurs iff f(vi) = f(v2) = · · · = f(vn).

Corollary 2. Let G be a connected graph and f(vi) = g(di). Then

If (G) ≤ ln(n).

Equality occurs iff g(di) = g(d2) = · · · = g(dn). In particular if g is an injective function,

the equality holds iff G is a regular graph.

Corollary 3. Let G be a connected graph and k be a nonzero real number. Then

Ik(G) ≤ ln(n).

Equality occurs iff G is a regular graph.

4 Graph entropy of trees, unicyclic and bicyclic

graphs

In this section we assume that D(G) = (d1, d2, . . . , dn) and f is a increasing convex

information functional on D(G). Note that every function that is finite and convex on an

open interval, is continuous on that interval. Let

ef(G) =

(
f(d1)∑n
j=1 f(dj)

,
f(d2)∑n
j=1 f(dj)

, . . . ,
f(dn)∑n
j=1 f(dj)

)
.

We give a theorem related to majorization.

Theorem 4. Let H and G be two non-isomorphic graphs of order n such that ef(H) ≺ ef(G)

. Then If (H) ≥ If (G).

Proof. Suppose that D(G) = (d1(G), . . . , dn(G)) and D(H) = (d1(H), . . . , dn(H)). Then

ef(G) =

(
f(d1(G))∑n
j=1 f(dj(G))

,
f(d2(G))∑n
j=1 f(dj(G))

, . . . ,
f(dn(G))∑n
j=1 f(dj(G))

)

ef(H) =

(
f(d1(H))∑n
j=1 f(dj(H))

,
f(d2(H))∑n
j=1 f(dj(H))

, . . . ,
f(dn(H))∑n
j=1 f(dj(H))

)
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Let h(x) = x ln(x). Then h
′′
(x) = 1

x
> 0, and thus h is convex on (0,+∞). Since

ef(H) ≺ ef(G), Theorem 1 shows that
n∑

i=1

h

(
f(di(H))∑n
j=1 f(dj(H))

)
≤

n∑
i=1

h

(
f(di(G))∑n
j=1 f(dj(G))

)
. (4)

But (4) means that −If (H) ≤ −If (G). Thus If (H) ≥ If (G), as claimed. �

Let us mention a simple lemma, which is the key to the main results of this section.

Lemma 5. Let a, b, c, d be positive integers such that a ≤ b and c ≤ d. Then

a

b
≥ c

d
⇔ b− a

b
≤ d− c

d
.

Proof. The proof is straightforward. �

Figure 1. Graphs T
′
1, B1, B2 and U1.

To characterize the trees, unicyclic and bicyclic graphs that minimize If (G) in these

classes of graphs, we introduce the graphs T
′
1, B1, B2 and U1 in Table 1. Fig. 1 illustrates

these graphs.

Table 1. Graphs T
′
1, B1, B2 and U1.

Graph Degree sequence Graph Degree sequence

T
′
1 (n− 2, 2, 1, . . . , 1︸ ︷︷ ︸

n−2

) B1 (n− 1, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−4

)

U1 (n− 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

) B2 (n− 1, 2, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

)

Theorem 5. Let T be a tree of order n. Then If (T ) ≥ If (Sn).

Proof. We have

ef(Sn) =

(
f(n− 1)

f(n− 1) + (n− 1)f(1)
,

f(1)

f(n− 1) + (n− 1)f(1)
, . . . ,

f(1)

f(n− 1) + (n− 1)f(1)

)
.
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Obviously ∆(T ) = d1 ≤ n− 1. Then by Lemma 1, we have

D(T ) ≺ (n− 1, 1, . . . , 1) = D(Sn).

Theorem 1 now gives:
n∑

i=1

f(di) ≤ f(n− 1) + (n− 1)f(1). (5)

Since
∑n

i=2 f(di) ≥
∑n

i=2 f(1) = (n− 1)f(1), (5) shows that∑n
i=2 f(di)∑n
j=1 f(dj)

≥ (n− 1)f(1)

f(n− 1) + (n− 1)f(1)
,

and
f(d1)∑n
j=1 f(dj)

≤ f(n− 1)

f(n− 1) + (n− 1)f(1)
, (6)

by Lemma 5.

Assume that i ≥ 2. Then f(di)∑n
j=1 f(dj)

≥ f(1)
f(n−1)+(n−1)f(1)

. Thus, if n− 1 ≥ p ≥ 2, then∑n
i=p+1 f(di)∑n
j=1 f(dj)

=
n∑

i=p+1

f(di)∑n
j=1 f(dj)

≥ (n− p)f(1)

f(n− 1) + (n− 1)f(1)
,

and by Lemma 5

p∑
i=1

f(di)∑n
j=1 f(dj)

=

∑p
i=1 f(di)∑n
j=1 f(dj)

≤ f(n− 1) + (p− 1)f(1)

f(n− 1) + (n− 1)f(1)
, for p = 2, . . . , n− 1. (7)

From
∑n

i=1
f(di)∑n

j=1 f(dj)
= 1 = f(n−1)+(n−1)f(1)

f(n−1)+(n−1)f(1)
, with (6) and (7) we conclude that ef (T ) ≺

ef (Sn). Applying Theorem 4 to this, we get If (T ) ≥ If (Sn). �

Theorem 6. Let T � Sn be a tree of order n. Then If (T ) ≥ If (T
′
1).

Proof. We have

ef(T ′
1)

=

(
f(n− 2)

f(n− 2) + f(2) + (n− 2)f(1)
,

f(2)

f(n− 2) + f(2) + (n− 2)f(1)
,

f(1)

f(n− 2) + f(2) + (n− 2)f(1)
, . . . ,

f(1)

f(n− 2) + f(2) + (n− 2)f(1)

)
.

Because T
′
1 is the unique tree with ∆ = n − 2 and because 2 ≤ d2 ≤ d1 = ∆ ≤ n − 2,

Lemma 1 implies that

D(T ) ≺ (n− 2, 2, 1, . . . , 1) = D(T
′

1).

So, by Theorem 1,
n∑

i=1

f(di) ≤ f(n− 2) + f(2) + (n− 2)f(1). (8)

-653-



Since
∑n

i=2 f(di) ≥ f(2) +
∑n

i=3 f(1) = f(2) + (n− 2)f(1), (8) shows that∑n
i=2 f(di)∑n
j=1 f(dj)

≥ f(2) + (n− 2)f(1)

f(n− 2) + f(2) + (n− 2)f(1)
.

Therefor
f(d1)∑n
j=1 f(dj)

≤ f(n− 2)

f(n− 2) + f(2) + (n− 2)f(1)
, (9)

by Lemma 5. Similarly, from
∑n

i=3 f(di) ≥ (n − 2)f(1), (8) and Lemma 5 we conclude

that
f(d1) + f(d2)∑n

j=1 f(dj)
≤ f(n− 2) + f(2)

f(n− 2) + f(2) + (n− 2)f(1)
. (10)

In addition, for i ≥ 3, we have f(di)∑n
j=1 f(dj)

≥ f(1)
f(n−2)+f(2)+(n−2)f(1)

. Hence if n − 1 ≥ p ≥ 3,

then ∑n
i=p+1 f(di)∑n
j=1 f(dj)

≥ (n− p)f(1)

f(n− 1) + (n− 1)f(1)
.

Consequently,

p∑
i=1

f(di)∑n
j=1 f(dj)

=

∑p
i=1 f(di)∑n
j=1 f(dj)

≤ f(n− 2) + f(2) + (p− 2)f(1)

f(n− 2) + f(2) + (n− 2)f(1)
, for p = 3, . . . , n− 1, (11)

by Lemma 5. From
∑n

i=1
f(di)∑n

j=1 f(dj)
= 1 = f(n−2)+f(2)+(n−2)f(1)

f(n−2)+f(2)+(n−2)f(1)
, (9), (10) and (11) we get

ef (T ) ≺ ef (T
′
1). Now Theorem 4 completes the proof. �

The above Theorem yields additional results. Here is an example.

Theorem 7. (See also [10] Theorem 4.5) Let T � Sn, T
′
1 be a tree of order n and k ≥ 1.

Then Ik(T ) > Ik(T
′
1) > Ik(Sn).

Theorem 8. Let G be a unicyclic graph with n ≥ 4 vertices. Then

If (U1) ≤ If (G) ≤ If (Cn).

Proof. Let An := f(n− 1) + 2f(2) + (n− 3)f(1). Then we have

ef(U1) =

(
f(n− 1)

An

,
f(2)

An

,
f(2)

An

,
f(1)

An

, · · · , f(1)
An

)
.

Since Cn is the only regular unicyclic graph, Corollary 1 shows that If (G) ≤ log(n) =

If (Cn). Now suppose that G � Cn and D(T ) = (d1, d2, . . . , dn). Note that G contains a

cycle of length at least 3. Thus, d1 ≥ 3, d2, d3 ≥ 2 and d1 ≤ n− 1. Therefore

D(G) ≺ (n− 1, 2, 2, 1, . . . , 1) = D(U1),
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by Lemma 2. So, by Theorem 1, we obtain
n∑

i=1

f(di) ≤ f(n− 1) + 2f(2) + (n− 3)f(1). (12)

Since
∑n

i=2 f(di) ≥ f(2) + f(2) +
∑n

i=4 f(1) = 2f(2) + (n− 3)f(1), (12) implies that∑n
i=2 f(di)∑n
j=1 f(dj)

≥ 2f(2) + (n− 3)f(1)

An

.

Consequently,
f(d1)∑n
j=1 f(dj)

≤ f(n− 1)

An

, (13)

by Lemma 5. Similarly, we can prove that

f(d1) + f(d2)∑n
j=1 f(dj)

≤ f(n− 1) + f(2)

An

,
f(d1) + f(d2) + f(d3)∑n

j=1 f(dj)
≤ f(n− 1) + 2f(2)

An

, (14)

and

p∑
i=1

f(di)∑n
j=1 f(dj)

=

∑p
i=1 f(di)∑n
j=1 f(dj)

≤ f(n− 1) + 2f(2) + (p− 3)f(1)

An

, for p = 4, . . . , n− 1.

(15)

Now from
∑n

i=1
f(di)∑n

j=1 f(dj)
= 1 = f(n−2)+2f(2)+(n−3)f(1)

An
, (13), (14) and (15) we deduce that

ef (G) ≺ ef (U1). Hence If (U1) ≤ If (G), as claimed. �

Because f(x) = xk, for k ≥ 1 is a increasing convex function, we obtain the following

important consequence of Theorem 8.

Corollary 4. Let G � Cn, U1 be a unicyclic graph with n ≥ 4 vertices and k ≥ 1. Then

Ik(U1) < Ik(G) < Ik(Cn).

Theorem 9. Let G be a bicyclic graph with order n ≥ 5 and d2 ≥ 3. Then

If (B1) ≤ If (G).

Proof. It is easy to check that B1, B2 are only bicyclic graphs with ∆ = n − 1. Hence,

d1 = ∆(G) ≤ n− 2 and by Lemma 3,

D(G) ≺ (n− 1, 3, 2, 2, 1, . . . , 1) = D(B1).

Therefore, Theorem 1 yields

n∑
i=1

f(di) ≤ f(n− 1) + f(3) + 2f(2) + (n− 4)f(1).

Now, by a similar argument applied in Theorem 8, we get If (G) ≥ If (B1). �
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An immediate consequence of Theorem 9 is:

Corollary 5. Let G be a bicyclic graph with order n ≥ 5 and d2 ≥ 3. Then for k ≥ 1 we

have

Ik(B1) ≤ Ik(G).

Let T2 be the tree with D(T2) = (3, 2, . . . , 2︸ ︷︷ ︸
n−4

, 1, 1, 1). Our observation leads to the following

conjecture:

Conjecture 1. Let T be a tree of order n. Then If (T ) ≤ If (Pn). If T � Pn, then

If (T ) ≤ If (T2).
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